用户名: 密码: 验证码:
MMP-2抑制性结合肽筛选及其模拟化合物体内、外抗肿瘤作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:1、采用噬菌体展示技术筛选MMP-2抑制性结合肽,观察该短肽体外抑制肿瘤细胞的侵袭作用;2、根据筛选短肽和MMP-2酶活性中心三维立体结构特征,借助生物信息学方法设计并合成系列化合物,经体内、外试验,筛选能够抑制肿瘤生长、转移的化合物。
     方法:
     1.采用噬菌体展示技术从噬菌体文库中筛选出对MMP-2具有较强亲和力的噬菌体单克隆;
     2.用MMP-2的特异性荧光分析药物筛选试剂盒对所筛选的噬菌体单克隆进行再次筛查,找出对MMP-2具有抑制作用的噬菌体单克隆;
     3.提取噬菌体DNA,测序,进行序列比对,找出噬菌体PⅢ末端表达的、与MMP-2结合的多肽的编码序列;
     4.体外合成短肽;
     5.用MMP-2特异性荧光分析药物筛选试剂盒测定该短肽对MMP-2酶活性的抑制作用;
     6.采用Transwell技术,观察该短肽体外抑制肿瘤细胞侵袭作用;
     7.根据所筛选短肽结构特点以及MMP-2酶活性中心三维立体结构,借助生物信息学技术设计并合成系列化合物,体外采用MTT法及MMP-2荧光分析药物筛选技术筛选出既可以抑制肿瘤生长又可以抑制MMP-2活性的化合物;
     8.复制乳腺癌肿瘤动物模型,观察该化合物对荷瘤鼠的治疗作用。
     结果:
     1.采用噬菌体展示技术,筛选出22个对MMP-2具有较强亲和力的噬菌体单克隆。为进一步确定该单克隆对MMP-2酶活性抑制作用,将筛选单克隆扩增,用荧光分析药物筛选试剂盒检测筛选单克隆对MMP-2酶活性抑制作用,结果表明,22个单克隆均对MMP-2具有一定的抑制作用。扩增噬菌体单克隆,提取DNA,测序,比对后得到19条对MMP-2具有抑制作用的结合肽。
     2.根据以上筛选结果,确定并合成对MMP-2抑制能力较强的2条短肽M204C4与M205C4。其多肽编码序列如下:
     M204C4:HWWQWPSSLQLRGGGS
     M205C4:HNWTRWLLHPDRGGGS
     3.采用MMP-2荧光分析药物筛选试剂盒体外对MMP-2抑制作用的研究表明:在一定浓度范围内,M204C4和M205C4对MMP-2酶活性具有不同程度的抑制作用,且随着浓度增加,对MMP-2活性抑制作用逐渐增强,呈现剂量依赖性。M204C4、M205C4对MMP-2酶活性抑制作用的IC_(50)分别为78.0、38.8nmol/L。
     4.M204C4对胰腺癌细胞系PANC-1、CFPAC-1侵袭转移能力研究表明:在一定浓度范围内,M204C4能显著抑制胰腺癌细胞侵袭,具有一定的剂量效应关系。高剂量200 nmol/L M204C4能显著抑制两种细胞系的侵袭转移,与对照相比,具有统计学差异(P<0.001);中剂量60 nmol/LM204C4也具有相似的抑制作用(P<0.001或0.01);低剂量20 nmol/LM204C4虽然也可以抑制PANC-1的侵袭转移,但其作用弱于高、中剂量组,与对照组相比亦具有统计学差异(P<0.01),在此剂量下,M204C4虽可抑制CFPAC-1的侵袭,但与对照组相比无统计学差异。
     5.M205C4对胰腺癌细胞系PANC-1、CFPAC-1侵袭转移能力研究表明:高剂量100 nmol/L M205C4能显著抑制PANC-1、CFPAC-1细胞侵袭转移,与对照组相比,具有统计学差异(P<0.01或0.001);中剂量30nmol/L M205C4也具有相似的作用效果(P<0.05或0.01);低剂量10nmol/L M205C4虽然也可以抑制PANC-1、CFPAC-1的侵袭转移,但与对照组相比无统计学差异(P>0.05)。
     6.在筛选短肽结构基础上,结合MMP-2酶活性中心三维立体结构特征,借助生物信息学方法设计并合成48个化合物。采用MTT实验和MMP-2酶活性抑制实验对合成化合物进行筛选,确定WB-1、WB-45、WB-46用于体内实验研究。
     7.复制乳腺癌细胞系MDA-MB-435裸鼠肿瘤动物模型,并予不同剂量WB-1、WB-45、WB-46灌胃给药。研究结果表明:用药组与对照组所有动物脏器病理切片均未见药物引起的毒性反应。对照组中所有动物均发现有肿瘤肺部转移现象,而WB-1用药组均未见转移灶。WB-1用药组动物体重较对照组有所增加,且肿瘤重量较对照组轻,200mg/kg组瘤重仅为对照组的24.7%,100mg/kg与10mg/kg组肿瘤重量也有所下降,具有一定的剂量效应关系。WB-45、WB-46用药组在动物肺部可观察到大小不等的转移灶。
     8.采用ELISA法检测血清中VEGF浓度,结果表明,WB-1(100mg/kg和10mg/kg)可以降低乳腺癌模型血清中VEGF浓度,且随着浓度增加,血清中VEGF含量明显减少,100mg/kg组与对照组相比具有统计学差异(P<0.05)。
     9.采用酶谱法对血清中的MMP-2/9测定结果表明:WB-1 100mg/kg可以降低血清中的MMP-2的酶原及活化形式表达,与对照组相比,有统计学差异(P<0.05);但WB-1对MMP-9表达无影响。
     结论:
     1.经噬菌体展示技术筛选后,得到2条能够很好抑制MMP-2活性的多肽:M204C4与M205C4。
     2.M204C4与M205C4在体外能够抑制MMP-2酶活性,并且能够抑制MMP-2介导的胰腺癌细胞侵袭转移。
     3.借助生物信息学方法,根据所筛选短肽结构和MMP-2酶活性中心三维立体结构合成的化合物WB-1,在体外能够抑制MMP-2/9酶活性及肿瘤细胞的增殖,在体内能够抑制肿瘤生长及转移,同时能够降低血清中VEGF、MMP-2酶原及活化形式表达。
Objectives:
     1.To screen MMP-2 inhibitory peptides from phage display library and observe their effects on tumor cell invasion.
     2.To design and synthesis compounds using bioinformatics according to the conformation of the selected peptides and MMP-2 active domain.
