用户名: 密码: 验证码:
考虑耗散力的抽油系统动力学分析及弹性机构振动控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机械系统中的耗散力是引起能量消耗和设备磨损的主要因素,同时耗散力对机械系统的动态性能及运转精度也有重要的影响。在机械系统分析与设计中充分考虑耗散力的影响,对于提高设备运行效率、节约能源、减轻振动、改善性能具有重要的理论与实际意义。本学位论文以定向井有杆抽油系统和平面弹性连杆机构为研究对象,对考虑耗散力的抽油系统动力学及弹性机构振动控制问题进行了深入研究。
     由于库仑摩擦力与抽油杆柱弹性变形的耦合,使得现有定向井有杆抽油系统动态参数预测模型是一组非线性偏微分方程,求解复杂。鉴于此,提出了一种新的分析方法。该方法以定向井有杆抽油系统中的抽油杆柱作为研究对象,根据三次样条插值模拟得到的定向井的井眼轨迹,利用静力有限元法计算出了油管对抽油杆柱的支反力,进而得出了杆柱与油管之间的库仑摩擦力。在对杆柱单元受力分析基础上,建立了有限元形式的定向井有杆抽油系统动力学方程,并利用状态空间法进行数值求解,获得了该系统的动态参数及地面功图。将本方法计算结果与实测结果以及采用有限差分法的计算结果进行了对比,表明本文方法简便、正确、有效。
     定向井有杆抽油系统动态特性分析过程中,抽油杆柱与油液之间粘性摩擦系数和抽油杆柱与油管之间库仑摩擦系数的确定是一个关键和困难的问题。提出了一种基于特征的方法来识别抽油系统摩擦系数。新方法针对现有的Freeman八方向链码码间距过大、采样必须为方格采样、编码过程需要人工干预的不足,对其进行了改进,并利用改进后的链码方法将封闭曲线链码化。根据封闭曲线的周期性,将其参数方程展成傅里叶级数,导出了傅里叶系数与曲线链码之间的关系式。利用傅里叶系数计算封闭曲线的形状特征,建立了实测与仿真地面功图曲线形状特征间的欧氏距离。以该距离为优化目标函数,寻优得到使目标函数值满足给定误差的仿真地面功图曲线,该功图对应的一组摩擦系数即为相应抽油系统的粘性摩擦系数和库仑摩擦系数。基于该参数的动力学特性预测结果与实际吻合。
     采用LuGre摩擦模型来描述有杆抽油系统的非线性摩擦,在此基础上对有杆抽油系统进行动力学分析。对LuGre摩擦模型中的六个参数进行了分析并给出了符合工程应用的参数值。将抽油系统中抽油杆柱的振动视为多级杆的纵向振动,对杆柱单元进行了受力分析,结合有限差分法与有限元法建立了杆柱的载荷和位移递推公式,并给出了杆柱载荷和位移的边界条件以及杆柱运动的初始条件。给出了采用LuGre摩擦模型的定向井仿真实例,并与采用经典库仑+粘性摩擦模型的计算结果进行了对比,结果表明LuGre摩擦模型能较好地反映低速换向时系统摩擦的非线性特性。
     提出了一种能够比较精确地确定井下各项耗散力耗能的计算方法。基于已知杆管间库仑摩擦力以及杆柱各节点的弹性运动速度,对抽油系统中库仑摩擦力、粘性摩擦力以及盘根盒摩擦力在一个抽油周期内的耗能进行了分析,导出了相应的耗能计算公式。根据地面功图计算出抽油机悬点载荷在一个抽汲周期所做的功,并对抽油系统井下效率进行了计算。为掌握抽油系统井下各环节的耗能情况提供了参考。对杆柱弹性运动速度引起的粘性摩擦力耗能进行了分析,结果表明杆柱弹性运动速度引起的粘性摩擦力耗能不能忽略。
     研究了油井地层供液量与井底流压之间的流入动态关系。系统地分析了抽油系统的抽汲参数和沉没度对泵效的影响。根据油井产供平衡原则,以井下效率为目标函数对抽油系统进行了优化。结果表明,优化可明显提高井下效率,降低生产成本。同时也表明油井沉没度对泵效和井下效率的影响比抽汲参数更为明显。
     基于阻尼合金的大阻尼能量耗散特性,将其用作弹性机构系统振动被动控制材料。利用粘弹性五参量本构关系来描述阻尼合金材料的应力应变关系。导出了以五参量表示阻尼和刚度特性的单元运动微分方程。为了便于计算,首先将包含卷积运算的微分方程转换成一个四阶常微分方程,进而装配出系统运动微分方程。利用状态空间法对该高阶时变微分方程组进行了数值求解。给出了含阻尼合金构件平面弹性四连杆机构的动力学响应计算实例,结果表明五参量结构阻尼模型克服了三参量阻尼模型中耗散因子在频域是单峰函数的局限,能够更好地描述阻尼合金的阻尼特性。
Dissipation force is the main reason for energy dissipation and equipment wear in mechanical system. In addition, dissipation force also affects the dynamic characteristics and running precision of machine sharply. Considering the dissipation force in design and analysis of mechanical system is beneficial to improve system's running efficiency, save energy, reduce vibration and to optimize system's characteristics, which is significant in theory and practice. The purpose of this dissertation is to study thoroughly the dynamic characteristics of sucker-rod pumping system and vibration passive control of elastic mechanism considering dissipation force.
