用户名: 密码: 验证码:
吸附/预混凝—膜生物反应器复合系统处理废水中的膜污染控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,膜生物反应器(membrane bioreactor,MBR)在污水处理和回用中倍受学者和从业人员的大力推崇和关注。然而,膜污染依然是其中至今尚未得到很好解决的技术难题。本论文以浸没式膜生物反应器(submerged membrane bioreactor,SMBR)中试系统处理废水中的膜污染控制为研究对象,在研究了适宜污泥停留时间(sludgeretention time,SRT)以及最佳曝气方式和曝气量的基础上,采取向SMBR中投加大孔吸附树脂构建吸附-膜生物反应器复合系统,以控制其在生活污水处理中膜污染;选择预混凝-膜生物反应器复合系统用于内蒙古地区实际乳制品工业废水处理,以实现膜污染控制的同时回收水中有机物。此外,对SMBR处理当地城市生活污水时的膜污染清洗方案进行了探索。本文取得的主要研究结果如下:
     首先,通过研究SRT对污泥浓度(mixed liquor suspended solids,MLSS)、污泥负荷(food-to-microorganism ratio,F/M)、胞外聚合物(extracellular polymericsubstances,EPS)中的多糖(polysaccharide,PS)浓度、化学需氧量(chemical oxygendemand,COD)及氨氮(ammonia nitrogen,NH4+-N)去除率的影响,确定了SMBR处理生活污水的适宜SRT。延长SRT能够增加MLSS和降低F/M,即有利于提高污染物去除率和减少剩余污泥产生;然而,SRT>40d后,过低的F/M会增加进行内源呼吸微生物的数量,使得MBR中MLSS虽高,但微生物活性整体降低,不利于系统维持稳定的生物处理性能。EPS中PS浓度影响活性污泥特性和膜污染发展,实验以该参数作为适宜SRT的选择标准,得出适宜SRT应控制在40d以下。COD和NH4+-N的生物去除效果表明,当SRT介于20-40d时,污染物去除率均达到实验中的最好水平,且受SRT的影响较小。从生物活性、膜污染和出水水质三个方面综合考虑,得出本文实验条件下的适宜SRT为20d≤SRT<40d。
     进一步通过改变曝气方式及强度,对跨膜压差(transmembrane pressure,TMP)、临界通量(critical flux,CF)、微生物种类及大小、混合液各组分过滤阻力、COD及NH4+-N去除率进行考察,确定了合适的曝气方式及曝气量。尽管松弛阶段曝气对去除滤饼层具有重要意义,但连续曝气是缓减膜污染最有效的方法,因此优化连续曝气时的曝气量对于平衡能耗和膜污染速率之间的关系更具现实意义。通过测定临界通量的短期实验结果表明,增加连续曝气过程中的曝气量能够提高错流速度,有利于减少污泥颗粒在膜表面的沉积,即可以控制膜污染。尽管如此,长期运行实验结果显示,增加曝气量将改变污泥特性,增加膜污染可能性;同时,降低系统对进水水质的选择性和硝化细菌活性。因此,在后续复合系统的研究中,曝气量的选择应该按照实验需求予以确定。
     通过对比实验,探索了以大孔吸附树脂(macroporous adsorption resin,MAR)构建的吸附-膜生物反应器(Adsorption-MBR)复合系统在生活污水处理中的膜污染控制。通过对临界通量的表征,验证该复合系统在膜污染控制上的效果;通过考察膜面污泥层发展和混合液特性变化,揭示该复合系统中膜污染控制的途径;最后对使用过的吸附树脂进行了再生实验。结果表明,投加粉末活性炭(powdered activatedcarbon,PAC)和MAR都可以提高MBR的临界通量,而投加MAR的MBR其临界通量改善幅度尤为明显。MAR对膜面的冲刷作用和对混合液可滤性的改善作用是SMBR实现膜污染控制的途径。以MAR构建的Adsorption-MBR复合系统能够更好地降低生物反应器中的污染负荷、减少污泥产量;且由于MAR的可再生性,该复合系统用于膜污染控制的运行成本将优于PAC构建的Adsorption-MBR。
     运用实验数据进行污染模型拟合以及对污染物进行傅里叶变换红外光谱(fouriertransform infrared spectroscopy,FTIR)分析,确定了同时使用物理化学清洗的污染膜清洗方法;借助扫描电镜(scanning electron microscope,SEM)可视化图像分析和清水比通量(specific flux,SF)测定验证了清洗程序的效果和合理性。实验发现,滤饼层的形成是膜通量衰减的主要原因,发生有机污染的主要污染源是蛋白质、多糖和脂类物质;物理清洗可以有效恢复由污泥絮体沉积造成的污染,化学清洗是去除强烈附着和造成膜孔阻塞的有机、无机污染的重要手段。膜清水比通量实验表明,本文所采用的清洗程序能够将污染膜的通量恢复到新膜的90%以上,不可逆污染已经无法通过清洗过程去除。
     将预混凝工艺与膜生物反应器耦合构建预混凝-膜生物反应器(Precoagulation-MBR)复合系统用于内蒙古地区实际乳制品工业废水处理,实现膜污染控制的同时回收废水中有机物。通过烧杯实验,考察明矾、硫酸铝、氯化铁和聚合氯化铝四种典型混凝剂对实际乳制品废水浊度的去除率,筛选合适的混凝剂并确定药剂投加量、进水pH和沉降时间参数。通过与乳制品废水处理厂现用工艺进行出水水质(浊度、COD、残留铝)比较和测定跨膜压差变化,探索该复合系统的整体应用性能。通过与预混凝-微滤(Precoagulation-MF)复合系统在临界通量参数上的比较,说明预混凝-膜生物反应器复合系统在膜污染控制方面的优越性。研究结果发现,聚合氯化铝可以作为降低复合系统中有机负荷的最佳混凝剂;进水pH为7.5、加入量为900mg/L时,浊度去除率可达到98.95%,有效沉降时间为30min。预混凝过程对于稳定MBR出水水质和改善膜污染起着重要作用;MBR在去除预混凝出水中的残留浊度和铝方面效果优于现用处理系统,且能够抵抗高有机负荷冲击、保持出水中较高的COD去除率。与Precoagulation-MF复合系统相对比,Precoagulation-MBR复合系统可以成功地实现膜污染控制。
In recent years, membrane bioreactor (MBR) for wastewater treatment and reuse isgreatly esteemed and concerned by scholars and professionals. However, membranefouling is still the technical problem which has not yet been well-solved. The object of thispaper was the membrane fouling control of submerged MBR (SMBR) pilot-scale system inwastewater treatment. Based on results of the moderate sludge retention time (SRT) andthe optimal aeration mode and intensity, adsorption-MBR hybrid system by adding MARto MBR was investigated to control membrane fouling in domestic wastewater treatment,and precoagulation-MBR hybrid system was investigated to achieve membrane foulingcontrol and reuse organics in dairy wastewater treatment. Cleaning methods of the fouledmembrane were also investigated in the treatment of local domestic wastewater. The mainresults obtained in this paper are as follows:
     Firstly, the moderate SRT of SMBR treating domestic wastewater was determined bystudying the impact of SRT on mixed liquor suspended solids (MLSS), food-to-microorganism ratio (F/M), polysaccharide (PS) concentration of extracellular polymericsubstances (EPS), chemical oxygen demand (COD) and ammonia nitrogen (NH4+-N)removal. Extending SRT could increase the MLSS concentration and decrease the F/M andthus could enhance the removal of foulants and reduce the production of excess sludge.However, the low F/M increased the number of microorganisms suffering endogenousrespiration when SRT was higher than40d, and therefore the microbial activity wasdecreased although the MBR with high MLSS and the biological treatment performancecould not be stably maintained. PS concentration of EPS affects the characteristics ofactivated sludge and the development of membrane fouling. This parameter as the selectioncriteria, suggested the moderate SRT should be controlled in less than40d. Results of thebiological removal of COD and NH4+-N showed that pollutant removal reached the bestlevel and almost unaffected by SRT when SRT was in the range of20-40d. Consideringthe three aspects of microbial activity, membrane fouling and effluent quality, theappropriate SRT was20d≤SRT<40d under the conditions of this experiment.
