用户名: 密码: 验证码:
氧化亚铁硫杆菌浸出铜矿尾矿重金属技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜矿尾矿中含有的重金属及毒性非金属元素一旦释放到环境中将会对土壤和水体造成严重的污染,进而对人群健康造成危害,引发环境安全事故。微生物浸出作为一种绿色技术已被广泛应用于低品位矿石的有价金属提取,但将其应用于尾矿的处理却尚处研究阶段。本论文利用微生物浸出能够加速释放矿物中金属及毒性非金属元素的特点,把其引入铜矿尾矿的无害化处理,为从根本上解决该尾矿的环境安全问题寻找合适的方法。
     本研究采用氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans)浸出云南某铜矿尾矿,通过该尾矿的表征分析,从重庆某废弃矿山采集的氧化亚铁硫杆菌的分离纯化,1%、5%和15%矿浆浓度下氧化亚铁硫杆菌浸出尾矿的摇瓶实验,自制气固液内循环生物反应器浸出铜矿尾矿的实验,添加SDS、柠檬酸和草酸等三种选矿药剂对ATCC23270浸出该铜矿尾矿的影响实验,得出:①该尾矿的平均粒径为8.30μm,中值粒径12.96μm,众数粒径12.49μm,比表面积0.688m2/g,主要元素组成Si=250.35mg/g,Fe=141.9mg/g, Al=82.2mg/g, Ca=71.7mg/g, S=66.7mg/g, Cu=3.5mg/g, Mn=2.4mg/g, As=1.2mg/g以及Cd=0.064mg/g该尾矿的主要矿物组成为石英和钙叶绿矾,并用VESTA软件生成该尾矿的晶体结构示意图;②3种矿浆浓度及对应的无菌控制摇瓶浸出实验中,1%矿浆浓度下的有菌浸出效果最佳,其Fe和Cu的浸出率分别达14.13%和18.96%;③反应器浸出实验中也是1%矿浆浓度下有菌浸出率最大,其Cu、Fe、Zn和Cd的最终浸出率分别为19.74%、13.86%、76.28%和43.44%,但As的有菌浸出反而比无菌浸出小,这是因为有菌浸出液中含有大量的Fe3+,生成FeAsO4沉淀的缘故;④SDS对微生物浸出有着明显的抑制作用,10ppm即可完全抑细菌的活性,而柠檬酸和草酸虽然对细菌有一定的抑制,但作为有机酸对矿物的化学浸出却不容忽视,使得其最终的浸出效率反而提高。
     根据上述实验结果并进行分析可推出如下主要结论:①尾矿中Fe和S的含量较高,这两种元素恰好是氧化亚铁硫杆菌极为重要的营养及能量来源,石英的四面体结构和钙叶绿矾复杂的多面体结构为将金属原子包裹在内,使得微生物浸出的难度增大;②酸性条件下(pH<3.00),氧化亚铁硫杆菌能加速铜矿尾矿中Fe和Cu的浸出,相比于同等条件下无菌浸出优势明显;③自制的气固液内循环生物反应器,从控制曝气量和形成三相内循环来维持微生物浸出的最佳条件,使得其结果与摇瓶浸出实验相差不大;④SDS抑制氧化亚铁硫杆菌主要是和细胞壁上的脂质和蛋白质结合,导致细胞壁溶解,从而使得细胞死亡。柠檬酸和草酸对氧化亚铁硫杆菌虽然有一定的抑制作用,但其作为有机酸对矿物的浸出作用弥补了这个劣势,通过与尾矿表面的金属原子的质子化反应及金属离子的螯合反应来加速尾矿的溶解,因此使得其最终的浸出率反而高于无添加有菌浸出的效率,而有机酸抑制细菌的机理可能是以质子化的形式通过细胞膜进入细胞内,并在细胞内释放质子,造成体内质子的大量积累而使得pH内平衡遭到破坏,造成细胞功能受损。⑤根据已有的硫化矿物的微生物浸出模型,通过尾矿微生物浸出的自身特点及相关实验参数将这些模型进行一定的修正,建立了能够反映尾矿微生物浸出过程的一系列数学模型,并与实验结果进行拟合,效果较好。
     最终的实验结果基本达到预期目标,即氧化亚铁硫杆菌能有效浸出该尾矿中金属及有毒非金属元素,使得其环境安全隐患大大降低,对于使用SDS作为矿物浮选剂的尾矿,选用微生物浸出技术要尤为慎重,而有机酸类的矿物浮选剂虽然对微生物有一定的抑制作用,但在酸浸的作用下使得最终的浸出率反而升高,加大处理量的反应器实验结果与摇瓶实验的浸出率出入不大,说明该反应随着量的增加波动较小,可以迅速的扩大处理规模并应用于实际。本论文的研究在一定程度上增进了对铜矿尾矿物化结构的了解,并全面考虑了微生物浸出在实际应用中所面临的现实问题,对该项技术应用于该铜矿尾矿环境安全的彻底解决具有十分重要的意义。
The copper mine tailings containing heavy metals and toxic nonmetals would contaminate the soils and waters once these elements were released into environment, and then damaging the population health that will cause the environmental safety acc-ident. The bioleaching are widely used in metals extracting from low-grade ore as a gre-en technology, but the application on mine tailings is still in inchoate stage. This paper took advantage of the feature that the bioleaching could accelerate the release of toxic elements of mine tailings to harmlessly dispose the tailings for finding the applicable method of resolving the mine tailings environmental safety problem completely.