     The current prediction model of dynamic characteristics of sucker-rod pumping system in directional well is a nonlinear partial differential equation, whose solution is difficult and complex. A novel analytical method is put forward to simplify this prediction model. First, according to the well trajectory fitted by using the cubic spline interpolation method, the support reaction between rod string and pipe in directional well is calculated by means of finite element method for static load. Second, the Coulomb friction force between rod string and pipe is computed by using the calculated support reaction. Third, the loads analysis of rod element is performed and the system dynamic equation of rod string is derived. Dynamic parameters and surface dynamometer card of sucker-rod pumping system are obtained after the system dynamic equation is solved by means of the state space method. In the end, two prediction examples are given, where a comparison between the predicted and the measured dynamometer cards is made to show that the present analytical method is simple, correct and effective.
     Viscous and Coulomb friction coefficients of sucker-rod pumping system are important but difficult to select during analysis for system's dynamic characteristics. A new identification method based on characteristic, which overcomes the shortcomings of eight-directional Freeman chain code method, is proposed to obtain system's friction coefficients. According to closed boundary curve's periodicity, its parametric equation is transformed into Fourier series, whose coefficients can be computed by curve's chain codes. Shape characteristics of the closed boundary curve are extracted through these computed Fourier series' coefficients. The Euclidean distance between shape characteristics of measured surface dynamometer card and that of simulated card is established and is employed as objective function for optimization. When the Euclidean distance is less than the given error, the corresponding values of friction coefficients in the simulation program are regarded as real friction coefficients of the sucker-rod pumping system of directional well. Numerical example is provided to show that the final simulated dynamometer card based on the identified friction coefficients fits the measured dynamometer card well.
     The nonlinear dynamic characteristic of a sucker-rod pumping system of directional well is simulated on the basis of LuGre friction model. First, values of six parameters of LuGre friction model, which satisfy the engineering's needs, are obtained according to handbook and computation. Second, the vibration of the rod of sucker-rod pumping system is regarded as an axial vibration of multi-segment flexible rod. The loads analysis of rod element is accomplished by means of finite element method. Recurrence formulas of load and elastic deformation are derived through finite difference method and finite element method. The boundary conditions of load and elastic deformation and initial condition of rod kinematics are provided. In the end, a numerical example is given, where a comparison between the elastic deformation of pumping piston obtained based on LuGre friction model and that on classical Coulomb plus viscous friction model is made to show that the LuGre friction model describes the friction of sucker-rod pumping system better.
     A more precise method is proposed to calculate the down-hole energy dissipation of sucker-rod pumping system caused by viscous friction force between rod string and liquid and by Coulomb friction force between rod string and pipe, which is difficult for the existing theory to calculate. The Coulomb friction force and the elastic velocities of the rod nodes are computed. Analysis of energy dissipation in one production period caused by viscous friction force, Coulomb friction force and friction force between rod string and stuffing box are performed. According to the surface dynamometer card, the input down-hole energy in one production period is calculated. And then the down-hole efficiency of the suck-rod pumping system is calculated by the obtained input down-hole energy and energy dissipation, which provides a reference for mastering the energy dissipation of every part. Moreover, an analysis of viscous friction dissipation due to elastic velocity of rod string is accomplished, whose result shows that the energy dissipation caused by the elastic velocity of rod string cannot be ignored.