     The aeration mode and the aeration intensity were further determined by investigatingtransmembrane pressure (TMP), critical flux (CF), microorganisms’ type and size, resistance of different mixed liquor fractions, COD and NH4+-N removal. Continuousaeration was the most effective strategy for the mitigation of membrane fouling althoughintermittent aeration in the relaxation phase played an important role in the cake layerremoval. Therefore, optimizing aeration intensity in the mode of continuous aeration hadmore practical significance to balance the relationship between energy consumption andmembrane fouling rate. Short-term results by measuring CF showed that increasingaeration rate could enhance the cross-flow velocity, reduce the deposition of suspendedparticles on membrane surface, and so mitigate the membrane fouling. Nevertheless, theresults of long-term running experiment found that increasing the aeration intensitychanged the characteristics of activated sludge, increased the possibility of membranefouling, and decreased the selectivity of the system for influent quality and the nitrifyingbacteria activity. Therefore, the aeration intensity should be determined according to theexperimental needs of hybrid system in subsequent study
     Membrane fouling control of adsorption-MBR hybrid system with macroporousadsorption resin (MAR) treating domestic wastewater was researched through comparativeexperiments. Characterization of the critical flux showed the effect of membrane foulingcontrol in this hybrid system. Evolution of the sludge layer on membrane surface andchange of the mixture properties revealed the pathway of membrane fouling control in thishybrid system. Finally, regeneration experiment of the used adsorption resin was carriedout. The results showed that the critical flux could be improved by adding powderedactivated carbon (PAC) and MAR to MBR, and resin showed excellent result particularly.The scouring of MAR on membrane surface and the improved filterability of sludgemixture were the ways to realize fouling control. Adsorption-MBR hybrid system withMAR could reduce the foulant loading in bioreactor, decrease sludge production and wouldbe better than the adsorption-MBR hybrid system with PAC in operating costs due to therenewable performance of resin.
     Physical cleaning and chemical cleaning are determined and used for the cleaning ofcontaminated membrane by model fitting of experimental data and fourier transforminfrared spectroscopy (FTIR) analysis of foulants. Effect and rationality of the cleaningprocedure was tested by scanning electron microscope (SEM) image analysis and specificflux (SF). The results found that the decline of membrane flux was mainly affected by the formation of cake layer. Proteins, polysaccharides and lipids were the major foulants oforganic fouling. Physical cleaning can effectively remove the fouling caused by thedeposition of sludge floc, and chemical cleaning was the important means to removestrongly attached organic fouling and inorganic fouling caused by pore blocking. Waterflux of membrane showed that the flux could be restored more than90%of the newmembrane flux by the cleaning procedure used in this paper, and irreversible fouling couldnot be removed by this cleaning process.
     In order to achieve membrane fouling control and reuse the organics in wastewater,precoagulation-MBR hybrid system coupling precoagulation process with MBR was usedfor dairy industrial wastewater treatment of Inner Mongolia. By jar test, turbidity removalefficiency of the actual dairy wastewater using four typical coagulants of alum, aluminumsulfate, ferric chloride and polyaluminium chloride were investigated. Then, coagulant typeand its dosage, influent pH and settling time were determined. The overall applicationperformance of the precoagulation-MBR hybrid system was compared with the presentprocess of dairy wastewater treatment plant in effluent quality (turbidity, COD and residualaluminum) and TMP change. The superiority of the precoagulation-MBR hybrid system inmembrane fouling control was indicated by comparing the CF of the hybrid system withprecoagulation-microfiltration (Precoagulation-MF) hybrid system. The results showedthat polyaluminium chloride could be used as the optimal coagulant to reduce the organicloading in the hybrid system. Turbidity removal efficiency could reach98.95%when theinfluent pH was7.5and the dosage of polyaluminium chloride was900mg/L. Effectivesettling time was30min. Precoagulation process of the hybrid system played a veryimportant role in stabilizing the effluent quality of MBR and improving the membraneperformance. MBR could removal the residual turbidity and aluminum in precoagulationeffluent better than the existing treatment system, and it had the capability to resist shockloading and maintain the high COD removal. Compared with precoagulation-MF hybridsystem, precoagulation-MBR could control membrane fouling successfully.
引文
[1] YANG W, CICEK N, ILG J. State-of-the-art of membrane bioreactors: Worldwide research andcommercial applications in North America [J]. Journal of Membrane Science,2006,270(1-2):201-211.
    [2] NG A N L, KIM A S. A mini-review of modeling studies on membrane bioreactor (MBR) treatmentfor municipal wastewaters [J]. Desalination,2007,212(1-3):261-281.
    [3] WANG Z, WU Z, MAI S, et al. Research and applications of membrane bioreactors in China:Progress and prospect [J]. Separation and Purification Technology,2008,62(2):249-263.
    [4] LEIKNES T. The effect of coupling coagulation and flocculation with membrane filtration in watertreatment: A review [J]. Journal of Environmental Sciences,2009,21(1):8-12.
    [5] YAMAMOTO K., HIASA M., MAHMOOD T., et al. Direct solid–liquid separation using hollowfiber membrane in an activated sludge aeration tank [J]. Water Science Technology,1989,21(4-5):43-54.
    [6] ROSENBERGER S, KRüGER U, WITZIG R, et al. Performance of a bioreactor with submergedmembranes for aerobic treatment of municipal waste water [J]. Water Research,2002,36(2):413-420.
    [7] DEFRANCE L, JAFFRIN M Y. Comparison between filtrations at fixed transmembrane pressureand fixed permeate flux: application to a membrane bioreactor used for wastewater treatment [J].Journal of Membrane Science,1999,152(2):203-210.
    [8] HONG S P, BAE T H, TAK T M, et al. Fouling control in activated sludge submerged hollow fibermembrane bioreactors [J]. Desalination,2002,143(3):219-228.
    [9] LESJEAN B, HUISJES E H. Survey of the European MBR market: trends and perspectives [J].Desalination,2008,231(1-3):71-81.
    [10] DREWS A. Membrane fouling in membrane bioreactors-Characterisation, contradictions, causeand cures [J]. Journal of Membrane Science,2010,363(1-2):1-28.
    [11] BREPOLS C, DORGELOH E, FRECHEN F B, et al. Upgrading and retrofitting of municipalwastewater treatment plants by means of membrane bioreactor (MBR) technology [J]. Desalination,2008,231(1-3):20-26.
    [12] DREWS A, KRAUME M. Process Improvement by Application of Membrane Bioreactors [J].Chemical Engineering Research and Design,2005,83(3):276-284.
    [13]DE WILDE W, RICHARD M, LESJEAN B, et al. Towards standardisation of the MBR technology?[J]. Desalination,2008,231(1-3):156-165.
    [14]岑运华.膜生物反应器在污水处理中的应用[J].水处理技术,1991,17(5):318-323.
    [15]ZHENG X, ZHOU Y, CHEN S, et al. Survey of MBR market: Trends and perspectives in China [J].Desalination,2010,250(2):609-612.
    [16]黄霞,文湘华.水处理膜生物反应器原理与应用[M].北京;科学出版社.2012:17.
    [17] PEARCE G. Introduction to membranes: An introduction to membrane bioreactors [J]. Filtration&Separation,2008,45(1):32-35.
    [18] JUDD S, JUDD C. The MBR Book: Principles and Applications of Membrane Bioreactors forWater and Wastewater Treatment [M]. Burlington; Elsevier.2011:51
    [19] HOINKIS J, DEOWAN S A, PANTEN V, et al. Membrane Bioreactor (MBR) Technology-aPromising Approach for Industrial Water Reuse [J]. Procedia Engineering,2012,33:234-241.
    [20] WANG D, LI K, TEO W K. Preparation and characterization of polyvinylidene fluoride (PVDF)hollow fiber membranes [J]. Journal of Membrane Science,1999,163(2):211-220.
    [21] DURANTE F, DI BELLA G, TORREGROSSA M, et al. Particle size distribution and biomassgrowth in a submerged membrane bioreactor [J]. Desalination,2006,199(1-3):493-495.
    [22] MELIN T, JEFFERSON B, BIXIO D, et al. Membrane bioreactor technology for wastewatertreatment and reuse [J]. Desalination,2006,187(1-3):271-282.
    [23] HUANG X, LIU R, QIAN Y. Behaviour of soluble microbial products in a membrane bioreactor[J]. Process Biochemistry,2000,36(5):401-406.
    [24] WANG Z, CHU J, SONG Y, et al. Influence of operating conditions on the efficiency of domesticwastewater treatment in membrane bioreactors [J]. Desalination,2009,245(1-3):73-81.
    [25] MENG F, ZHANG H, LI Y, et al. Application of fractal permeation model to investigate membranefouling in membrane bioreactor [J]. Journal of Membrane Science,2005,262(1-2):107-116.