     3.To observe the effects of the compounds on tumor cell proliferation in vitro,and tumor growth,invasion and metastasis in vivo.
     Methods:
     1.Phages with high affinity to MMP-2 enzyme were selected from phage display library.
     2.MMP-2 fluorescent assay kit for drug discovery was used to screen the selected phage clones and determine their effect on MMP-2 activity.
     3.Extracting single-stranded phage DNA and sequencing.
     4.Synthesizing the peptides in vitro.
     5.Determining the synthetic peptide effect on MMP-2 activity using MMP-2 fluorescent assay kit for drug discovery.
     6.Matrigel-coated transwell inserts were used to observe the effects of synthetic peptides on cancer cell invasion.
     7.According to the conformation of selected peptides and MMP-2 active domain,a series of compounds were designed using bioinformatics and synthesized.All compounds were assayed with MMP-2 fluorescent assay kit for drug discovery and MTT method to determine their effects on MMP-2 activity and cancer cell proliferation.
     8.Breast cancer nude mice model was made to observe their treatment effects in vivo.
     Results:
     1.22 phage clones with high affinity to MMP-2 enzyme were obtained after screening of phage display library,and all of these clones could inhibit the activity of MMP-2 enzyme.19 peptides were obtained after sequencing.
     2.Two peptides were obtained after screening of phage display library and MMP-2 enzyme activity inhibitory effect assay.Their sequences were as follows:
     M204C4:HWWQWPSSLQLRGGGS
     M205C4:HNWTRWLLHPDRGGGS
     3.Those two peptides M204C4 and M205C4 inhibited the activity of MMP-2 in the different effects and the inhibitory effects were dose dependent. The median effective inhibiting concentration(IC_(50))for M204C4 and M205C4 were 78.0 and 38.8 nmoml/L,respectively.
     4.M204C4 inhibited MMP-2 mediated invasion of the pancreatic cancer cell lines PANC-1 and CFPAC-1 with a dose dependent manner.High concentration(200 nmol/L)of M204C4 significantly inhibited the invasion of these two cell lines than the control(P<0.001).The other two concentrations 60 nmol/L and 20 nmol/L of M204C4 had similar inhibitory effects,but milder than high concentration.
     5.M205C4 inhibited MMP-2 mediated invasion of the pancreatic cancer cell lines PANC-1 and CFPAC-1 with a dose dependent manner.The high and middle concentration(100 nmol/L and 30 nmol/L)of M205C4 could inhibit the pancreatic cancer cell invasion significantly.The low concentration (10nmol/L)could inhibit the pancreatic cancer cell invasion,but no difference was observed compared with the control group(P>0.05).