     The inflow performance relationship (IPR) between liquid amount of supply and the inflow pressure is studied. Analysis of effects of production parameters and submergence depth upon the pump efficiency is performed. According to the law that the liquid amount of supply must equate that of production, the system efficiency optimization, where the down-hole efficiency is taken as the criteria function, is accomplished. The optimization results indicate that effect of the submergence depth upon pump efficiency and down-hole efficiency is more evident than that of production parameters.
     Damping alloy is employed to reduce vibration of elastic mechanism because of its excellent dissipation characteristics. The Five parameters viscoelastic constitutive relation is adopted to describe the stress-strain relation of damping alloy. Dynamic equations of beam element are derived with five parameters representing the damping and stiffness characteristics. For the convenience of computation, the established dynamic equations with convolution integration are changed into four-order differential equations. And then the system dynamic equation of the elastic linkage mechanism containing damping alloy parts is assembled. The state space method is employed to solve the established high order differential equations with time-varying coefficients. Numerical example shows that the proposed model overcomes theshortcoming of the three parameters damping model, in which the dissipation factor is amonotonic function in frequency domain, and can describe the damping alloy's characteristicsbetter.
引文
[1]Armsrong-Helouvry B.Control of machines with friction[M].Norwell:Kluwer academic publishers,1991
    [2]Brandenburg G and Schafer U.Influence and compensation of Coulomb friction in industrial pointing and tracking system[C].IEEE Proceeding of the Industry Apply Cociety Annual Meeting,Dearborn,MI,1991
    [3]Olsson H.Control systems with friction[D].University of Lund,1996
    [4]Rabinowicz E.Friction and wear of materials[M].New York:Wiley,second edition,1995
    [5]Armsrong-Helouvry B.Stick-slip and control in low speed motion[J].IEEE Trans.on Automatic Control,1993,38(10):1483-1496
    [6]陈娟.伺服系统低速特性与抖动补偿研究[D].长春:中国科学院长春光学机密机械与物理研究所博士学位论文,2001
    [7]Armstrong-Helouvry B,Dupont P and Canudas de Wit C.A survey of models,analysis tools and compensation methods for the control of machines and friction[J].Automatica,1994,30(7):1083-1138
    [8]Karnopp D.Computer simulation of slip-stick friction in mechanical dynamic systems[J].Journal of Dynamic Systems,Measurement and Control,1985,107(1):100-103
    [9]Dahl P.A solid friction model[R].Technical Report TOR-0158(3107-18)-1,The Aerospace Corporation,EI Segundo,CA,1968
    [10]Dalai P.Solid friction damping of spacecraft oscillations[J].AIAA Paper No.75-1104 presented at the AIAA Guidance and Control Conference,Boston Mass,1975
    [11]Haessig D A and Friedland B.On the modeling and simulation of friction[J].Journal of Dynamic Systems,Measurement and Control,1991,113(3):354-362
    [12]Bliman P A and Sorine M.Friction modeling by hysteresis operators.Application to Dahl,stick and Stribeck effects[C].Proceedings of the conference Method of Hysteresis,Trento,Italy,1991