    [26] WEI Y, VAN HOUTEN R T, BORGER A R, et al. Minimization of excess sludge production forbiological wastewater treatment [J]. Water Research,2003,37(18):4453-4467.
    [27] ARTIGA P, GARCíA-TORIELLO G, MéNDEZ R, et al. Use of a hybrid membrane bioreactor forthe treatment of saline wastewater from a fish canning factory [J]. Desalination,2008,221(1-3):518-525.
    [28] CHOKSUCHART SRIDANG P, KAIMAN J, POTTIER A, et al. Benefits of MBR in seafoodwastewater treatment and water reuse: study case in Southern part of Thailand [J]. Desalination,2006,200(1-3):712-714.
    [29] WANG Y, HUANG X, YUAN Q. Nitrogen and carbon removals from food processing wastewaterby an anoxic/aerobic membrane bioreactor [J]. Process Biochemistry,2005,40(5):1733-1739.
    [30] ZHENG X, LIU J. Dyeing and printing wastewater treatment using a membrane bioreactor with agravity drain [J]. Desalination,2006,190(1-3):277-286.
    [31] SCHOEBERL P, BRIK M, BERTONI M, et al. Optimization of operational parameters for asubmerged membrane bioreactor treating dyehouse wastewater [J]. Separation and PurificationTechnology,2005,44(1):61-68.
    [32] BADANI Z, AIT-AMAR H, SI-SALAH A, et al. Treatment of textile waste water by membranebioreactor and reuse [J]. Desalination,2005,185(1-3):411-417.
    [33] ZHANG Y, MA C, YE F, et al. The treatment of wastewater of paper mill with integratedmembrane process [J]. Desalination,2009,236(1-3):349-356.
    [34] TENNO R, PAULAPURO H. Removal of dissolved organic compounds from paper machinewhitewater by membrane bioreactors: a comparative analysis [J]. Control Engineering Practice,1999,7(9):1085-1099.
    [35] CHEN Z-B, HU D-X, REN N-Q, et al. Biological COD reduction and inorganic suspended solidsaccumulation in a pilot-scale membrane bioreactor for traditional Chinese medicine wastewatertreatment [J]. Chemical Engineering Journal,2009,155(1-2):115-122.
    [36] CHANG C-Y, CHANG J-S, VIGNESWARAN S, et al. Pharmaceutical wastewater treatment bymembrane bioreactor process-a case study in southern Taiwan [J]. Desalination,2008,234(1-3):393-401.
    [37] REN N-Q, YAN X-F, CHEN Z-B, et al. Feasibility and simulation model of a pilot scale membranebioreactor for wastewater treatment and reuse from Chinese traditional medicine [J]. Journal ofEnvironmental Sciences,2007,19(2):129-134.
    [38] LIU X-L, REN N-Q, MA F. Effect of powdered activated carbon on Chinese traditional medicinewastewater treatment in submerged membrane bioreactor with electronic control backwashing [J].Journal of Environmental Sciences,2007,19(9):1037-1042.
    [39] VIERO A F, DE MELO T M, TORRES A P R, et al. The effects of long-term feeding of highorganic loading in a submerged membrane bioreactor treating oil refinery wastewater [J]. Journal ofMembrane Science,2008,319(1-2):223-230.
    [40] DHAOUADI H, MARROT B. Olive mill wastewater treatment in a membrane bioreactor: Processfeasibility and performances [J]. Chemical Engineering Journal,2008,145(2):225-231.
    [41] QIN J-J, OO M H, TAO G, et al. Feasibility study on petrochemical wastewater treatment and reuseusing submerged MBR [J]. Journal of Membrane Science,2007,293(1-2):161-166.
    [42] FU Z, YANG F, AN Y, et al. Simultaneous nitrification and denitrification coupled with phosphorusremoval in an modified anoxic/oxic-membrane bioreactor (A/O-MBR)[J]. Biochemical EngineeringJournal,2009,43(2):191-196.
    [43] YUAN L-M, ZHANG C-Y, ZHANG Y-Q, et al. Biological nutrient removal using an alternating ofanoxic and anaerobic membrane bioreactor (AAAM) process [J]. Desalination,2008,221(1-3):566-575.
    [44] CHO J, SONG K-G, HYUP LEE S, et al. Sequencing anoxic/anaerobic membrane bioreactor(SAM) pilot plant for advanced wastewater treatment [J]. Desalination,2005,178(1-3):219-225.
    [45] BUTTIGLIERI G, MALPEI F, DAVERIO E, et al. Denitrification of drinking water sources byadvanced biological treatment using a membrane bioreactor [J]. Desalination,2005,178(1-3):211-218.
    [46]ERGAS S J, RHEINHEIMER D E. Drinking water denitrification using a membrane bioreactor [J].Water Research,2004,38(14-15):3225-3232.
    [47] NUHOGLU A, PEKDEMIR T, YILDIZ E, et al. Drinking water denitrification by a membranebio-reactor [J]. Water Research,2002,36(5):1155-1166.
    [48] DOSORETZ C G, B DDEKER K W. Removal of trace organics from water using a pumpedbed-membrane bioreactor with powdered activated carbon [J]. Journal of Membrane Science,2004,239(1):81-90.
    [49] BOUJU H, BUTTIGLIERI G, MALPEI F. Perspectives of persistent organic pollutants (POPS)removal in an MBR pilot plant [J]. Desalination,2008,224(1-3):1-6.
    [50] SUTHERLAND K. Water and sewage: The membrane bioreactor in sewage treatment [J].Filtration&Separation,2007,44(7):18,20-22.
    [51] GANDER M, JEFFERSON B, JUDD S. Aerobic MBRs for domestic wastewater treatment: areview with cost considerations [J]. Separation and Purification Technology,2000,18(2):119-130.
    [52] ROSENBERGER S, LAABS C, LESJEAN B, et al. Impact of colloidal and soluble organicmaterial on membrane performance in membrane bioreactors for municipal wastewater treatment [J].Water Research,2006,40(4):710-720.
    [53] DI BELLA G, DURANTE F, TORREGROSSA M, et al. The role of fouling mechanisms in asubmerged membrane bioreactor during the start-up [J]. Desalination,2006,200(1-3):722-724.
    [54] FAN F, ZHOU H, HUSAIN H. Identification of wastewater sludge characteristics to predict criticalflux for membrane bioreactor processes [J]. Water Research,2006,40(2):205-212.
    [55] LEE J, AHN W-Y, LEE C-H. Comparison of the filtration characteristics between attached andsuspended growth microorganisms in submerged membrane bioreactor [J]. Water Research,2001,35(10):2435-2445.
    [56] YIGIT N O, HARMAN I, CIVELEKOGLU G, et al. Membrane fouling in a pilot-scale submergedmembrane bioreactor operated under various conditions [J]. Desalination,2008,231(1-3):124-132.
    [57] AL-AMOUDI A, LOVITT R W. Fouling strategies and the cleaning system of NF membranes andfactors affecting cleaning efficiency [J]. Journal of Membrane Science,2007,303(1-2):4-28.
    [58] MENG F, CHAE S-R, DREWS A, et al. Recent advances in membrane bioreactors (MBRs):Membrane fouling and membrane material [J]. Water Research,2009,43(6):1489-1512.
    [59] FLEMMING H C, SCHAULE G. Biofouling on membranes-A microbiological approach [J].Desalination,1988,70(1-3):95-119.
    [60] AMY G. Fundamental understanding of organic matter fouling of membranes [J]. Desalination,2008,231(1-3):44-51.
    [61] LE-CLECH P, CHEN V, FANE T A G. Fouling in membrane bioreactors used in wastewatertreatment [J]. Journal of Membrane Science,2006,284(1-2):17-53.
    [62] JI J, QIU J, WONG F-S, et al. Enhancement of filterability in MBR achieved by improvement ofsupernatant and floc characteristics via filter aids addition [J]. Water Research,2008,42(14):3611-3622.
    [63] SATYAWALI Y, BALAKRISHNAN M. Effect of PAC addition on sludge properties in an MBRtreating high strength wastewater [J]. Water Research,2009,43(6):1577-1588.
    [64] TAY J H, YANG P, ZHUANG W Q, et al. Reactor performance and membrane filtration in aerobicgranular sludge membrane bioreactor [J]. Journal of Membrane Science,2007,304(1-2):24-32.
    [65] MEIRELES M, AIMAR P, SANCHEZ V. Effects of protein fouling on the apparent pore sizedistribution of sieving membranes [J]. Journal of Membrane Science,1991,56(1):13-28.