     6.48 compounds were synthesized.According to the results of MTT assay and MMP-2 enzyme activity inhibitory assay,WB-1,WB-45 and WB-46 were selected to further investigate in vivo.
     7.No toxic reaction was observed between the control and the drug administration groups.In the control group,breast cancer metastases were observed in the lung pathologic section,but no metastasis in the WB-1 group. The average weight of the animals in WB-1 administration group was higher than the control group,but no difference was observed.The average tumor weight in the 200mg/kg group decreased to 24.7%of the control group,and the same phenomenon was observed between 100mg/kg and 10mg/kg groups. In the WB-45 and WB-46 group,tumor metastases were observed in almost all lung pathologic sections.In other organs,no metastasis was observed.
     8.The serum level of VEGF in the WB-1 group(100mg/kg and 10mg/kg) were lower than that in the control group,and a statistical difference was observed between 100mg/kg and the control group(P<0.05).
     9.The serum levels of pro- and active MMP-2 were lower in the WB-1 100mg/kg administration group than that in the control group(P<0.05),but no difference for pro-MMP-9 expression was observed between the drug administration group and the control group.
     Conclusions:
     1.Two peptides M204C4 and M205C4 were obtained after screening the phage display library.
     2.In vitro,M204C4 and M205C4 inhibited the activity of MMP-2 enzyme significantly,meanwhile inhibited MMP-2 mediated pancreatic cancer cell invasion.
     3.The mimetic compound WB-1 not only inhibited MMP-2 activity and cancer cell proliferation in vitro,but also inhibited tumor growth and metastasis and decreased the serum levels of VEGF,pro- and active MMP-2 in vivo.
引文
1 Yoon SO, Park SJ, Yun CH, et al. Roles of matrix metalloproteinases in tumor metastasis and angiogenesis. J Biochem Mol Biol, 2003,36:128-37.
    2 Bohle AS, Kalthoff H. Molecular mechanisms of tumor metastasis and angiogenesis. Langenbecks Arch Surg, 1999,384:133-40.
    3 Nash GF, Turner LF, Scully MF, et al. Platelets and cancer. Lancet Oncol, 2002,3:425-30.
    4 Nelson AR, Fingleton B, Rothenberg ML, et al. Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol, 2000,18:1135-49.
    5 Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer, 2002,2:161-74.
    6 Fingleton B. Matrix metalloproteinases: roles in cancer and metastasis. Front Biosci, 2006,11:479-91.
    7 Westermarck J, Kahari VM. Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J, 1999,13:781-92.
    8 McCawley LJ, Matrisian LM. Matrix metalloproteinases: they're not just for matrix anymore!. Curr Opin Cell Biol, 2001,13:534-40.
    9 Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol, 2001,17:463-516.
    10 Johnsen M, Lund LR, Romer J, et al. Cancer invasion and tissue remodeling: common themes in proteolytic matrix degradation. Curr Opin Cell Biol, 1998,10:667-71.
    11 Liabakk NB, Talbot I, Smith RA, et al. Matrix metalloprotease 2 (MMP-2) and matrix metalloprotease 9 (MMP-9) type IV collagenases in colorectal cancer. Cancer Res, 1996,56:190-6.
    12 Shipley JM, Doyle GA, Fliszar CJ, et al. The structural basis for the elastolytic activity of the 92-kDa and 72-kDa gelatinases. Role of the fibronectin type II-like repeats. J Biol Chem, 1996,271:4335-41.
    13 Collier IE, Krasnov PA, Strongin AY, et al. Alanine scanning mutagenesis and functional analysis of the fibronectin-like collagen-binding domain from human 92-kDa type IV Collagenase. J Biol Chem, 1992,267:6776-81.
    14 Xu X, Wang Y, Lauer-Fields JL, et al. Contributions of the MMP-2 collagen binding domain to gelatin cleavage. Substrate binding via the collagen binding domain is required for hydrolysis of gelatin but not short peptides. Matrix Biol, 2004,23:171-81.
    15 Hulboy DL, Rudolph LA,Matrisian LM. Matrix metalloproteinases as mediators of reproductive function. Mol Hum Reprod, 1997,3:27-45.
    16 Brinckerhoff CE, Matrisian LM. Matrix metalloproteinases: a tail of a frog that became a prince. Nat Rev Mol Cell Biol, 2002,3:207-14.
    17 Itoh T, Tanioka M, Yoshida H, et al. Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res, 1998,58:1048-51.
    18 Takahashi M, Fukami S, Iwata N, et al. In vivo glioma growth requires host-derived matrix metalloproteinase 2 for maintenance of angioarchitecture. Pharmacol Res, 2002,46:155-63.