    [13]Canudas de Wit C,Olsson H,Astrom K J,et al.A new model for control of system with friction[J].IEEE Transactions on Automatic Control,1995,40(3):419-425
    [14]崔振华,余国安,安锦高,等.有杆抽油系统[M].北京:石油工业出版社,1994
    [15]Gibbs S G.Predicting the behavior of sucker rod pumping system[J].Journal of Petroleum Technology,1963,15(7):769-778
    [16]Everitt T A and Jennings J W.An improved finite difference calculation of down-hole dynamometer cards for sucker rod pumps[J].SPE Production Engineering,1989,7(1):121-127
    [17]曹钧合.抽油杆柱动态方程等效粘滞阻尼系数的确定[J].石油钻采工艺,1988,10(2):97-101
    [18]饶建华,刘宏昭,李冬平,等.定向井有杆抽油系统动态数值仿真与预测[J].石油机械,2004, 32(8):4-6
    [19]余国安,高国华.利用示功图计算抽油井阻尼系数[J].石油钻采工艺,1991,13(5):57-64
    [20]Gibbs S G and Neely A B.Computer diagnosis of down-hole conditions in sucker rod pumping wells[J].Journal of Petroleum Technology,1966,18(1):91-98
    [21]Gibbs S G.A general method for predicting rod pumping system performance[C].SPE 6850,1977
    [22]Doty D R and Schmidt Z.An improved model for sucker rod pumping[J].Society of Petroleum Engineers Journal,1983,23(1):33-41
    [23]Gibbs S G.Design and diagnosis of deviated rod pumping wells[J].Journal of Petroleum Technology,1992,44(7):774-781
    [24]李子丰,张继芬,李敬媛,等.斜直井有杆泵抽油系统井下工况诊断技术[J].石油钻采工艺,1995,17(1):55-60
    [25]李子丰,李敬嫒,张少南.定向水平井有杆泵抽油系统动态参数诊断和预测的数学模型[J].大庆石油学院学报,1994,18(1):28-31
    [26]徐骏,胡雨人.斜井有杆泵抽油工况预测和诊断的新方法[J].江汉石油学院学报,1994,16(3):79-84
    [27]徐骏.玻璃钢与钢杆混合抽油杆柱动态模型模型搞得解析法研究[J].石油机械,1994,22(1):39-45
    [28]董世民,马德坤,李学丰.游梁式抽油系统动态参数仿真的综合数学模型[J].石油机械,2001,29(6):46-48
    [29]董世民,李宝生.水平井有杆抽油系统设计[M].北京:石油工业出版社,1996
    [30]董世民,马德坤,黄秀华.抽油杆柱的纵向振动特性与共振条件[J].石油机械,2001,29(5):22-24
    [31]崔爱玉,史浩,杜永军.游梁式抽油机四杆机构平均运行效率的计算机仿真分析[J].大庆石油学院学报,2001,25(4):73-75
    [32]余国安,邬亦炯.有杆泵抽油井的三维振动[J].石油学报,1989,10(2):76-83
    [33]刘富,刘清友,王海兰.调径变矩型节能抽油机工作性能仿真研究[J].钻采工艺,2003,26(1):62-64
    [34]徐东,谭宁川,姜成华.抽油机耦合器传动系统的开发与应用[J].石油机械,2005,33(3):34-35
    [35]冯耀忠,汪刚跃.国外最新采油技术与装备[J].石油机械,2002,30(4):55-56
    [36]檀朝东,张嗣伟.钢丝绳抽油杆抽油系统抽油模式的选择[J].石油学报,2004,25(4):87-91
    [37]路爵,杨育林.强度多级抽油杆参数和有效冲程计算[J].石油机械,1997,25(4):34-39
    [38]许亚芬,崔振华.玻璃钢抽油杆柱的设计与应用[J].大庆石油学院学报,2001,25(12):79-81
    [39]Jennings J W and Laine R E.Method for designing fiberglass sucker rod string using API RP11L[J].SPE Production Engineering,1991,6(1):115-119
    [40]盛曾顺,王奕兰.杆管系统弹性伸缩对抽油泵泵效的影响[J].石油机械,1991,19(8):35-38
    [41]梁政.关于抽油泵环隙漏失量计算方法的探讨[J].西南石油学院学报,1992,14(1):49-54
    [42]刘荣辉.杆式抽油泵漏失量与最佳泵隙的计算[J].石油机械,1992,20(10):17-22
    [43]钟兵,周开吉.整筒管式抽油泵环隙漏失量计算模型的完善[J].石油机械,1995,23(11):1-5
    [44]王克亮,王天凤.计算油杆泵充满系数的一种新方法[J].钻采工艺,1996,19(5):38-42
    [45]胡永全,吴志均.排水采气中深井泵的充满系数[J].钻采工艺,1995,18(4):38-40
    [46]刘润华,钱占军,汤清明.有杆抽油泵充满度的测量[J].工业仪表与自动化装置,1999,4:41-42
    [47]王鸿勋,张琪.采油工艺原理[M].北京:石油工业出版社,2000
    [48]万邦烈.采油机械的设计计算[M].北京:石油工业出版社,1988
    [49]Evinger H H and Muskat M.Calculation of theoretical productivity factors[J].Trans.AIME,1942,146,127-139
    [50]Vogel J V.Inflow performance relationships for solution gas-drive wells[J].Journal of Petroleum Technology,1968,20(1):83-92
    [51]Fetkovich M.J.The isochronal testing of oil wells[C].SPE4529,1973
    [52]Cheng A M.Inflow performance relationships for solution gas-drive slanted/horizontal wells[C].SPE20720,1989