    [66] FUTAMURA O, KATOH M, TAKEUCHI K. Organic waste water treatment by activated sludgeprocess using integrated type membrane separation [J]. Desalination,1994,98(1-3):17-25.
    [67] HASHINO M, KATAGIRI T, KUBOTA N, et al. Effect of surface roughness of hollow fibermembranes with gear-shaped structure on membrane fouling by sodium alginate [J]. Journal ofMembrane Science,2011,366(1-2):389-397.
    [68] ZHONG Z, LI D, ZHANG B, et al. Membrane surface roughness characterization and its influenceon ultrafine particle adhesion [J]. Separation and Purification Technology,2012,90:140-146.
    [69] YU H-Y, HU M-X, XU Z-K, et al. Surface modification of polypropylene microporous membranesto improve their antifouling property in MBR: NH3plasma treatment [J]. Separation and PurificationTechnology,2005,45(1):8-15.
    [70] YU H-Y, XIE Y-J, HU M-X, et al. Surface modification of polypropylene microporous membraneto improve its antifouling property in MBR: CO2plasma treatment [J]. Journal of Membrane Science,2005,254(1-2):219-227.
    [71] WANG Y, KIM J-H, CHOO K-H, et al. Hydrophilic modification of polypropylene microfiltrationmembranes by ozone-induced graft polymerization [J]. Journal of Membrane Science,2000,169(2):269-276.
    [72] HILAL N, KOCHKODAN V, AL-KHATIB L, et al. Surface modified polymeric membranes toreduce (bio)fouling: a microbiological study using E. coli [J]. Desalination,2004,167:293-300.
    [73] YAO C, LI X, NEOH K G, et al. Surface modification and antibacterial activity of electrospunpolyurethane fibrous membranes with quaternary ammonium moieties [J]. Journal of MembraneScience,2008,320(1-2):259-267.
    [74] NG H Y, HERMANOWICZ S W. Membrane bioreactor operation at short solids retention times:performance and biomass characteristics [J]. Water Research,2005,39(6):981-992.
    [75] HUANG X, GUI P, QIAN Y. Effect of sludge retention time on microbial behaviour in asubmerged membrane bioreactor [J]. Process Biochemistry,2001,36(10):1001-1006.
    [76] LEE W, KANG S, SHIN H. Sludge characteristics and their contribution to microfiltration insubmerged membrane bioreactors [J]. Journal of Membrane Science,2003,216(1-2):217-227.
    [77] BOUHABILA E H, BEN A R, BUISSON H. Fouling characterisation in membrane bioreactors [J].Separation and Purification Technology,2001,22-23:123-132.
    [78] MASSé A, SPéRANDIO M, CABASSUD C. Comparison of sludge characteristics andperformance of a submerged membrane bioreactor and an activated sludge process at high solidsretention time [J]. Water Research,2006,40(12):2405-2415.
    [79] LIU R, HUANG X, XI J, et al. Microbial behaviour in a membrane bioreactor with completesludge retention [J]. Process Biochemistry,2005,40(10):3165-3170.
    [80] POLLICE A, LAERA G, BLONDA M. Biomass growth and activity in a membrane bioreactorwith complete sludge retention [J]. Water Research,2004,38(7):1799-1808.
    [81] HAN S-S, BAE T-H, JANG G-G, et al. Influence of sludge retention time on membrane foulingand bioactivities in membrane bioreactor system [J]. Process Biochemistry,2005,40(7):2393-2400.
    [82] SHIN H-S, KANG S-T. Characteristics and fates of soluble microbial products in ceramicmembrane bioreactor at various sludge retention times [J]. Water Research,2003,37(1):121-127.
    [83] GRELIER P, ROSENBERGER S, TAZI-PAIN A. Influence of sludge retention time on membranebioreactor hydraulic performance [J]. Desalination,2006,192(1-3):10-17.
    [84] ZHANG H-M, XIAO J-N, CHENG Y-J, et al. Comparison between a sequencing batch membranebioreactor and a conventional membrane bioreactor [J]. Process Biochemistry,2006,41(1):87-95.
    [85] SOFIA A, NG W J, ONG S L. Engineering design approaches for minimum fouling in submergedMBR [J]. Desalination,2004,160(1):67-74.
    [86] RAHIMI Y, TORABIAN A, MEHRDADI N, et al. Optimizing aeration rates for minimizingmembrane fouling and its effect on sludge characteristics in a moving bed membrane bioreactor [J].Journal of Hazardous Materials,2011,186(2-3):1097-1102.
    [87] LE-CLECH P, JEFFERSON B, JUDD S J. Impact of aeration, solids concentration and membranecharacteristics on the hydraulic performance of a membrane bioreactor [J]. Journal of MembraneScience,2003,218(1-2):117-129.
    [88] MENG F, YANG F, SHI B, et al. A comprehensive study on membrane fouling in submergedmembrane bioreactors operated under different aeration intensities [J]. Separation and PurificationTechnology,2008,59(1):91-100.
    [89] BAI R, LEOW H F. Microfiltration of activated sludge wastewater--the effect of system operationparameters [J]. Separation and Purification Technology,2002,29(2):189-198.
    [90] NYWENING J-P, ZHOU H. Influence of filtration conditions on membrane fouling and scouringaeration effectiveness in submerged membrane bioreactors to treat municipal wastewater [J]. WaterResearch,2009,43(14):3548-3558.
    [91] CHUA H C, ARNOT T C, HOWELL J A. Controlling fouling in membrane bioreactors operatedwith a variable throughput [J]. Desalination,2002,149(1-3):225-229.
    [92] UEDA T, HATA K, KIKUOKA Y, et al. Effects of aeration on suction pressure in a submergedmembrane bioreactor [J]. Water Research,1997,31(3):489-494.
    [93] PSOCH C, SCHIEWER S. Long-term study of an intermittent air sparged MBR for syntheticwastewater treatment [J]. Journal of Membrane Science,2005,260(1-2):56-65.
    [94] VYAS H K, BENNETT R J, MARSHALL A D. Performance of crossflow microfiltration duringconstant transmembrane pressure and constant flux operations [J]. International Dairy Journal,2002,12(5):473-479.
    [95] VAN KAAM R, ANNE-ARCHARD D, GAUBERT M A, et al. Rheological characterization ofmixed liquor in a submerged membrane bioreactor: Interest for process management [J]. Journal ofMembrane Science,2008,317(1-2):26-33.
    [96]葛元新,朱志良. MBR膜的污染及其清洗技术研究进展[J].清洗世界,2005,21(8):24-29.
    [97]杨元晖.影响膜生物反应器膜过滤过程的因素[J].机电设备,2003,3:35-37.
    [98]崔峰,李勇,韩建华.膜生物反应器运行中的膜污染问题[J].石油化工环境保护,2000,3:24-26.
    [99]殷峻,陈英旭.膜生物反应器中的膜污染问题[J].环境污染治理技术与设备,2001,2(3):62-68.
    [100] FIELD R W, WU D, HOWELL J A, et al. Critical flux concept for microfiltration fouling [J].Journal of Membrane Science,1995,100(3):259-272.
    [101] LüBBECKE S, VOGELPOHL A, DEWJANIN W. Wastewater treatment in a biologicalhigh-performance system with high biomass concentration [J]. Water Research,1995,29(3):793-802.
    [102] RODR GUEZ F A, POYATOS J M, REBOLEIRO-RIVAS P, et al. Kinetic study and oxygentransfer efficiency evaluation using respirometric methods in a submerged membrane bioreactor usingpure oxygen to supply the aerobic conditions [J]. Bioresource Technology,2011,102(10):6013-6018.
    [103] ROSENBERGER S, EVENBLIJ H, TE POELE S, et al. The importance of liquid phaseanalyses to understand fouling in membrane assisted activated sludge processes--six case studies ofdifferent European research groups [J]. Journal of Membrane Science,2005,263(1-2):113-126.
    [104]付国楷,余健,郑宪明等.膜生物反应器的研究与展望[J].工业水处理,2003,23(10):1-4.
    [105] DEFRANCE L, JAFFRIN M Y, GUPTA B, et al. Contribution of various constituents ofactivated sludge to membrane bioreactor fouling [J]. Bioresource Technology,2000,73(2):105-112.
    [106] BARKER D J, STUCKEY D C. A review of soluble microbial products (SMP) in wastewatertreatment systems [J]. Water Research,1999,33(14):3063-3082.