    19 Belotti D, Paganoni P, Manenti L, et al. Matrix metalloproteinases (MMP9 and MMP2) induce the release of vascular endothelial growth factor (VEGF) by ovarian carcinoma cells: implications for ascites formation. Cancer Res, 2003,63:5224-9.
    20 Kato T, Kure T, Chang JH, et al. Diminished corneal angiogenesis in gelatinase A-deficient mice. FEBS Lett, 2001,508:187-90.
    21 Ohno-Matsui K, Uetama T, Yoshida T, et al. Reduced retinal angiogenesis in MMP-2-deficient mice. Invest Ophthalmol Vis Sci, 2003,44:5370-5.
    22 Berglin L, Sarman S, van der Ploeg I, et al. Reduced choroidal neovascular membrane formation in matrix metalloproteinase-2-deficient mice. Invest Ophthalmol Vis Sci, 2003,44:403-8.
    23 Gilles C, Newgreen DF, Sato H,Thompsom EW. Matrix metallo- proteases and epithelial-to-mesenchymal transition:implications for carcinoma metastasis. In: Savagner P, editor. Rise and Fall of Epithelial phenotype. New York: Eurokan.com and Kluwer Academic/Plenum Publishers; 2004. p.233-51.
    24 Davies B, Miles DW, Happerfield LC, et al. Activity of type IV collagenases in benign and malignant breast disease. Br J Cancer, 1993,67:1126-31.
    25 Brown PD, Bloxidge RE, Anderson E, et al. Expression of activated gelatinase in human invasive breast carcinoma. Clin Exp Metastasis, 1993,11:183-9.
    26 Gohji K, Fujimoto N, Hara I, et al. Serum matrix metalloproteinase-2 and its density in men with prostate cancer as a new predictor of disease extension. Int J Cancer, 1998,79:96-101.
    27 Stearns ME, Stearns M. Immunohistochemical studies of activated matrix metalloproteinase-2 (MMP-2a)expression in human prostate cancer. Oncol Res, 1996,8:63-7.
    28 Stetler-Stevenson WG. Progelatinase A activation during tumor cell invasion. Invasion Metastasis, 1994,14:259-68.
    29 Overall CM, Kleifeld O. Tumour microenvironment - opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer, 2006,6:227-39.
    30 Takahashi C, Sheng Z, Horan TP, et al. Regulation of matrix metalloproteinase-9 and inhibition of tumor invasion by the membrane-anchored glycoprotein RECK. Proc Natl Acad Sci U S A, 1998,95:13221-6.
    31 Oh J, Takahashi R, Kondo S, et al. The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell, 2001,107:789-800.
    32 Herman MP, Sukhova GK, Kisiel W, et al. Tissue factor pathway inhibitor-2 is a novel inhibitor of matrix metalloproteinases with implications for atherosclerosis. J Clin Invest, 2001,107:1117-26.
    33 Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res, 2003,92:827-39.
    34 Turpeenniemi-Hujanen T. Gelatinases (MMP-2 and -9) and their natural inhibitors as prognostic indicators in solid cancers. Biochimie, 2005,87:287-97.
    35 Martin DC, Sanchez-Sweatman OH, Ho AT, et al. Transgenic TIMP-1 inhibits simian virus 40 T antigen-induced hepatocarcinogenesis by impairment of hepatocellular proliferation and tumor angiogenesis. Lab Invest, 1999,79:225-34.
    36 Kruger A, Fata JE,Khokha R. Altered tumor growth and metastasis of a T-cell lymphoma in Timp-1 transgenic mice. Blood, 1997,90:1993-2000.
    37 Jiang Y, Goldberg ID,Shi YE. Complex roles of tissue inhibitors of metalloproteinases in cancer. Oncogene, 2002,21:2245-52.
    38 Hidalgo M, Eckhardt SG. Development of matrix metalloproteinase inhibitors in cancer therapy. J Natl Cancer Inst, 2001,93:178-93.
    39 Coussens LM, Fingleton B,Matrisian LM. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science, 2002,295:2387-92.
    40 Maquoi E,Munaut C,Colige A,et al.Stimulation of matrix metalloproteinase-9 expression in human fibrosarcoma cells by synthetic matrix metalloproteinase inhibitors.Exp Cell Res,2002,275:110-21.
    41 Overall CM,Lopez-Otin C.Strategies for MMP inhibition in cancer:innovations for the post-trial era.Nat Rev Cancer,2002,2:657-72.