     This research was concerned with the bioleaching of copper mine tailings from a copper mine in Yunnan by Acidithiobacillus ferrooxidans. By characterization analysis of the tailings samples, isolation and purification of Acidithiobacillus ferrooxidans from an abandoned mine in Chongqing, shake flasks bioleaching tests at1%,5%and15%pulp density, the bioleaching tests in the self-made gas-solid-liquid internal recycle bio-reactor, the tests on effects of SDS, citric acid and oxalic acid on bioleaching of the copper mine tailings by ATCC23270, the following results were obtained:①The ave-rage diameter, median diameter, modal diameter and surface area of mine tailings were8.30μm,12.96μm,12.49μm and0.688m2/g separately. The main elemental composi-tion was that Si=250.35mg/g, Fe=141.9mg/g, Al=82.2mg/g, Ca=71.7mg/g, S=66.7mg/g, Cu=3.5mg/g, Mn=2.4mg/g, As=1.2mg/g and Cd=0.064mg/g. The main mineral composition of the mine tailings was consist of quartz and calciocopiapite, and the schematic of crystal structure about mine tailings was generated by VESTA.②The effect of bioleaching at1%pulp density was the best one among the3kind of pulp density and the sterile test, and the leaching rates of Fe and Cu were14.13%and18.96%separately.③The leaching tests by reactor showed that the leaching rate of1%pulp density bioleaching was the largest. The final leaching rates of Cu, Fe, Zn and Cd were19.14%,13.86%,76.28%and43.44%, but the bioleaching rate of As was less than sterile leaching, this is because that there was a lot of Fe3+in the solution resulting in the generation of FeAsO4sedimen.④The SDS had obvious inhibiting effect on bio-leaching. When the concentration of SDS was lOppm, the bacterial activity was suppressed completely. The citric acid and oxalic acid also suppressed the bacteria, but it couldn't ignore that they were able to leaching the mine tailings as organic acid resulting in the better leaching rates.
     According to the results of above tests, it can be concluded that:①The contents of Fe and S were higher, and the Fe and S were just the important elements which were the sources of nutrition and energy. The metal atoms were wrapped up by the tetrahedral structure of quartz and complicated polyhedron structure of calciocopiapite that made the leaching of elements difficult.②In acid condition(pH<3.00), the Acidithiobacillus ferrooxidans accelerated the leaching of Fe and Cu.③The reactor maintained the optimum condition of bioleaching by controlling the aeration and generating the3phase internal recycle that made the final leaching rate not so far different from that of the sha-ke flasks tests.④The mechanism of SDS inhibition on bioleaching was that the SDS bond with the lipid and protein resulting in dissolving of cell wall and then the cell died. The citric acid and oxalic acid also inhibited the bacteria, but the chemical leaching eff-ect of organic acid made up for the weakness. They accelerated the dissolving of mine tailings by protonation on surface of tailings and chelation of metal ions. The mecha-nism of organic acid inhibition on bacteria was that the organic acid entered into cytop-lasm through cell wall and released the protons which destroyed the balance of pH. As a result, the cell function was damaged.⑤This paper set up a series of mathematical mo-dels by learning some sulfide mineral bioleaching models and improving them base on experimental condition and characteristic, and the model calculated results were in agr-eement with the experimental data.
     The final experimental results had almost reached the anticipated targets. The Aci-dithiobacillus ferrooxidans was able to leaching the metals and toxic nonmetal elements effectively that significantly reduced the environmental safety risk. It must be careful to choose the bioleaching technology on mine tailings which used the SDS as beneficia-tion reagent. The organic acid suppressed the bacteria, but the final leaching rates incr-easeed as the effect of acid leaching. The results of bioreactor were similar with that of shake flasks that demonstrated the leaching rate was stable with the reactingdose incr-easing, so the bioleaching of mine tailings will be applied in practice in the near future. This research enhanced the understanding of the mine tailings physical and chemical structure, and considered actual situation to affect the bioleaching, it's important to resolve the environmental safety problem of copper mine tailings by bioleaching.
引文
[1]Chen, B. D., Zhu, Y. G., Duan, J.et al. Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings[J]. Environmental Pollution.2007,147(2):374-380.
    [2]蒋家超,招国栋,赵由才.矿山固体废物处理与资源化[M].北京:冶金工业出版社,2007:7-8.
    [3]Rashed, M. N. Monitoring of contaminated toxic and heavy metals, from mine tailings through age accumulation, in soil and some wild plants at Southeast Egypt[J]. Journal of Hazardous Materials.178(1-3):739-746.
    [4]Huang, M., Zhou, S., Sun, B.et al. Heavy metals in wheat grain:Assessment of potential health risk for inhabitants in Kunshan, China[J]. Science of The Total Environment.2008, 405(1-3):54-61.
    [5]Rodriguez, L., Ruiz, E., Alonso-Azcarate, J.et al. Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain[J]. Journal of Environmental Management.2009,90(2):1106-1116.
    [6]Teng, Y., Luo, Y.-M., Huang, C.-Y.et al. Tolerance of Grasses to Heavy Metals and Microbial Functional Diversity in Soils Contaminated with Copper Mine Tailings[J]. Pedosphere.2008, 18(3):363-370.
    [7]尹光志,魏作安,许江.细粒尾矿及其堆坝稳定性分析[M].重庆:重庆大学出版社,2004:7.
    [8]黄燕.金属尾矿库扬尘影响分析及污染防治措施建议——以金矿尾矿库为例[J].化学工程与装备.2009,7:218-219.
    [9]Moreno, M. E., Acosta-Saavedra, L. C., Meza-Figueroa, D.et al. Biomonitoring of metal in children living in a mine tailings zone in Southern Mexico:A pilot study[J]. International Journal of Hygiene and Environmental Health, In Press, Corrected Proof.
    [10]Meza-Figueroa, D., Maier, R. M., de la O-Villanueva, M.et al. The impact of unconfined mine tailings in residential areas from a mining town in a semi-arid environment:Nacozari, Sonora, Mexico[J]. Chemosphere.2009,77(1):140-147.
    [11]Ahn, J. S., Chon, C.-M., Moon, H.-S.et al. Arsenic removal using steel manufacturing byproducts as permeable reactive materials in mine tailing containment systems[J]. Water Research.2003,37(10):2478-2488.
    [12]Antonijevic, M. M., Dimitrijevic, M. D., Stevahovic, Z. O.et al. Investigation of the possibility of copper recovery from the flotation tailings by acid leaching[J]. Journal of Hazardous Materials.2008,158(1):23-34.
    [13]Ozdemir, M, Cakir, D., Kipcak, I. Magnesium recovery from magnesite tailings by acid leaching and production of magnesium chloride hexahydrate from leaching solution by evaporation[J]. International Journal of Mineral Processing.2009,93(2):209-212.
    [14]Santibanez, C., Ginocchio, R., Teresa Varnero, M. Evaluation of nitrate leaching from mine tailings amended with biosolids under Mediterranean type climate conditions[J]. Soil Biology and Biochemistry.2007,39(6):1333-1340.
    [15]Hernandez, C. M. F., Banza, A. N., Gock, E. Recovery of metals from Cuban nickel tailings by leaching with organic acids followed by precipitation and magnetic separation[J]. Journal of Hazardous Materials.2007,139(1):25-30.