    [53]Wiggins M L,Russell J E and Jennings J W.Analytical development of Vogel-type inflow performance relationships[J].SPE23580,1992
    [54]Sukarno P and Wisnogroho A.Generalized two-phase IPR curve equation under influence of nonlinear flow efficiency[C].SPE36449,1993
    [55]胥元刚,刘顺.低渗透油藏油井流入动态研究[J].石油学报,2005,26(4):77-82
    [56]张彦廷,万邦烈.抽油泵合理沉没度的确定[J].石油钻采工艺,1999,21(2):62-66
    [57]刘一江,刘军.有杆泵系统优化设计技术的应用研究[J].石油大学学报(自然科学版),2001,25(2):26-29
    [58]陈德春,薛建泉,廖建贵.抽油泵合理沉没压力的确定方法[J].石油钻采工艺,2003,25(5):75-79
    [59]林日亿,孙茂盛,张邵东,等.有杆抽油泵沉没度的优化设计方法[J].石油大学学报(自然科学版),2005,29(4):87-90
    [60]姚春东.提高抽油机井系统效率的计算机仿真分析[J].石油学报,2005,26(4):106.110
    [61]严天宏,郑钢铁,黄文虎.由摩擦阻尼铰实现桁架结构的被动减振研究[J].航空学报,1999,20(1):17-21
    [62]张劲夫,许庆余.考虑连杆柔性和运动副粘性摩擦的曲柄滑块机构的动力学建模及计算[J].航空学报,2001,22(3):274-276
    [63]Onoda J,Sano T and Minesugi K.Passive damping of truss vibration using preloaded joint backlash[J].AIAA Journal,1995,33(7):1335-1341
    [64]Whiteman W E and Fern A A.Displacement-dependent dry friction damping of beam-like structure[J].Journal of Sound and Vibration,1996,198(3):313-329
    [65]漆文凯,高德平,陈伟.干摩擦阻尼及其应用[J].理化检验—物理分册,2002,38(4):160-163
    [66]Lazan B J and Goodman L E.Material and interface damping.Shock and Vibration Handbook[M].New York,McGraw-Hill Book Co.Inc,1961
    [67]Bert C W.Material damping:an introductory review of mathematical models,measures and experimental techniques[J].Journal of Sound and Vibration,1973,29(2):129-135
    [68]Milne H K.The Impulse response function of a single degree if freedom system with hysteretic damping[J].Journal of Sound and Vibration,1985,100(4):590-593
    [69]Rosenblueth E and Herrera I.On a Kind of Hysteretic Damping[J].Joumal of Engineering Mechanics Division,ASCE,1964,90(4):37-47
    [70]Nelson F C and Grief R.Damping[J].Shock and Vibration,SVM-10,1975
    [71]Bandstra J P.Comparison of equivalent viscous damping and nonlinear damping in discrete and continuous vibration system[J].ASME Journal of Vibration,Acoustics,Stress & Reliability in Design,1983,105(3):382-392
    [72]Scanlan R H.Linear damping models and causality in vibrations[J].Journal of Sound and Vibration,1970,13(4):499-509
    [73]周正华,廖振鹏,丁海平.一种时域复阻尼本构方程[J].地震工程与工程振动,1999,19(2):37-44
    [74]Jones D I G.Viscoelastic Materials for Damping Applications[C].The Winter Annual Meeting of ASME,Chicago,November 16-21,1980
    [75]胡海岩.结构阻尼模型及系统时域动响应[J].振动工程学报,1992,5(1):8-15
    [76]张忠明,刘宏昭,王锦程,等.材料阻尼和阻尼材料进展[J].功能材料,2001,32(3):227-230
    [77]刘宏昭,原大宁,李冬平,等.结构阻尼时域本构模型及其应用[J].计算力学学报,2004,21(3):303-307
    [78]王建平.含阻尼合金构件弹性机构动力学建模理论、非线性数值方法及其工程应用[D].西安:西安理工大学博士学位论文,2002
    [79]张宏,刘海浪,孙应民.定向井有杆泵抽油系统的有限元分析[J].石油学报,2000,21(6):102-106
    [80]彭勇,闫文辉,王仕伍.有杆抽油系统泵功图计算的一种快速递推法[J].钻采工艺,2001, 24(6):45-47
    [81]马坚伟,朱亚平.多尺度有限差分方法求解波动方程[J].计算力学学报,2002,19(4):379-383
    [82]李红云,沈为平.Pad逼近求解抛物型偏微分方程的并行算法研究[J].计算力学学报,2000,17(4):428-434
    [83]贾晓峰,王润秋,胡天跃.求解波动方程的任意差分精细积分法[J].中国地震,2003,19(3):236-242
    [84]Dehghan M.Numerical approximations for solving a time-dependent partial differential equation with non-classical specification on four boundaries[J].Applied Mathematics and Computation(New York),2005,167(1):28-45
    [85]Odibat Z M and Momani S.Approximate solutions for boundary value problems of time-fractional wave equation[J].Applied Mathematics and Computation(New York),2006,181(1):767-774