    42 Vazquez F,Hastings G,Ortega MA,et al.METH-1,a human ortholog of ADAMTS-1,and METH-2 are members of a new family of proteins with angio-inhibitory activity.J Biol Chem,1999,274:23349-57.
    43 Smith GP.Filamentous fusion phage:novel expression vectors that display cloned antigens on the virion surface.Science,1985,228:1315-7.
    44 Dennis MS,Eigenbrot C,Skelton NJ,et al.Peptide exosite inhibitors of factor Ⅶa as anticoagulants.Nature,2000,404:465-70.
    45 Machold KP,Smolen JS.Adalimumab-a new TNF-alpha antibody for treatment of inflammatory joint disease.Expert Opin Biol Ther,2003,3:351-60.
    46 Taylor PC.Anti-TNFalpha therapy for rheumatoid arthritis:an update.Intern Med,2003,42:15-20.
    47 Ferrer M,Harrison SC.Peptide ligands to human immunodeficiency virus type 1 gp120 identified from phage display libraries.J Virol,1999,73:5795-802.
    48 Takagi T,Arisawa T,Yamamoto K,et al.Identification of ligands binding specifically to inflammatory intestinal mucosa using phage display.Clin Exp Pharmacol Physiol,2007,34:286-9.
    49 许志宏,周家驹,杨章远,等.计算机化学的发展和前沿.中国科学院院刊,1992,1:11-16.
    50 李利华,赵蔡斌,敏锁田,等.基于配体-受体理论的计算机辅助药物分子设计方法及应用.西北药学杂志,2007,22(5):282-285.
    51 郑志兵,王丹心、谢云德,等.镇痛药物先导结构的设计、合成与筛选.中国药物化学杂志,2001,10(1):42-45.
    52 Tester AM,Waltham M,Oh SJ,et al.Pro-matrix metalloproteinase-2transfection increases orthotopic primary growth and experimental metastasis of MDA-MB-231 human breast cancer cells in nude mice.Cancer Res,2004,64:652-8.
    53 Christensen D J,Gottlin EB,Benson RE,et al.Phage display for target-based antibacterial drug discovery.Drug Discov Today,2001,6:721-727.
    54 Ito H,Duxbury M,Benoit E,et al.Prostaglandin E2 enhances pancreatic cancer invasiveness through an Ets-1-dependent induction of matrix metalloproteinase-2.Cancer Res,2004,64:7439-46.
    55 Fang J,Wang G,Yang Q,et al.The potential of phage display virions expressing malignant tumor specific antigen MAGE-A1 epitope in murine model.Vaccine,2005,23:4860-6.
    56 Junjian X,Zhenyu Z,Ning D,et al.Screening of the antigen epitopes of basic fibroblast growth factor by phage display.J Biochem Mol Biol,2005,38:290-3.
    57 Pasqualini R,Koivunen E,Ruoslahti E.Alpha v integrins as receptors for tumor targeting by circulating ligands.Nat Biotechnol,1997,15:542-6.
    58 Wu P,Zhu L,Stenman UH,et al.Immunopeptidometric assay for enzymatically active prostate-specific antigen.Clin Chem,2004,50:125-9.
    59 Wu P,Leinonen J,Koivunen E,et al.Identification of novel prostate-specific antigen-binding peptides modulating its enzyme activity.Eur J Biochem,2000,267:6212-20.
    60 Wu P,Stenman UH,Pakkala M,et al.Separation of enzymatically active and inactive prostate-specific antigen(PSA)by peptide affinity chromatography. Prostate, 2004,58:345-53.
    61 Hekim C, Leinonen J, Narvanen A, et al. Novel peptide inhibitors of human kallikrein 2. J Biol Chem, 2006,281:12555-60.
    62 Koivunen E, Arap W, Valtanen H, et al. Tumor targeting with a selective gelatinase inhibitor. Nat Biotechnol, 1999,17:768-74.
    63 Balass M, Heldman Y, Cabilly S, et al. Identification of a hexapeptide that mimics a conformation-dependent binding site of acetylcholine receptor by use of a phage-epitope library. Proc Natl Acad Sci U S A, 1993,90:10638-42.
    64 Ferrieres G, Villard S, Pugniere M, et al. Affinity for the cognate monoclonal antibody of synthetic peptides derived from selection by phage display. Role of sequences flanking thebinding motif. Eur J Biochem, 2000,267:1819-29.
    65 Kuehne J, Murphy RM. Synthesis and characterization of membrane-active GALA-OKT9 conjugates. Bioconjug Chem, 2001,12:742-9.