    [16]Xie, Y., Xu, Y., Yan, L.et al. Recovery of nickel, copper and cobalt from low-grade Ni-Cu sulfide tailings[J]. Hydrometallurgy.2005,80(1-2):54-58.
    [17]Vukcevic, S. The mechanism of gold extraction and copper precipitation from low grade ores in cyanide ammonia systems[J]. Minerals Engineering.1997,10(3):309-326.
    [18]Jeffrey. M. I., Linda, L., Breuer, P. L.et al. A kinetic and electrochemical study of the ammonia cyanide process for leaching gold in solutions containing copper[J]. Minerals Engineering.2002,15(12):1173-1180.
    [19]Costello, M. C., Ritchie, I. C.,Lunt, D. J. Use of the ammonia cyanide leach system for gold copper ores with reference to the retreatment of the torco tailings[J]. Minerals Engineering. 5(10-12):1421-1429.
    [20]Grosse, A. C., Dicinoski, G. W., Shaw, M. J.et al. Leaching and recovery of gold using ammoniacal thiosulfate leach liquors (a review)[J]. Hydrometallurgy.2003,69(1-3):1-21.
    [21]廖国礼,吴超.资源开发环境重金属污染与控制:1.概述[M].长沙:中南大学出版社,2005:7-9.
    [22]Graney, J. R., Halliday, A. N., Keeler, G. J.et al. Isotopic record of lead pollution in lake sediments from the northeastern United States[J]. Geochimica et Cosmochimica Acta.1995, 59(9):1715-1728.
    [23]Castro-Larragoitia, J., Kramar, U., Puchelt, H.200 years of mining activities at La Paz/San Luis Potos?Mexico -- Consequences for environment and geochemical exploration[J]. Journal of Geochemical Exploration.1997,58(1):81-91.
    [24]Liao, G.-l., Liao, D.-x., Li, Q.-m. Heavy metals contamination characteristics in soil of different mining activity zones[J]. Transactions of Nonferrous Metals Society of China.2008, 18(1):207-211.
    [25]廖国礼,吴超.资源开发环境重金属污染与控制:5.有色金属矿山重金属污染机理与实验[M].长沙:中南大学出版社,2005:135-138.
    [26]Sharma, R. S., Al-Busaidi, T. S. Groundwater pollution due to a tailings dam[J]. Engineering Geology.2001,60(1-4):235-244.
    [27]Simon, M., Martin, F., Ortiz, Let al. Soil pollution by oxidation of tailings from toxic spill of a pyrite mine[J]. The Science of The Total Environment.2001,279(1-3):63-74.
    [28]Grimalt, J. O., Ferrer, M., Macpherson, E. The mine tailing accident in Aznalcollar[J]. The Science of The Total Environment.1999,242(1-3):3-11.
    [29]Licsko, I., Lois, L., Szebenyi, G. Tailings as a source of environmental pollution[J]. Water Science and Technology.1999,39(10-11):333-336.
    [30]Lee, M. R., Correa, J. A., Seed, R. A sediment quality triad assessment of the impact of copper mine tailings disposal on the littoraf sedimentary environment in the Atacama region of northern Chile[J]. Marine Pollution Bulletin.2006,52(11):1389-1395.
    [31]Concas, A., Ardau, C., Cristini, A.et al. Mobility of heavy metals from tailings to stream waters in a mining activity contaminated site[J]. Chemosphere.2006,63(2):244-253.
    [32]Jacob, D. L., Otte, M. L. Long-term effects of submergence and wetland vegetation on metals in a 90-year old abandoned Pb-Zn mine tailings pond[J]. Environmental Pollution.2004, 130(3):337-345.
    [33]Fall, M., Benzaazoua, M., Saa, E. G. Mix proportioning of underground cemented tailings backfill[J]. Tunnelling and Underground Space Technology.2008,23(1):80-90.
    [34]Ercikdi,B., Cihangir, F., Kesimal, A.et al. Utilization of industrial waste products as pozzolanic material in cemented paste backfill of high sulphide mill tailings[J]. Journal of Hazardous Materials.2009,168(2-3):848-856.
    [35]Ercikdi, B., Kesimal, A., Cihangir, F.et al. Cemented paste backfill of sulphide-rich tailings: Importance of binder type and dosage[J], Cement and Concrete Composites.2009,31 (4):268-274.
    [36]Amaratunga, L. M. Cold-bond agglomeration of reactive pyrrhotite tailings for backfill using low cost binders:Gypsum [beta]-hemihydrate and cement[J]. Minerals Engineering.1995, 8(12):1455-1465.
    [37]Benzaazoua, M., Bussiere, B., Demers, Let al. Integrated mine tailings management by combining environmental desulphurization and cemented paste backfill:Application to mine Doyon, Quebec, Canada[J]. Minerals Engineering.2008,21(4):330-340.
    [38]Kesimal, A., Yilmaz, E., Ercikdi, B.et al. Effect of properties of tailings and binder on the short-and long-term strength and stability of cemented paste backfill [J]. Materials Letters. 2005,59(28):3703-3709.
    [39]Fall, M., Benzaazoua, M., Ouellet, S. Experimental characterization of the influence of tailings fineness and density on the quality of cemented paste backfill[J]. Minerals Engineering.2005,18(1):41-44.
    [40]Kesimal, A., Yilmaz, E., Ercikdi, B. Evaluation of paste backfill mixtures consisting of sulphide-rich mill tailings and varying cement contents[J]. Cement and Concrete Research. 2004,34(10):1817-1822.
    [41]Huynh, L., Beattie, D. A., Fornasiero, D.et al. Effect of polyphosphate and naphthalene sulfonate formaldehyde condensate on the rheological properties of dewatered tailings and cemented paste backfill[J]. Minerals Engineering.2006,19(1):28-36.
    [42]Amaratunga, L. M., Hmidi, N. Cold-bond agglomeration of gold mill tailings for backfill using gypsum betahemihydrate and cement as low cost binders[J]. Canadian Metallurgical Quarterly.1997,36(4):283-288.
    [43]Mitchell, R. J., Olsen, R. S., Smith, J. D. Model studies on cemented tailings used in mine backfill:Can geotech J, V19, N1, Feb 1982, P14-28[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.1983,20(1):A12-A12.