    [107] GENG Z, HALL E R. A comparative study of fouling-related properties of sludge fromconventional and membrane enhanced biological phosphorus removal processes [J]. Water Research,2007,41(19):4329-4338.
    [108] FARQUHARSON A, ZHOU H. Relationships of activated sludge characteristics to foulingrate and critical flux in membrane bioreactors for wastewater treatment [J]. Chemosphere,2010,79(2):149-155.
    [109] NG T C A, NG H Y. Characterisation of initial fouling in aerobic submerged membranebioreactors in relation to physico-chemical characteristics under different flux conditions [J]. WaterResearch,2010,44(7):2336-2348.
    [110] MENG F, ZHANG H, YANG F, et al. Identification of activated sludge properties affectingmembrane fouling in submerged membrane bioreactors [J]. Separation and Purification Technology,2006,51(1):95-103.
    [111] MENG F, YANG F. Fouling mechanisms of deflocculated sludge, normal sludge, and bulkingsludge in membrane bioreactor [J]. Journal of Membrane Science,2007,305(1-2):48-56.
    [112] NGUYEN T T, GUO W, NGO H H, et al. A new combined inorganic-organic flocculant(CIOF) as a performance enhancer for aerated submerged membrane bioreactor [J]. Separation andPurification Technology,2010,75(2):204-209.
    [113] DREWS A, LEE C-H, KRAUME M. Membrane fouling-a review on the role of EPS [J].Desalination,2006,200(1-3):186-188.
    [114] FR LUND B, PALMGREN R, KEIDING K, et al. Extraction of extracellular polymers fromactivated sludge using a cation exchange resin [J]. Water Research,1996,30(8):1749-1758.
    [115] KWEON J H, JUNG J H, LEE S R, et al. Effects of consecutive chemical cleaning onmembrane performance and surface properties of microfiltration [J]. Desalination,2012,286:324-331.
    [116] PORCELLI N, JUDD S. Chemical cleaning of potable water membranes: A review [J].Separation and Purification Technology,2010,71(2):137-143.
    [117] CHEN J P, KIM S L, TING Y P. Optimization of membrane physical and chemical cleaningby a statistically designed approach [J]. Journal of Membrane Science,2003,219(1-2):27-45.
    [118]秦垣,张甲耀.一体式膜生物反应器的膜污染及对策[J].环境科学与技术,2003,26(6):46-48.
    [119] JUNG Y-J, KISO Y, YAMADA T, et al. Chemical cleaning of reverse osmosis membranesused for treating wastewater from a rolling mill process [J]. Desalination,2006,190(1-3):181-188.
    [120] TIAN J-Y, CHEN Z-L, YANG Y-L, et al. Consecutive chemical cleaning of fouled PVCmembrane using NaOH and ethanol during ultrafiltration of river water [J]. Water Research,2010,44(1):59-68.
    [121] ANG W S, YIP N Y, TIRAFERRI A, et al. Chemical cleaning of RO membranes fouled bywastewater effluent: Achieving higher efficiency with dual-step cleaning [J]. Journal of MembraneScience,2011,382(1-2):100-106.
    [122]尹国,彭超英,朱国洪等.膜生物反应器中膜污染研究进展[J].环境保护科学,2000,26(5):10-13.
    [123]张虹,王臻.膜生物反应器在污水处理领域中的研究进展[J].南京工程学院学报,2003,1(2):38-44.
    [124] YANG F, WANG Y, BICK A, et al. Performance of different configurations of hybrid growthmembrane bioreactor (HG-MBR) for treatment of mixed wastewater [J]. Desalination,2012,284:261-268.
    [125] LIU Q, WANG X C, LIU Y, et al. Performance of a hybrid membrane bioreactor in municipalwastewater treatment [J]. Desalination,2010,258(1-3):143-147.
    [126] YANG Q, CHEN J, ZHANG F. Membrane fouling control in a submerged membranebioreactor with porous, flexible suspended carriers [J]. Desalination,2006,189(1-3):292-302.
    [127] YANG Q-Y, YANG T, WANG H-J, et al. Filtration characteristics of activated sludge inhybrid membrane bioreactor with porous suspended carriers (HMBR)[J]. Desalination,2009,249(2):507-514.
    [128] JAMAL KHAN S, ZOHAIB UR R, VISVANATHAN C, et al. Influence of biofilm carriers onmembrane fouling propensity in moving biofilm membrane bioreactor [J]. Bioresource Technology,2012,113:161-164.
    [129] HUANG X, WEI C-H, YU K-C. Mechanism of membrane fouling control by suspendedcarriers in a submerged membrane bioreactor [J]. Journal of Membrane Science,2008,309(1-2):7-16.
    [130] JIN L, ONG S L, NG H Y. Fouling control mechanism by suspended biofilm carriers additionin submerged ceramic membrane bioreactors [J]. Journal of Membrane Science,2013,427:250-258.
    [131] HU J, REN H, XU K, et al. Effect of carriers on sludge characteristics and mitigation ofmembrane fouling in attached-growth membrane bioreactor [J]. Bioresource Technology,2012,122:35-41.
    [132] LEE J C, KIM J S, KANG I J, et al. Potential and limitations of alum or zeolite addition toimprove the performance of a submerged membrane bioreactor [J]. Water Science Technology,2001,43(11):59-66.
    [133]金玉兰,吴志超,顾国维.平板膜生物反应器中投加沸石对膜污染的影响[J].环境科学与技术,2005,28(3):9-10.
    [134] YANG X-L, SONG H-L, LU J-L, et al. Influence of diatomite addition on membrane foulingand performance in a submerged membrane bioreactor [J]. Bioresource Technology,2010,101(23):9178-9184.
    [135] SHI W X, DUAN Y S, YI X S, et al. Biological removal of nitrogen by a membranebioreactor-attapulgite clay system in treating polluted water [J]. Desalination,2013,317:41-47.
    [136] JOHIR M A H, ARYAL R, VIGNESWARAN S, et al. Influence of supporting media insuspension on membrane fouling reduction in submerged membrane bioreactor (SMBR)[J]. Journal ofMembrane Science,2011,374(1-2):121-128.
    [137] TIAN J-Y, CHEN Z-L, YANG Y-L, et al. Hybrid process of BAC and sMBR for treatingpolluted raw water [J]. Bioresource Technology,2009,100(24):6243-6249.
    [138] SATYAWALI Y, BALAKRISHNAN M. Performance enhancement with powdered activatedcarbon (PAC) addition in a membrane bioreactor (MBR) treating distillery effluent [J]. Journal ofHazardous Materials,2009,170(1):457-465.
    [139] LI Y-Z, HE Y-L, LIU Y-H, et al. Comparison of the filtration characteristics betweenbiological powdered activated carbon sludge and activated sludge in submerged membrane bioreactors[J]. Desalination,2005,174(3):305-314.
    [140] MUNZ G, GORI R, MORI G, et al. Powdered activated carbon and membrane bioreactors(MBRPAC) for tannery wastewater treatment: long term effect on biological and filtration processperformances [J]. Desalination,2007,207(1-3):349-360.
    [141] LIN H, WANG F, DING L, et al. Enhanced performance of a submerged membrane bioreactorwith powdered activated carbon addition for municipal secondary effluent treatment [J]. Journal ofHazardous Materials,2011,192(3):1509-1514.
    [142] YUNIARTO A, NOOR Z Z, UJANG Z, et al. Bio-fouling reducers for improving theperformance of an aerobic submerged membrane bioreactor treating palm oil mill effluent [J].Desalination,2013,316:146-153.
    [143] FANG H H P, SHI X, ZHANG T. Effect of activated carbon on fouling of activated sludgefiltration [J]. Desalination,2006,189(1-3):193-199.
    [144] MA C, YU S, SHI W, et al. High concentration powdered activated carbon-membranebioreactor (PAC-MBR) for slightly polluted surface water treatment at low temperature [J]. BioresourceTechnology,2012,113:136-142.
    [145] MA C, YU S, SHI W, et al. Effect of different temperatures on performance and membranefouling in high concentration PAC-MBR system treating micro-polluted surface water [J]. BioresourceTechnology,2013, doi: http://dx.doi.org/10.1016/j.biortech.2013.02.025.
    [146] HWANG B-K, LEE W-N, PARK P-K, et al. Effect of membrane fouling reducer on cakestructure and membrane permeability in membrane bioreactor [J]. Journal of Membrane Science,2007,288(1-2):149-156.