    66 Li S, Roberts RW. A novel strategy for in vitro selection of peptide-drug conjugates. Chem Biol, 2003,10:233-9.
    67 Lee H, Park TG. A novel method for identifying PEGylation sites of protein using biotinylated PEG derivatives. J Pharm Sci, 2003,92:97-103.
    68 Ferry G, Boutin JA, Atassi G, et al. Selection of a histidine-containing inhibitor of gelatinases through deconvolution of combinatorial tetrapeptide libraries. Mol Divers, 1997,2:135-46.
    67 Murphy G, Crabbe T. Gelatinases A and B. Methods Enzymol, 1995,248:470-84.
    70 El-Mousawi M, Tchistiakova L, Yurchenko L, et al. A vascular endothelial growth factor high affinity receptor 1-specific peptide with antiangiogenic activity identified using a phage display peptide library.J Biol Chem,2003,278:46681-91.
    71 Martinez-Torrecuadrada J,Cifuentes G,Lopez-Serra P,et al.Targeting the extracellular domain of fibroblast growth factor receptor 3 with human single-chain Fv antibodies inhibits bladder carcinoma cell line proliferation.Clin Cancer Res,2005,11:6280-90.
    72 Borysowski J,Gorski A.[Phage-display technology and its application to experimental oncological therapy].Postepy Hig Med Dosw(Online),2004,58:100-7.
    73 Campa MJ,Serlin SB,Patz EF Jr.Development of novel tumor imaging agents with phage-display combinatorial peptide libraries.Acad Radiol,2002,9:927-32.
    74 Junjian X,Zhenyu Z,Ning D,et al.Screening of the antigen epitopes of basic fibroblast growth factor by phage display.J Biochem Mol Biol,2005,38:290-3.
    75 张建忠.国外抗肿瘤药物的研究进展及其国产化现状.上海医药情报研究,2005,76:20-32.
    76 Bhat TA,Singh RP.Tumor angiogenesis—a potential target in cancer chemoprevention.Food Chem Toxicol,2008,46:1334-45.
    77 Maeda K,Kang SM,Onoda N,et al.Vascular endothelial growth factor expression in preoperative biopsy specimens correlates with disease recurrence in patients with early gastric carcinoma.Cancer,1999,86:566-71.
    78 Mineta H,Miura K,Ogino T,et al.Prognostic value of vascular endothelial growth factor(VEGF)in head and neck squamous cell carcinomas.Br J Cancer,2000,83:775-81.
    79 Linderholm BK,Lindahl T,Holmberg L,et al.The expression of vascular endothelial growth factor correlates with mutant p53 and poor prognosis in human breast cancer. Cancer Res, 2001,61:2256-60.
    80 Ohta M, Konno H, Tanaka T, et al. The significance of circulating vascular endothelial growth factor (VEGF) protein in gastric cancer. Cancer Lett, 2003,192:215-25.
    81 Fujisaki K, Mitsuyama K, Toyonaga A, et al. Circulating vascular endothelial growth factor in patients with colorectal cancer. Am J Gastroenterol, 1998,93:249-52.
    82 Cascinu S, Staccioli MP, Gasparini G, et al. Expression of vascular endothelial growth factor can predict event-free survival in stage II colon cancer. Clin Cancer Res, 2000,6:2803-7.
    83 Mira E, Lacalle RA, Buesa JM, et al. Secreted MMP9 promotes angiogenesis more efficiently than constitutive active MMP9 bound to the tumor cell surface. J Cell Sci, 2004,117:1847-57.
    84 Bisson C, Blacher S, Polette M, et al. Restricted expression of membrane type 1-matrix metalloproteinase by myofibroblasts adjacent to human breast cancer cells. Int J Cancer, 2003,105:7-13.
    85 Sun HB, Nalim R,Yokota H. Expression and activities of matrix metalloproteinases under oscillatory shear in IL-1-stimulated synovial cells. Connect Tissue Res, 2003,44:42-9.
    86 Coussens LM, Tinkle CL, Hanahan D, et al. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell, 2000,103:481-90.
    87 Scorilas A, Karameris A, Arnogiannaki N, et al. Overexpression of matrix-metalloproteinase-9 in human breast cancer: a potential favourable indicator in node-negative patients. Br J Cancer, 2001,84:1488-96.
    88 Takeha S, Fujiyama Y, Bamba T, et al. Stromal expression of MMP-9 and urokinase receptor is inversely associated with liver metastasis and with infiltrating growth in human colorectal cancer: a novel approach from immune/inflammatory aspect. Jpn J Cancer Res, 1997,88:72-81.
    89 Pozzi A, LeVine WF,Gardner HA. Low plasma levels of matrix metalloproteinase 9 permit increased tumor angiogenesis. Oncogene, 2002,21:272-81.