    [44]Liu, C.-j., Shi, P.-y., Zhang, D.-y.et al. Development of Glass Ceramics Made From Ferrous Tailings and Slag in China[J]. Journal of Iron and Steel Research, International.2007, 14(2):73-78.
    [45]Yang, H., Chen, C., Sun, H.et al. Influence of heat-treatment schedule on crystallization and microstructure of bauxite tailing glass-ceramics coated on tiles[J]. Journal of Materials Processing Technology.2008,197(1-3):206-211.
    [46]Zhao, T., Li, B. W., Gao, Z. Y.et al. The utilization of rare earth tailing for the production of glass-ceramics[J]. Materials Science and Engineering:B.170(1-3):22-25.
    [47]Yang, H., Chen, C., Pan, L.et al. Preparation of double-layer glass-ceramic/ceramic tile from bauxite tailings and red mud[J]. Journal of the European Ceramic Society.2009, 29(10):1887-1894.
    [48]Wang, X.-l., Ren, r.-c., Liu, Y. Application of DTA in preparation of glass-ceramic made by iron tailings[J]. Procedia Earth and Planetary Science.2009, 1(1):750-753.
    [49]Shao, H., Liang, K., Peng, F.et al. Production and properties of cordierite-based glass-ceramics from gold tailings[J]. Minerals Engineering.2005,18(6):635-637.
    [50]Terry Lay, G. F., Rockwell, M. C., Wiltshire, J. C.et al. Characteristics of silicate glasses derived from vitrification of manganese crust tailings[J]. Ceramics International.2009,35 (5):1961-1967.
    [51]Marabini, A. M., Plescia, P., Maccari, D.et al. New materials from industrial and mining wastes:glass-ceramics and glass- and rock-wool fibre[J]. International Journal of Mineral Processing.1998,53(1-2):121-134.
    [52]Jang, A., Kim, I. S. Solidification and stabilization of Pb, Zn, Cd and Cu in tailing wastes using cement and fly ash[J]. Minerals Engineering.2000,13(14-15):1659-1662.
    [53]Choi, Y. W., Kim, Y. J., Choi, O.et al. Utilization of tailings from tungsten mine waste as a substitution material for cement[J]. Construction and Building Materials.2009,23(7): 2481-2486.
    [54]Wong, R. C. K., Gillott, J. E., Law, S.et al. Calcined oil sands fine tailings as a supplementary cementing material for concrete [J]. Cement and Concrete Research.2004,34(7):1235-1242.
    [55]Courtin-Nomade, A., Bril, H., Neel, C.et al. Arsenic in iron cements developed within tailings of a former metalliferous mine--Enguiales, Aveyron, France[J]. Applied Geochemistry.2003, 18(3):395-408.
    [56]Choi, W. H., Lee, S. R., Park, J. Y. Cement based solidification/stabilization of arsenic-contaminated mine tailings[J]. Waste Management.2009,29(5):1766-1771.
    [57]Zhao, F.-q., Zhao, J., Liu, H.-j. Autoclaved brick from low-silicon tailings[J]. Construction and Building Materials.2009,23(1):538-541.
    [58]Liu, Y, Du, F., Yuan, L.et al. Production of lightweight ceramisite from iron ore tailings and its performance investigation in a biological aerated filter (BAF) reactor[J]. Journal of Hazardous Materials.178(1-3):999-1006.
    [59]Kavas, T. Use of boron waste as a fluxing agent in production of red mud brick[J]. Building and Environment.2006,41(12):1779-1783.
    [60]张锦瑞,王伟之,李富平et al.金属矿山尾矿综合利用与资源化[M].北京:冶金工业出版社,2008:56-211.
    [61]Renault, S., Qualizza, C., MacKinnon, M. Suitability of altai wildrye (Elymus angustus) and slender wheatgrass (Agropyron trachycaulum) for initial reclamation of saline composite tailings of oil sands[J]. Environmental Pollution.2004,128(3):339-349.
    [62]Collins Johnson, N., McGraw, A.-C. Vesicular-arbuscular mycorrhizae in taconite tailings. Ⅱ. Effects of reclamation practices[J]. Agriculture, Ecosystems & Environment.1988,21(3-4): 143-152.
    [63]Collins Johnson, N., McGraw, A.-C. Vesicular-arbuscular mycorrhizae in taconite tailings,I. Incidence and spread of endogonaceous fungi following reclamation [J]. Agriculture. Ecosystems & Environment.1988,21(3-4):135-142.
    [64]Ehrlich, H. L., Ballester. R. A. a. A. (1999). Past, present and future of biohydrometallurgy. In Process Metallurgy (Elsevier), pp.3-12.
    [65]李宏煦.硫化铜矿的生物冶金[M].北京:冶金工业出版社,2007:2-5.
    [66]杨松荣,邱冠周,胡岳华等.含砷难处理金矿石生物氧化工艺及应用[M].北京:冶金工业出版社,2006:2-3.
    [67]Watling, H. R. The bioleaching of sulphide minerals with emphasis on copper sulphides-A review[J]. Hydrometallurgy.2006,84(1-2):81-108.
    [68]Tateo, Y., Yoshihiro, F. Molecular aspects of the electron transfer system which participates in the oxidation of ferrous ion by Thiobacillus ferrooxidans[J]. FEMS Microbiology Reviews. 1995,17(4):401-413.
    [69]Liu, Z., Borne, F., Ratouchniak, J.et al. Genetic transfer of IncP, IncQ and IncW plasmids to four Thiobacillus ferrooxidans strains by conjugation[J]. Hydrometallurgy.2001,59(2-3): 339-345.
    [70]Haghshenas, D. F., Alamdari, E. K., Bonakdarpour, B.et al. Kinetics of sphalerite bioleaching by Acidithiobacillus ferrooxidans[J]. Hydrometallurgy.2009,99(3-4):202-208.
    [71]Kaewkannetra, P., Garcia-Garcia, F. J., Chiu, T. Y. Bioleaching of zinc from gold ores using Acidithiobacillus ferrooxidans[J]. International Journal of Minerals, Metallurgy and Materials. 2009,16(4):368-374.
    [72]Bevilaqua, D., Acciari, H. A., Benedetti, A. V.et al. Electrochemical noise analysis of bioleaching of bornite (Cu5FeS4) by Acidithiobacillus ferrooxidans[J]. Hydrometallurgy. 2006,83(1-4):50-54.