    [147] LEE W-N, CHANG I-S, HWANG B-K, et al. Changes in biofilm architecture with addition ofmembrane fouling reducer in a membrane bioreactor [J]. Process Biochemistry,2007,42(4):655-661.
    [148] YOON S-H, COLLINS J H. A novel flux enhancing method for membrane bioreactor (MBR)process using polymer [J]. Desalination,2006,191(1-3):52-61.
    [149] ROUX I L, KRIEG H M, YEATES C A, et al. Use of chitosan as an antifouling agent in amembrane bioreactor [J]. Journal of Membrane Science,2005,248(1-2):127-136.
    [150] KOSEOGLU H, YIGIT N O, IVERSEN V, et al. Effects of several different flux enhancingchemicals on filterability and fouling reduction of membrane bioreactor (MBR) mixed liquors [J].Journal of Membrane Science,2008,320(1-2):57-64.
    [151] DIZGE N, KOSEOGLU-IMER D Y, KARAGUNDUZ A, et al. Effects of cationicpolyelectrolyte on filterability and fouling reduction of submerged membrane bioreactor (MBR)[J].Journal of Membrane Science,2011,377(1-2):175-181.
    [152] WU J, CHEN F, HUANG X, et al. Using inorganic coagulants to control membrane fouling ina submerged membrane bioreactor [J]. Desalination,2006,197(1-3):124-136.
    [153] WU J, HUANG X. Effect of dosing polymeric ferric sulfate on fouling characteristics, mixedliquor properties and performance in a long-term running membrane bioreactor [J]. Separation andPurification Technology,2008,63(1):45-52.
    [154] CAO J-H, ZHU B-K, LU H, et al. Study on polypropylene hollow fiber based recirculatedmembrane bioreactor for treatment of municipal wastewater [J]. Desalination,2005,183(1-3):431-438.
    [155] IVERSEN V, MEHREZ R, HORNG R Y, et al. Fouling mitigation through flocculants andadsorbents addition in membrane bioreactors: Comparing lab and pilot studies [J]. Journal of MembraneScience,2009,345(1-2):21-30.
    [156] XU M, WEN X, YU Z, et al. A hybrid anaerobic membrane bioreactor coupled with onlineultrasonic equipment for digestion of waste activated sludge [J]. Bioresource Technology,2011,102(10):5617-5625.
    [157] HE M-H, WEI C-H. Performance of membrane bioreactor (MBR) system with sludge Fentonoxidation process for minimization of excess sludge production [J]. Journal of Hazardous Materials,2010,176(1-3):597-601.
    [158] BANI-MELHEM K, ELEKTOROWICZ M. Performance of the submerged membraneelectro-bioreactor (SMEBR) with iron electrodes for wastewater treatment and fouling reduction [J].Journal of Membrane Science,2011,379(1-2):434-439.
    [159] KIM H-G, JANG H-N, KIM H-M, et al. Effect of an electro phosphorous removal process onphosphorous removal and membrane permeability in a pilot-scale MBR [J]. Desalination,2010,250(2):629-633.
    [160] JOHIR M A H, GEORGE J, VIGNESWARAN S, et al. Removal and recovery of nutrients byion exchange from high rate membrane bio-reactor (MBR) effluent [J]. Desalination,2011,275(1-3):197-202.
    [161] COMTE S, GUIBAUD G, BAUDU M. Effect of extraction method on EPS from activatedsludge: An HPSEC investigation [J]. Journal of Hazardous Materials,2007,140(1-2):129-137.
    [162] WANG Z, WU Z, YU G, et al. Relationship between sludge characteristics and membrane fluxdetermination in submerged membrane bioreactors [J]. Journal of Membrane Science,2006,284(1-2):87-94.
    [163] ZHAO Y, GU P. Effect of powdered activated carbon dosage on retarding membrane foulingin MBR [J]. Separation and Purification Technology,2006,52(1):154-160.
    [164] KIM I S, JANG N. The effect of calcium on the membrane biofouling in the membranebioreactor (MBR)[J]. Water Research,2006,40(14):2756-2764.
    [165] MIYOSHI T, TSUYUHARA T, OGYU R, et al. Seasonal variation in membrane fouling inmembrane bioreactors (MBRs) treating municipal wastewater [J]. Water Research,2009,43(20):5109-5118.
    [166] YAO M, ZHANG K, CUI L. Characterization of protein-polysaccharide ratios on membranefouling [J]. Desalination,2010,259(1-3):11-16.
    [167] VAN KAAM R, ANNE-ARCHARD D, ALLIET M, et al. Aeration mode, shear stress andsludge rheology in a submerged membrane bioreactor: some keys of energy saving [J]. Desalination,2006,199(1-3):482-484.
    [168]国家环境保护总局.水和废水监测分析方法[M].北京;中国环境科学出版社.2002:105-108.
    [169]张自杰,林荣忱,金儒霖.排水工程下册[M].北京;中国建筑工业出版社.2002:2-3.
    [170] WU J, HUANG X. Effect of mixed liquor properties on fouling propensity in membranebioreactors [J]. Journal of Membrane Science,2009,342(1-2):88-96.
    [171] JIN B, WILéN B-M, LANT P. A comprehensive insight into floc characteristics and theirimpact on compressibility and settleability of activated sludge [J]. Chemical Engineering Journal,2003,95(1-3):221-234.
    [172] KHAN S J, VISVANATHAN C. Influence of mechanical mixing intensity on a biofilmstructure and permeability in a membrane bioreactor [J]. Desalination,2008,231(1-3):253-267.
    [173] KIM J-Y, CHANG I-S, PARK H-H, et al. New configuration of a membrane bioreactor foreffective control of membrane fouling and nutrients removal in wastewater treatment [J]. Desalination,2008,230(1-3):153-161.
    [174] CHANG I-S, KIM S-N. Wastewater treatment using membrane filtration--effect of biosolidsconcentration on cake resistance [J]. Process Biochemistry,2005,40(3-4):1307-1314.
    [175] LIM A L, BAI R. Membrane fouling and cleaning in microfiltration of activated sludgewastewater [J]. Journal of Membrane Science,2003,216(1-2):279-290.
    [176] LI X, GAO F, HUA Z, et al. Treatment of synthetic wastewater by a novel MBR with granularsludge developed for controlling membrane fouling [J]. Separation and Purification Technology,2005,46(1-2):19-25.
    [177] BAE T-H, TAK T-M. Interpretation of fouling characteristics of ultrafiltration membranesduring the filtration of membrane bioreactor mixed liquor [J]. Journal of Membrane Science,2005,264(1-2):151-160.
    [178] CAI M, ZHAO S, LIANG H. Mechanisms for the enhancement of ultrafiltration andmembrane cleaning by different ultrasonic frequencies [J]. Desalination,2010,263(1-3):133-138.
    [179] SHIM J K, YOO I-K, LEE Y M. Design and operation considerations for wastewatertreatment using a flat submerged membrane bioreactor [J]. Process Biochemistry,2002,38(2):279-285.
    [180] CHOI C, LEE J, LEE K, et al. The effects on operation conditions of sludge retention timeand carbon/nitrogen ratio in an intermittently aerated membrane bioreactor (IAMBR)[J]. BioresourceTechnology,2008,99(13):5397-5401.
    [181] OUYANG K, LIU J. Effect of sludge retention time on sludge characteristics and membranefouling of membrane bioreactor [J]. Journal of Environmental Sciences,2009,21(10):1329-1335.
    [182] DELAI SUN D, LOONG KHOR S, TECK HAY C, et al. Impact of prolonged sludgeretention time on the performance of a submerged membrane bioreactor [J]. Desalination,2007,208(1-3):101-112.
    [183] CANZIANI R, EMONDI V, GARAVAGLIA M, et al. Effect of oxygen concentration onbiological nitrification and microbial kinetics in a cross-flow membrane bioreactor (MBR) andmoving-bed biofilm reactor (MBBR) treating old landfill leachate [J]. Journal of Membrane Science,2006,286(1-2):202-212.
    [184] YOON S-H, KIM H-S, YEOM I-T. The optimum operational condition of membranebioreactor (MBR): cost estimation of aeration and sludge treatment [J]. Water Research,2004,38(1):37-46.
    [185] CHO J, SONG K-G, AHN K-H. The activated sludge and microbial substances influences onmembrane fouling in submerged membrane bioreactor: unstirred batch cell test [J]. Desalination,2005,183(1-3):425-429.
    [186] KATAYON S, MEGAT MOHD NOOR M J, AHMAD J, et al. Effects of mixed liquorsuspended solid concentrations on membrane bioreactor efficiency for treatment of food industrywastewater [J]. Desalination,2004,167:153-158.