    90 Hamano Y, Zeisberg M, Sugimoto H, et al. Physiological levels of tumstatin, a fragment of collagen IV alpha3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via alphaV beta3 integrin. Cancer Cell, 2003,3:589-601.
    91 http://www.who.int/cancer/en/index.html
    1 Tlsty TD, Coussens LM. Tumor stroma and regulation of cancer development. Annu Rev Pathol, 2006,1:119-50.
    2 Aguirre-Ghiso JA. Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer, 2007,7:834-46.
    3 Turpeenniemi-Hujanen T. Gelatinases (MMP-2 and -9) and their natural inhibitors as prognostic indicators in solid cancers. Biochimie, 2005,87:287-97.
    4 Yoon SO, Park SJ, Yun CH, et al. Roles of matrix metalloproteinases in tumor metastasis and angiogenesis. J Biochem Mol Biol, 2003,36:128-37.
    5 Karadag A, Ogbureke KU, Fedarko NS, et al. Bone sialoprotein, matrix metalloproteinase 2, and alpha(v)beta3 integrin in osteotropic cancer cell invasion. J Natl Cancer Inst, 2004,96:956-65.
    6 Karadag A, Fedarko NS,Fisher LW. Dentin matrix protein 1 enhances invasion potential of colon cancer cells by bridging matrix metalloproteinase-9 to integrins and CD44. Cancer Res, 2005,65:11545-52.
    7 Bellahcene A, Castronovo V, Ogbureke KU, et al. Small integrin-binding ligand N-linked glycoproteins (SIBLINGs): multifunctional proteins in cancer. Nat Rev Cancer, 2008,8:212-26.
    8 Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol, 2001,17:463-516.
    9 Strongin AY, Collier I, Bannikov G, et al. Mechanism of cell surface activation of 72-kDa type IV Collagenase. Isolation of the activated form of the membrane metalloprotease. J Biol Chem, 1995,270:5331-8.
    10 Deryugina EI, Ratnikov B, Monosov E, et al. MT1-MMP initiates activation of pro-MMP-2 and integrin alphavbeta3 promotes maturation of MMP-2 in breast carcinoma cells. Exp Cell Res, 2001,263:209-23.
    11 Morrison CJ, Butler GS, Bigg HF, et al. Cellular activation of MMP-2 (gelatinase A) by MT2-MMP occurs via a TIMP-2-independent pathway. J Biol Chem, 2001,276:47402-10.
    12 Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer, 2002,2:161-74.
    13 Taraboletti G, Morbidelli L, Donnini S, et al. The heparin binding 25 kDa fragment of thrombospondin-1 promotes angiogenesis and modulates gelatinase and TIMP-2 production in endothelial cells. FASEB J, 2000,14:1674-6.
    14 Oh J, Takahashi R, Kondo S, et al. The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell, 2001,107:789-800.
    15 Herman MP, Sukhova GK, Kisiel W, et al. Tissue factor pathway inhibitor-2 is a novel inhibitor of matrix metalloproteinases with implications for atherosclerosis. J Clin Invest, 2001,107:1117-26.
    16 Peschon JJ, Slack JL, Reddy P, et al. An essential role for ectodomain shedding in mammalian development. Science, 1998,282:1281-4.
    17 Kajita M, Itoh Y, Chiba T, et al. Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J Cell Biol, 2001,153:893-904.
    18 Noe V, Fingleton B, Jacobs K, et al. Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. J Cell Sci, 2001,114:111-118.
    19 Albini A, Sporn MB. The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer, 2007,7:139-47.
    20 Zigrino P, Loffek S,Mauch C. Tumor-stroma interactions: their role in the control of tumor cell invasion. Biochimie, 2005,87:321-8.
    21 Noel A, Jost M,Maquoi E. Matrix metalloproteinases at cancer tumor-host interface. Semin Cell Dev Biol, 2008,19:52-60.
    22 Bisson C, Blacher S, Polette M, et al. Restricted expression of membrane type 1-matrix metalloproteinase by myofibroblasts adjacent to human breast cancer cells. Int J Cancer, 2003,105:7-13.
    23 Noel A, Hajitou A, L'Hoir C, et al. Inhibition of stromal matrix metalloproteases: effects on breast-tumor promotion by fibroblasts. Int J Cancer, 1998,76:267-73.
    24 Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer, 2004,4:71-8.
    25 Torisu H, Ono M, Kiryu H, et al. Macrophage infiltration correlates with tumor stage and angiogenesis in human malignant melanoma: possible involvement of TNFalpha and IL-1 alpha. Int J Cancer, 2000,85:182-8.