    [73]Lilova, K., Karamanev, D. Direct oxidation of copper sulfide by a biofilm of Acidithiobacillus ferrooxidans[J]. Hydrometallurgy.2005,80(3):147-154.
    [74]Devasia, P., Natarajan, K. A. Adhesion of Acidithiobacillus ferrooxidans to mineral surfaces[J]. International Journal of Mineral Processing.94(3-4):135-139.
    [75]Naresh Kumar, R., Nagendran, R. Fractionation behavior of heavy metals in soil during bioleaching with Acidithiobacillus thiooxidans[J]. Journal of Hazardous Materials.2009, 169(1-3):1119-1126.
    [76]Falco, L., Pogliani, C., Curutchet, G.et al. A comparison of bioleaching of covellite using pure cultures of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans or a mixed culture of Leptospirillum ferrooxidans and Acidithiobacillus thiooxidans[J]. Hydrometallurgy. 2003,71(1-2):31-36.
    [77]Lors, C., Chehade, M. H., Damidot, D. pH variations during growth of Acidithiobacillus thiooxidans in buffered media designed for an assay to evaluate concrete biodeterioration[J]. International Biodeterioration & Biodegradation.2009,63(7):880-883.
    [78]Liu, H.-L., Yang, F.-C., Huang, C.-H.et al. Sensitivity analysis of the semiempirical model for the growth of the indigenous Acidithiobacillus thiooxidans[J]. Chemical Engineering Journal. 2007,129(1-3):105-112.
    [79]Lara, R. H., Valdez-Peez, D., Rodriguez, A. G.et al. Interfacial insights of pyrite colonized by Acidithiobacillus thiooxidans cells under acidic conditions[J]. Hydrometallurgy.103 (1-4):35-44.
    [80]Garcia, J. O., Bigham, J. M., Tuovinen, O. H. Oxidation of isochemical FeS2 (marcasite-pyrite) by Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans [J]. Minerals Engineering.2007,20(1):98-101.
    [81]Chandraprabha, M. N., Natarajan, K. A. Surface chemical and flotation behaviour of chalcopyrite and pyrite in the presence of Acidithiobacillus thiooxidans[J]. Hydrometallurgy. 2006,83(1-4):146-152.
    [82]Bergamo, R. F., Novo, M. T. M., Verissimo, R. V.et al. Differentiation of Acidithiobacillus ferrooxidans and A. thiooxidans strains based on 16S-23S rDNA spacer polymorphism analysis[J]. Research in Microbiology.2004,155(7):559-567.
    [83]Kim, D. W., Son, K. H., Jang, Y. H.et al. Adsorption of a mixture of Thiobacillus thiooxidans and Thiobacillus ferrooxidans onto copper-containing furnace dust[J]. Journal of Bioscience and Bioengineering.2000,90(1):115-117.
    [84]Mikkelsen, D., Kappler, U., Webb, R. I.et al. Visualisation of pyrite leaching by selected thermophilic archaea:Nature of microorganism-ore interactions during bioleaching[J]. Hydrometallurgy.2007,88(1-4):143-153.
    [85]Lavalle, L., Giaveno, A., Pogliani, C.et al. Bioleaching of a polymetallic sulphide mineral by native strains of Leptospirillum ferrooxidans from Patagonia Argentina[J]. Process Biochemistry.2008,43(4):445-450.
    [86]Escobar, B., Bustos, K., Morales, G.et al. Rapid and specific detection of Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans by PCR[J]. Hydrometallurgy.2008,92 (3-4):102-106.
    [87]Rojas-Chapana, J. A., Tributsch, H. Interfacial activity and leaching patterns of Leptospirillum ferrooxidans onpyrite[J]. FEMS Microbiology Ecology.2004,47(1):19-29.
    [88]Auernik, K. S., Cooper, C. R., Kelly, R. M. Life in hot acid:pathway analyses in extremely thermoacidophilic archaea[J]. Current Opinion in Biotechnology.2008,19(5):445-453.
    [89]Gautier, V., Escobar, B., Vargas, T. Cooperative action of attached and planktonic cells during bioleaching of chalcopyrite with Sulfolobus metallicus at 70℃[J]. Hydrometallurgy.2008, 94(1-4):121-126.
    [90]Dopson, M., Sundkvist, J.-E., Borje Lindstrom, E. Toxicity of metal extraction and flotation chemicals to Sulfolobus metallicus and chalcopyrite bioleaching[J]. Hydrometallurgy.2006, 81(3-4):205-213.
    [91]Etzel, K., Klingl, A., Huber, H.et al. Etching of{111} and{210} synthetic pyrite surfaces by two archaeal strains, Metallosphaera sedula and Sulfolobus metallicus[J]. Hydrometallurgy. 2008,94(1-4):116-120.
    [92]Urich, T., Coelho, R., Kletzin, A.et al. The sulfur oxygenase reductase from Acidianus ambivalens is an icosatetramer as shown by crystallization and Patterson analysis[J]. Biochimica et Biophysica Acta (BBA)-Proteins & Proteomics.2005,1747(2):267-270.
    [93]Peeples, T. L., Kelly, R. M. Bioenergetics of the metal/sulfur-oxidizing extreme thermoacidophile, Metallosphaera sedula[J]. Fuel.1993,72(12):1619-1624.
    [94]Vilcaez, J., Suto, K., lnoue, C. Response of thermophiles to the simultaneous addition of sulfur and ferric ion to enhance the bioleaching of chalcopyrite[J]. Minerals Engineering. 2008,21 (15):1063-1074.
    [95]Johnson, D. B., Okibe, N., Wakeman, K.et al. Effect of temperature on the bioleaching of chalcopyrite concentrates containing different concentrations of silver[J].Hydrometallurgy. 2008,94(1-4):42-47.
    [96]Fournier, D., Lemieux, R., Couillard, D. Essential interactions between Thiobacillus ferrooxidans and heterotrophic microorganisms during a wastewater sludge bioleaching process[J], Environmental Pollution.1998,101(2):303-309.
    [97]Chen, S.-Y., Lin, J.-G. Bioleaching of heavy metals from livestock sludge by indigenous sulfur-oxidizing bacteria:effects of sludge solids concentration[J]. Chemosphere.2004, 54(3):283-289.
    [98]Jain, R., Pathak, A., Sreekrishnan, T. R.et al. Autoheated thermophilic aerobic sludge digestion and metal bioleaching in a two-stage reactor system[J]. Journal of Environmental Sciences.22(2):230-236.