    [187] LOUSADA-FERREIRA M, GEILVOET S, MOREAU A, et al. MLSS concentration: Still apoorly understood parameter in MBR filterability [J]. Desalination,2010,250(2):618-622.
    [188] VIERO A F, SANT'ANNA JR G L. Is hydraulic retention time an essential parameter forMBR performance?[J]. Journal of Hazardous Materials,2008,150(1):185-186.
    [189] SPONZA D T. Investigation of extracellular polymer substances (EPS) and physicochemicalproperties of different activated sludge flocs under steady-state conditions [J]. Enzyme and MicrobialTechnology,2003,32(3-4):375-385.
    [190] TIAN J-Y, LIANG H, NAN J, et al. Submerged membrane bioreactor (sMBR) for thetreatment of contaminated raw water [J]. Chemical Engineering Journal,2009,148(2-3):296-305.
    [191] DONG W-Y, WANG H-J, LI W-G, et al. Effect of DO on simultaneous removal of carbon andnitrogen by a membrane aeration/filtration combined bioreactor [J]. Journal of Membrane Science,2009,344(1-2):219-224.
    [192] XING C H, QIAN Y, WEN X H, et al. Physical and biological characteristics of atangential-flow MBR for municipal wastewater treatment [J]. Journal of Membrane Science,2001,191(1-2):31-42.
    [193] MOHAMMED T A, BIRIMA A H, NOOR M J M M, et al. Evaluation of using membranebioreactor for treating municipal wastewater at different operating conditions [J]. Desalination,2008,221(1-3):502-510.
    [194] LI Y Z, HE Y L, OHANDJA D G, et al. Simultaneous nitrification-denitrification achieved byan innovative internal-loop airlift MBR: Comparative study [J]. Bioresource Technology,2008,99(13):5867-5872.
    [195] DUAN L, MORENO-ANDRADE I, HUANG C-L, et al. Effects of short solids retention timeon microbial community in a membrane bioreactor [J]. Bioresource Technology,2009,100(14):3489-3496.
    [196] POLLICE A, LAERA G, SATURNO D, et al. Effects of sludge retention time on theperformance of a membrane bioreactor treating municipal sewage [J]. Journal of Membrane Science,2008,317(1-2):65-70.
    [197] LI H, FANE A G, COSTER H G L, et al. Direct observation of particle deposition on themembrane surface during crossflow microfiltration [J]. Journal of Membrane Science,1998,149(1):83-97.
    [198] VAN DER MAREL P, ZWIJNENBURG A, KEMPERMAN A, et al. An improved flux-stepmethod to determine the critical flux and the critical flux for irreversibility in a membrane bioreactor [J].Journal of Membrane Science,2009,332(1-2):24-29.
    [199] KWON D Y, VIGNESWARAN S, FANE A G, et al. Experimental determination of criticalflux in cross-flow microfiltration [J]. Separation and Purification Technology,2000,19(3):169-181.
    [200] OGNIER S, WISNIEWSKI C, GRASMICK A. Characterisation and modelling of fouling inmembrane bioreactors [J]. Desalination,2002,146(1-3):141-147.
    [201] YU K, WEN X, BU Q, et al. Critical flux enhancements with air sparging in axial hollowfibers cross-flow microfiltration of biologically treated wastewater [J]. Journal of Membrane Science,2003,224(1-2):69-79.
    [202] OGNIER S, WISNIEWSKI C, GRASMICK A. Membrane bioreactor fouling in sub-criticalfiltration conditions: a local critical flux concept [J]. Journal of Membrane Science,2004,229(1-2):171-177.
    [203] REMY M, POTIER V, TEMMINK H, et al. Why low powdered activated carbon additionreduces membrane fouling in MBRs [J]. Water Research,2010,44(3):861-867.
    [204] FU Z, YANG F, ZHOU F, et al. Control of COD/N ratio for nutrient removal in a modifiedmembrane bioreactor (MBR) treating high strength wastewater [J]. Bioresource Technology,2009,100(1):136-141.
    [205] FERRARIS M, INNELLA C, SPAGNI A. Start-up of a pilot-scale membrane bioreactor totreat municipal wastewater [J]. Desalination,2009,237(1-3):190-200.
    [206] HUANG X, WU J. Improvement of membrane filterability of the mixed liquor in a membranebioreactor by ozonation [J]. Journal of Membrane Science,2008,318(1-2):210-216.
    [207] JI J, QIU J, WAI N, et al. Influence of organic and inorganic flocculants on physical-chemicalproperties of biomass and membrane-fouling rate [J]. Water Research,2010,44(5):1627-1635.
    [208] ZHANG H-F, SUN B-S, ZHAO X-H, et al. Effect of ferric chloride on fouling in membranebioreactor [J]. Separation and Purification Technology,2008,63(2):341-347.
    [209] ROSENBERGER S, KRAUME M. Filterability of activated sludge in membrane bioreactors[J]. Desalination,2002,146(1-3):373-379.
    [210]李绍峰,王雪芹,王宏杰等.阳离子树脂法提取活性污泥胞外聚合物的研究[J].环境污染治理技术与设备,2006,7(11):41-44.
    [211]段亮,夏四清,宋永会等.活性污泥胞外聚合物提取动力学模型[J].中国环境科学,2009,29(9):951-954.
    [212]葛利云,邓欢欢,高洪伟等.活性污泥胞外聚合物提取方法的研究[J].环境科学与管理,2010,35(9):47-50.
    [213] RAVINDRAN V, TSAI H-H, WILLIAMS M D, et al. Hybrid membrane bioreactortechnology for small water treatment utilities: Process evaluation and primordial considerations [J].Journal of Membrane Science,2009,344(1-2):39-54.
    [214] WILéN B-M, JIN B, LANT P. The influence of key chemical constituents in activated sludgeon surface and flocculating properties [J]. Water Research,2003,37(9):2127-2139.
    [215] NAGAOKA H. Nitrogen removal by submerged membrane separation activated sludgeprocess [J]. Water Science and Technology,1999,39(8):107-114.
    [216] IVERSEN V, KOSEOGLU H, YIGIT N O, et al. Impacts of membrane flux enhancers onactivated sludge respiration and nutrient removal in MBRs [J]. Water Research,2009,43(3):822-830.
    [217] CHANG I-S, BAG S-O, LEE C-H. Effects of membrane fouling on solute rejection duringmembrane filtration of activated sludge [J]. Process Biochemistry,2001,36(8-9):855-860.
    [218] SHIMIZU Y, URYU K, OKUNO Y-I, et al. Effect of particle size distributions of activatedsludges on cross-flow microfiltration flux for submerged membranes [J]. Journal of Fermentation andBioengineering,1997,83(6):583-589.
    [219] GUO W, NGO H-H, VIGNESWARAN S, et al. Effect of different flocculants on short-termperformance of submerged membrane bioreactor [J]. Separation and Purification Technology,2010,70(3):274-279.
    [220] GUO W, VIGNESWARAN S, NGO H-H, et al. Comparison of the performance of submergedmembrane bioreactor (SMBR) and submerged membrane adsorption bioreactor (SMABR)[J].Bioresource Technology,2008,99(5):1012-1017.
    [221] JUN B-H, MIYANAGA K, TANJI Y, et al. Removal of nitrogenous and carbonaceoussubstances by a porous carrier-membrane hybrid process for wastewater treatment [J]. BiochemicalEngineering Journal,2003,14(1):37-44.
    [222] MO Y, CHEN J, XUE W, et al. Chemical cleaning of nanofiltration membrane filtrating theeffluent from a membrane bioreactor [J]. Separation and Purification Technology,2010,75(3):407-414.
    [223] WANG P, WANG Z, WU Z, et al. Effect of hypochlorite cleaning on the physiochemicalcharacteristics of polyvinylidene fluoride membranes [J]. Chemical Engineering Journal,2010,162(3):1050-1056.
    [224] PUSPITASARI V, GRANVILLE A, LE-CLECH P, et al. Cleaning and ageing effect ofsodium hypochlorite on polyvinylidene fluoride (PVDF) membrane [J]. Separation and PurificationTechnology,2010,72(3):301-308.
    [225] MUN Z-AGUADO M J, WILEY D E, FANE A G. Enzymatic and detergent cleaning of apolysulfone ultrafiltration membrane fouled with BSA and whey [J]. Journal of Membrane Science,1996,117(1-2):175-187.