    26 Robinson SC, Scott KA,Balkwill FR. Chemokine stimulation of monocyte matrix metalloproteinase-9 requires endogenous TNF-alpha. Eur J Immunol, 2002,32:404-12.
    27 Fang KC, Wolters PJ, Steinhoff M, et al. Mast cell expression of gelatinases A and B is regulated by kit ligand and TGF-beta. J Immunol, 1999,162:5528-35.
    28 Klein J, Permana PA, Owecki M, et al. What are subcutaneous adipocytes really good for?. Exp Dermatol, 2007,16:45-70.
    29 Mauro L, Catalano S, Bossi G, et al. Evidences that leptin up-regulates E-cadherin expression in breast cancer: effects on tumor growth and progression. Cancer Res, 2007,67:3412-21.
    30 Andarawewa KL, Motrescu ER, Chenard MP, et al. Stromelysin-3 is a potent negative regulator of adipogenesis participating to cancer cell-adipocyte interaction/crosstalk at the tumor invasive front. Cancer Res, 2005,65:10862-71.
    31 Overall CM, Kleifeld O. Tumour microenvironment - opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer, 2006,6:227-39.
    32 Panagiotis A. Konstantinopoulos , Michalis V. Karamouzis, Athanasios G. Papatsoris, Athanasios G. Papavassiliou. metrix metalloproteinase inhibitors as anticancer agents,2008.
    33 Hidalgo M, Eckhardt SG. Development of matrix metalloproteinase inhibitors in cancer therapy. J Natl Cancer Inst, 2001,93:178-93.
    34 Betz M, Huxley P, Davies SJ, et al. 1.8-A crystal structure of the catalytic domain of human neutrophil Collagenase (matrix metalloproteinase-8) complexed with a peptidomimetic hydroxamate primed-side inhibitor with a distinct selectivity profile. Eur J Biochem, 1997,247:356-63.
    35 Hu J, Van den Steen PE, Sang QX, et al. Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nat Rev Drug Discov, 2007,6:480-98.
    36 Ryan ME, Ramamurthy S,Golub LM. Matrix metalloproteinases and their inhibition in periodontal treatment. Curr Opin Periodontol, 1996,3:85-96.
    37 Sapadin AN, Fleischmajer R. Tetracyclines: nonantibiotic properties and their clinical implications. J Am Acad Dermatol, 2006,54:258-65.
    38 Acharya MR, Venitz J, Figg WD, et al. Chemically modified tetracyclines as inhibitors of matrix metalloproteinases. Drug Resist Updat, 2004,7:195-208.
    39 Greenwald RA, Moak SA, Ramamurthy NS, et al. Tetracyclines suppress matrix metalloproteinase activity in adjuvant arthritis and in combination with flurbiprofen, ameliorate bone damage. J Rheumatol, 1992,19:927-38.
    40 Yong VW, Power C, Forsyth P, et al. Metalloproteinases in biology and pathology of the nervous : system. Nat Rev Neurosci, 2001,2:502-11.
    41 Yrjanheikki J, Tikka T, Keinanen R, et al. A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci U S A, 1999,96:13496-500.
    42 Fingleton B. CMT-3. CollaGenex. Curr Opin Investig Drugs, 2003,4:1460-7.
    43 Fingleton BM, Heppner Goss KJ, Crawford HC, et al. Matrilysin in early stage intestinal tumorigenesis. APMIS, 1999,107:102-10.
    44 Coussens LM, Fingleton B,Matrisian LM. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science, 2002,295:2387-92.
    45 Kruger A, Soeltl R, Sopov I, et al. Hydroxamate-type matrix metalloproteinase inhibitor batimastat promotes liver metastasis. Cancer Res, 2001,61:1272-5.
    46 Maquoi E, Munaut C, Colige A, et al. Stimulation of matrix metalloproteinase-9 expression in human fibrosarcoma cells by synthetic matrix metalloproteinase inhibitors. Exp Cell Res, 2002,275:110-21.
    47 Toth M, Bernardo MM, Gervasi DC, et al. Tissue inhibitor of metalloproteinase (TIMP)-2 acts synergistically with synthetic matrix metalloproteinase (MMP) inhibitors but not with TIMP-4 to enhance the (Membrane type l)-MMP-dependent activation of pro-MMP-2. J Biol Chem, 2000,275:41415-23.
    48 Vazquez F, Hastings G, Ortega MA, et al. METH-1, a human ortholog of ADAMTS-1, and METH-2 are members of a new family of proteins with angio-inhibitory activity. J Biol Chem, 1999,274:23349-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700