    [99]Mishra, D., Kim, D. J., Ralph, D. E.et al. Bioleaching of vanadium rich spent refinery catalysts using sulfur oxidizing lithotrophs[J]. Hydrometallurgy.2007,88(1-4):202-209.
    [100]Chan, B. K. C., Dudeney, A. W. L. Reverse osmosis removal of arsenic residues from bioleaching of refractory gold concentrates[J]. Minerals Engineering.2008,21(4):272-278.
    [101]Mulligan, C. N., Kamali, M., Gibbs, B. F. Bioleaching of heavy metals from a low-grade mining ore using Aspergillus niger[J]. Journal of Hazardous Materials.2004,110(1-3):77-84.
    [102]Attia, Y. A., El-Zeky, M. Bioleaching of gold pyrite tailings with adapted bacteria[J]. Hydrometallurgy.1989,22(3):291-300.
    [103]Willscher, S., Pohle, C., Sitte, J.et al. Solubilization of heavy metals from a fluvial AMD generating tailings sediment by heterotrophic microorganisms:Part Ⅰ:Influence of pH and solid content[J]. Journal of Geochemical Exploration.92(2-3):177-185.
    [104]Schippers, A., Nagy, A. A., Kock, D.et al. The use of FISH and real-time PCR to monitor the biooxidation and cyanidation for gold and silver recovery from a mine tailings concentrate (Ticapampa, Peru)[J]. Hydrometallurgy.2008,94(1-4):77-81.
    [105]Silverman, M. P., Ehrlich, H. L., Wayne, W. U. (1964). Microbial Formation and Degradation of Minerals. In Advances in Applied Microbiology (Academic Press), pp.153-206.
    [106]Sand, W., Gehrke, T., Jozsa, P.-G.et al. (Bio)chemistry of bacterial leaching--direct vs. indirect bioleaching[J]. Hydrometallurgy.2001,59(2-3):159-175.
    [107]Tributsch, H. Direct versus indirect bioleaching[J]. Hydrometallurgy.2001,59(2-3):177-185.
    [108]Sand, W., Gehrke, T., Jozsa, P. G.et al. (1999). Direct versus indirect bioleaching. In Process Metallurgy (Elsevier), pp.27-49.
    [109]Vegli, F., Beolchini, F., Nardini, A.et al. (1999). Kinetic analysis of pyrrhotite ore bioleaching by a sulfooxidans strain:direct and indirect mechanism discrimination. In Process Metallurgy (Elsevier), pp.607-616.
    [110]Kinzler, K., Gehrke, T., Telegdi, J.et al. Bioleaching--a result of interfacial processes caused by extracellular polymeric substances (EPS)[J]. Hydrometallurgy.2003,71(1-2):83-88.
    [111]Harneit, K., Goksel, A., Kock, D.et al. Adhesion to metal sulfide surfaces by cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans [J]. Hydrometallurgy.2006,83(1-4):245-254.
    [112]Usher, K. M., Shaw, J. A., Kaksonen, A. H.et al. Elemental analysis of extracellular polymeric substances and granules in chalcopyrite bioleaching microbes[J]. Hydrometallurgy. In Press, Corrected Proof.
    [113]Seidel, A., Zimmels, Y., Armon, R. Mechanism of bioleaching of coal fly ash by Thiobacillus thiooxidans[J]. Chemical Engineering Journal.2001,83(2):123-130.
    [114]Sand, W., Gehrke, T. Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(Ⅲ) ions and acidophilic bacteria[J]. Research in Microbiology.157(1):49-56.
    [115]Hansford, G. S., Vargas, T. Chemical and electrochemical basis of bioleaching processes[J]. Hydrometallurgy.2001,59(2-3):135-145.
    [116]Rodriguez, Y., Ballester, A., Blazquez, M. L.et al. New information on the pyrite bioleaching mechanism at low and high temperature[J]. Hydrometallurgy.2003,71(1-2):37-46.
    [117]Askari Zamani, M. A., Vaghar, R., Oliazadeh, M. Selective copper dissolution during bioleaching of molybdenite concentrate[J]. International Journal of Mineral Processing.2006, 81(2):105-112.
    [118]Abhilash, Singh, S., Mehta, K. D.et al. Dissolution of uranium from silicate-apatite ore by Acidithiobacillus ferrooxidans[J]. Hydrometallurgy.2009,95(1-2):70-75.
    [119]吴爱祥,王洪江,杨保华等.溶浸采矿技术的进展与展望[J].采矿技术.2006,6(3):39-48.
    [120]何海,赵战锋,王世强等.原地浸出采矿的地球化学模型研究进展[J].采矿技术.2007,7(1):3-4,15.
    [121]林子瑜,刘晓东,杨亚新。捷克斯特拉日铀矿地质与原地浸出采矿[J].世界核地质科学.2007,24(4):206-211.
    [122]阙为民.原地浸出采铀几个基本问题的探讨[J].铀矿冶.2006,25(2):57-60.
    [123]Mudd, G. M. Critical review of acid in situ leach uranium mining:1. USA and Australia[J]. Environmental Geology.2001,41(3-4):390-403.
    [124]Mudd, G. M. Critical review of acid in situ leach uranium mining:2. Soviet Block and Asia[J]. Environmental Geology.2001,41(3-4):404-416.
    [125]Heath, J. A., Jeffrey, M.I., Zhang, H. G.et al. Anaerobic thiosulfate leaching:Development of in situ gold leaching systems[J]. Minerals Engineering.2008,21(6):424-433.
    [126]Schippers, A., Breuker, A., Blazejak, A.et al. The biogeochemistry and microbiology of sulfidic mine waste and bioleaching dumps and heaps, and novel Fe(II)-oxidizing bacteria[J]. Hydrometallurgy. In Press, Corrected Proof.
    [127]Pradhan, N., Nathsarma, K. C., Srinivasa Rao, K.et al. Heap bioleaching of chalcopyrite:A review[J]. Minerals Engineering.2008,21(5):355-365.
    [128]Lizama, H. M., Harlamovs, J. R., McKay, D. J.et al. Heap leaching kinetics are proportional to the irrigation rate divided by heap height[J], Minerals Engineering.2005,18(6):623-630.
    [129]Wu, A., Yin, S., Wang, H.et al. Technological assessment of a mining-waste dump at the Dexing copper mine, China, for possible conversion to an in situ bioleaching operation[J]. Bioresource Technology.2009,100(6):1931-1936.