    [226] CAUSSERAND C, ROUAIX S, LAFAILLE J-P, et al. Ageing of polysulfone membranes incontact with bleach solution: Role of radical oxidation and of some dissolved metal ions [J]. ChemicalEngineering and Processing: Process Intensification,2008,47(1):48-56.
    [227] ROUAIX S, CAUSSERAND C, AIMAR P. Experimental study of the effects of hypochloriteon polysulfone membrane properties [J]. Journal of Membrane Science,2006,277(1-2):137-147.
    [228] GAUDICHET-MAURIN E, THOMINETTE F. Ageing of polysulfone ultrafiltrationmembranes in contact with bleach solutions [J]. Journal of Membrane Science,2006,282(1-2):198-204.
    [229] WOLFF S H, ZYDNEY A L. Effect of bleach on the transport characteristics of polysulfonehemodialyzers [J]. Journal of Membrane Science,2004,243(1-2):389-399.
    [230] YI X S, ZHAO Z W, SHI W X, et al. Organic pollutants variation and antifoulingenhancement with Attapulgite clay addition in MBR treating micro-polluted surface water [J]. ChemicalEngineering Journal,2013,223:891–898.
    [231] KIMURA K, MIYOSHI T, NARUSE T, et al. The difference in characteristics of foulants insubmerged MBRs caused by the difference in the membrane flux [J]. Desalination,2008,231(1-3):268-275.
    [232] WANG Z, WU Z, YIN X, et al. Membrane fouling in a submerged membrane bioreactor(MBR) under sub-critical flux operation: Membrane foulant and gel layer characterization [J]. Journalof Membrane Science,2008,325(1):238-244.
    [233] COSTA A R, DE PINHO M N, ELIMELECH M. Mechanisms of colloidal natural organicmatter fouling in ultrafiltration [J]. Journal of Membrane Science,2006,281(1-2):716-725.
    [234] SARKAR B, CHAKRABARTI P P, VIJAYKUMAR A, et al. Wastewater treatment in dairyindustries--possibility of reuse [J]. Desalination,2006,195(1-3):141-152.
    [235] AKOUM O, JAFFRIN M Y, DING L H, et al. Treatment of dairy process waters using avibrating filtration system and NF and RO membranes [J]. Journal of Membrane Science,2004,235(1-2):111-122.
    [236] BALANNEC B, GéSAN-GUIZIOU G, CHAUFER B, et al. Treatment of dairy processwaters by membrane operations for water reuse and milk constituents concentration [J]. Desalination,2002,147(1-3):89-94.
    [237] KUSHWAHA J P, SRIVASTAVA V C, MALL I D. Treatment of dairy wastewater bycommercial activated carbon and bagasse fly ash: Parametric, kinetic and equilibrium modelling,disposal studies [J]. Bioresource Technology,2010,101(10):3474-3483.
    [238] LáSZLó Z, KERTéSZ S, BESZéDES S, et al. Effect of preozonation on the filterability ofmodel dairy waste water in nanofiltration [J]. Desalination,2009,240(1-3):170-177.
    [239] KUSHWAHA J P, CHANDRA SRIVASTAVA V, MALL I D. Treatment of dairy wastewaterby inorganic coagulants: Parametric and disposal studies [J]. Water Research,2010,44(20):5867-5874.
    [240] KAEWSUK J, THORASAMPAN W, THANUTTAMAVONG M, et al. Kinetic developmentand evaluation of membrane sequencing batch reactor (MSBR) with mixed cultures photosyntheticbacteria for dairy wastewater treatment [J]. Journal of Environmental Management,2010,91(5):1161-1168.
    [241] BICK A, PLAZAS T J G, YANG F, et al. Immersed Membrane BioReactor (IMBR) fortreatment of combined domestic and dairy wastewater in an isolated farm: An exploratory case studyimplementing the Facet Analysis (FA)[J]. Desalination,2009,249(3):1217-1222.
    [242] ARROS-ALILECHE S, MERIN U, DAUFIN G, et al. The membrane role in an anaerobicmembrane bioreactor for purification of dairy wastewaters: A numerical simulation [J]. BioresourceTechnology,2008,99(17):8237-8244.
    [243] FARIZOGLU B, UZUNER S. The investigation of dairy industry wastewater treatment in abiological high performance membrane system [J]. Biochemical Engineering Journal,2011,57:46-54.
    [244] MADAENI S S, MANSOURPANAH Y. Chemical cleaning of reverse osmosis membranesfouled by whey [J]. Desalination,2004,161(1):13-24.
    [245] TRUSSELL R S, MERLO R P, HERMANOWICZ S W, et al. The effect of organic loading onprocess performance and membrane fouling in a submerged membrane bioreactor treating municipalwastewater [J]. Water Research,2006,40(14):2675-2683.
    [246] XIA S, LI J, HE S, et al. The effect of organic loading on bacterial community composition ofmembrane biofilms in a submerged polyvinyl chloride membrane bioreactor [J]. BioresourceTechnology,2010,101(17):6601-6609.
    [247] WU B, YI S, FANE A G. Microbial community developments and biomass characteristics inmembrane bioreactors under different organic loadings [J]. Bioresource Technology,2011,102(13):6808-6814.
    [248] JOHIR M A H, VIGNESWARAN S, SATHASIVAN A, et al. Effect of organic loading rate onorganic matter and foulant characteristics in membrane bio-reactor [J]. Bioresource Technology,2012,113:154-160.
    [249] ZHENG X, PLUME S, ERNST M, et al. In-line coagulation prior to UF of treated domesticwastewater-foulants removal, fouling control and phosphorus removal [J]. Journal of MembraneScience,2012,403-404:129-139.
    [250] HUANG C, LIN J-L, LEE W-S, et al. Effect of coagulation mechanism on membranepermeability in coagulation-assisted microfiltration for spent filter backwash water recycling [J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2011,378(1-3):72-78.
    [251] XU W, GAO B, WANG Y, et al. Influences of polysilicic acid in Al13species on flocproperties and membrane fouling in coagulation/ultrafiltration hybrid process [J]. Chemical EngineeringJournal,2012,181-182:407-415.
    [252] HATT J W, GERMAIN E, JUDD S J. Precoagulation-microfiltration for wastewater reuse [J].Water Research,2011,45(19):6471-6478.
    [253] AHMAD A L, WONG S S, TENG T T, et al. Improvement of alum and PACl coagulation bypolyacrylamides (PAMs) for the treatment of pulp and paper mill wastewater [J]. Chemical EngineeringJournal,2008,137(3):510-517.
    [254] MATILAINEN A, VEPS L INEN M, SILLANP M. Natural organic matter removal bycoagulation during drinking water treatment: A review [J]. Advances in Colloid and Interface Science,2010,159(2):189-197.
    [255] SHI Y, FAN M, BROWN R C, et al. Comparison of corrosivity of polymeric sulfate ferric andferric chloride as coagulants in water treatment [J]. Chemical Engineering and Processing,2004,43(8):955-964.
    [256] TZFATI E, SEIN M, RUBINOV A, et al. Pretreatment of wastewater: Optimal coagulantselection using Partial Order Scaling Analysis (POSA)[J]. Journal of Hazardous Materials,2011,190(1-3):51-59.
    [257] DELGADO S, DIAZ F, GARCIA D, et al. Behaviour of Inorganic Coagulants in SecondaryEffluents from a Conventional Wastewater Treatment Plant [J]. Filtration&Separation,2003,40(7):42-46.
    [258] PHILIPS S, RABAEY K, VERSTRAETE W. Impact of iron salts on activated sludge andinteraction with nitrite or nitrate [J]. Bioresource Technology,2003,88(3):229-239.
    [259] CARAVELLI A H, CONTRERAS E M, ZARITZKY N E. Phosphorous removal in batchsystems using ferric chloride in the presence of activated sludges [J]. Journal of Hazardous Materials,2010,177(1-3):199-208.
    [260] TIAN J-Y, LIANG H, LI X, et al. Membrane coagulation bioreactor (MCBR) for drinkingwater treatment [J]. Water Research,2008,42(14):3910-3920.
    [261] ZHANG G, GAO Y, ZHANG Y, et al. Removal of fluoride from drinking water by amembrane coagulation reactor (MCR)[J]. Desalination,2005,177(1-3):143-155.
    [262] CHOO K-H, CHOI S-J, HWANG E-D. Effect of coagulant types on textile wastewaterreclamation in a combined coagulation/ultrafiltration system [J]. Desalination,2007,202(1-3):262-270.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700