    [130]Groudeva, V. I., Vasilev, D. V., Karavaiko, G. Let al. Changes In An Ore Dump During A 40 Year Period Of Commercial Scale And Spontaneous Natural Bioleaching[J]. Hydrometallurgy. In Press, Accepted Manuscript.
    [131]Wu, A., Yin, S., Yang, B.et al. Study on preferential flow in dump leaching of low-grade ores[J]. Hydrometallurgy.2007,87(3-4):124-132.
    [132]Holtum, D. A., Murray, D. M. Bacterial heap leaching of refractory gold/sulphide ores[J]. Minerals Engineering.7(5-6):619-631.
    [133]Hawkes, R. B., Franzmann, P. D., Plumb, J. J. Moderate thermophiles including "Ferroplasma cupricumulans" sp. nov. dominate an industrial-scale chalcocite heap bioleaching operation[J]. Hydrometallurgy.2006,83(1-4):229-236.
    [134]Vilcaez, J., Suto, K., Inoue, C. Modeling the auto-thermal performance of a thermophilic bioleaching heap employing mesophilic and thermophilic microbes[J].Hydrometallurgy. 2008,94(1-4):82-92.
    [135]Padilla, G. A., Cisternas, L. A., Cueto, J. Y. On the optimization of heap leaching[J]. Minerals Engineering.2008,21(9):673-678.
    [136]Rossi, G. The design of bioreactors[J]. Hydrometallurgy.2001,59(2-3):217-231.
    [137]Foucher, S., Battaglia-Brunet, F., d'Hugues, P.et al. Evolution of the bacterial population during the batch bioleaching of a cobaltiferous pyrite in a suspended-solids bubble column and comparison with a mechanically agitated reactor[J]. Hydrometallurgy.2003,71 (1-2):5-12.
    [138]Zhou, H.-B., Zeng, W.-M., Yang, Z.-F.et al. Bioleaching of chalcopyrite concentrate by a moderately thermophilic culture in a stirred tank reactor[J]. Bioresource Technology.2009, 100(2):515-520.
    [139]Cancho, L., Blazquez, M. L., Ballester, A.et al. Bioleaching of a chalcopyrite concentrate with moderate thermophilic microorganisms in a continuous reactor system[J]. Hydrometallurgy. 2007,87(3-4):100-111.
    [140]Ahmadi, A., Schaffie, M., Manafi, Z.et al. Electrochemical bioleaching of high grade chalcopyrite flotation concentrates in a stirred bioreactor[J]. Hydrometallurgy.104(1):99-105.
    [141]Ochoa, J. G., Foucher, S., Poncin, S.et al. Bioleaching of mineral ores in a suspended solid bubble column:hydrodynamics, mass transfer and reaction aspects[J]. Chemical Engineering Science.1999,54(15-16):3197-3205.
    [142]Gourich, B., Vial, C., El Azher, N.et al. Influence of hydrodynamics and probe response on oxygen mass transfer measurements in a high aspect ratio bubble column reactor:Effect of the coalescence behaviour of the liquid phase[J]. Biochemical Engineering Journal.2008, 39(1):1-14.
    [143]Mousavi, S. M., Jafari, A., Yaghmaei, S.et al. Experiments and CFD simulation of ferrous biooxidation in a bubble column bioreactor[J]. Computers & Chemical Engineering.2008, 32(8):1681-1688.
    [144]Giaveno, A., Lavalle,L., Chiacchiarini, P.et al. Bioleaching of zinc from low-grade complex sulfide ores in an airlift by isolated Leptospirillum ferrooxidans[J]. Hydrometallurgy.2007, 89(1-2):117-126.
    [145]Bakhtiari, F.. Zivdar. M., Atashi, H.et al. Bioleaching of copper from smelter dust in a series of airlift bioreactors[J]. Hydrometallurgy.2008,90(1):40-45.
    [146]Couillard, D., Mercier, G. Optimum residence time (in CSTR and airlift reactor) for bacterial leaching of metals from anaerobic sewage sludge[J]. Water Research.1991,25(2):211-218.
    [147]Dave, S. R. Selection of Leptospirillum ferrooxidans SRPCBL and development for enhanced ferric regeneration in stirred tank and airlift column reactor[J]. Bioresource Technology.2008, 99(16):7803-7806.
    [148]Chen, S.-Y., Lin, J.-G. Bioleaching of heavy metals from contaminated sediment by indigenous sulfur-oxidizing bacteria in an air-lift bioreactor:effects of sulfur concentration[J]. Water Research.38(14-15):3205-3214.
    [149]Van Weert, G., Kroes, P. J. Development of the Delft inclined plate (DIP) bioreactor[J]. Minerals Engineering.6(8-10):991-999.
    [150]Herrera, M. N., Escobar, B., Parra, B. Bioleaching of refractory gold concentrates at high pulp densities in a non-conventional rotating-drum reactor[J]. Minerals and Metallurgical Processing.1998,15(2):15-19.
    [151]Jin, J., Liu, G.-L., Shi, S.-Y.et al. Studies on the performance of a rotating drum bioreactor for bioleaching processes-Oxygen transfer, solids distribution and power consumption[J]. Hydrometallurgy.103(1-4):30-34.
    [152]Liu, H.-L., Teng, C.-H., Cheng, Y.-C. A semiempirical model for bacterial growth and bioleaching of Acidithiobacillus spp[J]. Chemical Engineering Journal.2004,99(1):77-87.
    [153]Leahy, M. J., Davidson, M. R., Schwarz, M. P. A model for heap bioleaching of chalcocite with heat balance:Mesophiles and moderate thermophiles[J]. Hydrometallurgy.2007, 85(1):24-41.
    [154]Verbaan, B., Crundwell, F. K. An electrochemical model for the leaching of a sphalerite concentrate[J]. Hydrometallurgy.1986,16(3):345-359.
    [155]Leahy, M. J., Philip Schwarz, M., Davidson, M. R. An air sparging CFD model for heap bioleaching of chalcocite[J]. Applied Mathematical Modelling.2006,30(11):1428-1444.
    [156]Bouffard, S. C., Rivera-Vasquez, B. F., Dixon, D. G. Leaching kinetics and stoichiometry of pyrite oxidation from a pyrite-marcasite concentrate in acid ferric sulfate media[J]. Hydrometallurgy.2006,84(3-4):225-238.
    [157]Petersen, J., Dixon, D. G. Modelling zinc heap bioleaching[J]. Hydrometallurgy.2007, 85(2-4):127-143.
    [158]Bouffard, S. C. Application of the HeapSim model to the heap bioleaching of the Pueblo Viejo ore deposit[J]. Hydrometallurgy.2008,93(3-4):116-123.
    [159]Song, J., Lin, J., Gao, L.et al. Modeling and Simulation of Enargite Bioleaching[J]. Chinese Journal of Chemical Engineering.2008,16(5):785-790.
    [160]Brochot, S., Durance, M. V., Villeneuve, J.et al. Modelling of the bioleaching of sulphide ores: application for the simulation of the bioleaching/gravity section of the Kasese Cobalt Company Ltd process plant[J]. Minerals Engineering.2004,17(2):253-260.
    [161]Veglio, F., Beolchini, F., Ubaldini, S. Empirical models for oxygen mass transfer:a comparison between shake flask and lab-scale fermentor and application to manganiferous ore bioleaching[J]. Process Biochemistry.1998,33(4):367-376.
    [162]Bhattacharya, P., Sarkar, P., Mukherjea, R. N. Reaction kinetics model for chalcopyrite bioleaching using Thiobacillus ferrooxidans[J]. Enzyme and Microbial Technology.1990, 12(11):873-876.
    [163]Tyagi, R. D., Sreekrishnan, T. R., Campbell, P. G. C.et al. Kinetics of heavy metal bioleaching from sewage sludge--Ⅱ. Mathematical model[J]. Water Research.1993,27(11):1653-1661.
    [164]Das, T., Sen, P. K. Bio reactor simulation and modeling for a gold bio leaching process[J]. Minerals Engineering.2001,14(3):305-316.
    [165]尹光志,魏作安,万玲等.细粒尾矿堆坝加筋加固模型试验研究[J].岩石力学与工程学报.2005,24(6):1030-1034.
    [166]Momma, K., Izumi, F. VESTA:a three-dimensional visualization system for electronic and structural analysis[J]. J Appl Crystallogr.2008,41:653-658.
    [167]SILVERMAN, M. P., LUNDGREN, D. G. STUDIES ON THE CHEMOAUTOTROPHIC IRON BACTERIUM FERROBACILLUS FERROOXIDANS. I. AN IMPROVED MEDIUM AND A HARVESTING PROCEDURE FOR SECURING HIGH CELL YIELDS[J]. JOURNAL OF BACTERIOLOGY.1959,77:642-647.
    [168]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析(第四版)[M].北京:中国环境科学出版社,2002.
    [169]沈萍,范秀容,李广武.微生物学实验(第三版)[M].北京:高等教育出版社,1999:90-92.
    [170]Regenspurg, S., Brand, A., Peiffer, S. Formation and stability of schwertmannite in acidic mining lakes[J]. Geochimica et Cosmochimica Acta.2004,68(6):1185-1197.
    [171]Kohnhauser, K. Introduction to Geomicrobiology[M]:Blackwell Publishing,2007:213-214.
    [172]任婉侠,李培军,范淑秀等.低分子量有机酸对氧化亚铁硫杆菌影响[J].环境工程学报.2008,2(9):1269-1273.
    [173]Ojumu, T. V., Petersen, J., Searby, G. E.et al. A review of rate equations proposed for microbial ferrous-iron oxidation with a view to application to heap bioleaching[J]. Hydrometallurgy.2006,83(1-4):21-28.
    [174]Dempers, C. J. N., Breed, A. W., Hansford, G. S. The kinetics of ferrous-iron oxidation by Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans:effect of cell maintenance[J]. Biochemical Engineering Journal.2003,16(3):337-346.
    [175]Boon, M., Ras, C., Heijnen, J. J. The ferrous iron oxidation kinetics of Thiobacillus ferrooxidans in batch cultures[J]. Applied Microbiology and Biotechnology.1999,51 (6):813-819.
    [176]Bircumshaw, L., Changunda, K., Hansford, G.et al. Development of a mathematical model for continuous tank bioleaching[J]. Journal of the South African Institute of Mining and Metallurgy.2006,106(4):277-282.
    [177]Boon, M., Luyben, K. C. A. M., Heijnen, J. J. The use of on-line off-gas analyses and stoichiometry in the bio-oxidation kinetics of sulphide minerals[J]. Hydrometallurgy.1998, 48(1):1-26.
    [178]Pirt, S. J. Maintenance Energy-a General-Model for Energy-Limited and Energy-Sufficient Growth[J]. Archives of Microbiology.1982,133(4):300-302.
    [179]Harvey, P. I., Crundwell, F. K. Growth of Thiobacillus ferrooxidans:A novel experimental design for batch growth and bacterial leaching studies[J]. Applied and Environmental Microbiology.1997,63(7):2586-2592.
    [180]Safari, V., Arzpeyma, G., Rashchi, F.et al. A shrinking particle-shrinking core model for leaching of a zinc ore containing silica[J]. International Journal of Mineral Processing.2009, 93(1):79-83.
    [181]Blowes, D. W., Reardon, E. J., Jambor, J. L.et al. The formation and potential importance of cemented layers in inactive sulfide mine tailings[J]. Geochimica et Cosmochimica Acta.1991, 55(4):965-978.
    [182]Lizama, H. M., Fairweather, M. J., Dai, Z.et al. How does bioleaching start?[J]. Hydrometallurgy.2003,69(1-3):109-116.
    [183]Carlos Moreno-Pirajan, J., Garcia-Cuello, V. S., Giraldo, L. The removal and kinetic study of Mn, Fe, Ni and Cu ions from wastewater onto activated carbon from coconut shells[J]. Adsorption-Journal of the International Adsorption Society.2011,17(3):505-514.
    [184]Boudrahem, F., Soualah, A., Aissani-Benissad, F. Pb(Ⅱ) and Cd(Ⅱ) Removal from Aqueous Solutions Using Activated Carbon Developed from Coffee Residue Activated with Phosphoric Acid and Zinc Chloride[J], Journal of Chemical and Engineering Data.2011,56 (5):1946-1955.
    [185]Weber, W. J., Morris, J. C. Kinetics of adsorption on carbon from solution[J]. Journal of the Sanitary Engineering Division.1963,89(2):31-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700