    [86]Panayotounakos D E,Andrianopoulos N P and Boulougouris V C.Closed-form solutions of the nonlinear partial differential equations governing plane rigid perfect plasticity problems by ad hoc assumptions[J].Quarterly Journal of Mechanics and Applied Mathematics,2005,58(4):665-682
    [87]Takanori I and Masami O.Numerical simulation for a nonlinear partial differential equation with variable coefficients by means of the discrete variational derivative method[J].Journal of Computational and Applied Mathematics,2006,194(2):425-459
    [88]李冬平.有杆抽油系统杆柱动特性的预测与计算机仿真[D].西安:西安理工大学硕士学位论文,2003
    [89]周赤峰.利用泵功图进行冲程定量分析的方法[J].石油钻采工艺,1994,16(5):70-73
    [90]杜春常.用三次样条模拟定向井井眼轨迹[J].石油学报,1988,9(1):112-120
    [91]辜志宏,彭慧琴,耿会英.气体对抽油泵泵效的影响及对策[J].石油机械,2006,34(2):64-68
    [92]Brown L G.A survey of image registration techniques[J].ACM Computing Surveys,1992,24(4):325-376
    [93]Reddy B S and Chatterji B N.An FFT-based technique for translation,rotation and scale-invariant image registration[J].IEEE Transactions on Image Processing,1996,5(8):1266-1271
    [94]Li H,Manjunath B S and Mitra S K.A contour-based approach to multisensor image registration[J].IEEE Transactions on Image Processing,1995,7(4):320-334
    [95]Dai X and Khorram S.A feature-based image registration algorithm using improved chain code representation combined with invariant moments[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(50):2351-2362
    [96]Belongie S,Malik J and Puzicha J.Matching shapes[C].Proceeding of International Conference on Computer Vision,Vancouver,BC,Canada,2001
    [97]边肇祺,张学工.模式识别[M].北京:清华大学出版社,2000
    [98]Jain A K,Duin R P W and Mao J C.Statistical pattern recognition:a review[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(1):4-37
    [99]Canny J.A computational approach to edge detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence 1986,8(6):679-683
    [100]Sarkar S and Boyer K L.On optimal infinite impulse response edge detection filter[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1991,13(11):1154-1170
    [101]Haralick R M and Shapiro L G.Computer and robot vision[M].MA:Addision-Wesley,1993
    [102]王俊卿,史泽林,黄莎白.一种改进的基于不变矩的图像匹配算法[J].模式识别与人工智能,2005,18(2):228-233
    [103]Stone H S and Wolpov R.Blind cross-spectral image registration using prefilering and Fourier-based translation detection[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(3):637-650
    [104]Safaee-Rad R,Smith K C,Tchoukanov I,et al.Application of moment and Fourier descriptors to the accurate estimation of elliptical shape parameters[J].Pattern Recognition Letters,1992,13(7):497-508
    [105]Park H J,Ji M S,Ha J T,et al.Shape matching using the modified histogram based chain code[C].Proceedings of SPIE Asia-Pacific Optical and Wireless Communications-Mobile Service and Application,2004
    [106]Park J A,Chang M H,Choi T S,et al.Histogram based chain codes for shape description[J].IEICE Transactions on Communications,2003,E86-B(12):3662-3665
    [107]Bribiesca E.Scanning-curves representation for the coverage of surfaces using chain coding[J].Computers and Graphics(Pergamon),2003,27(1):123-132
    [108]Haron H,Shamsuddin S M,Mohamed D.A new comer detection algorithm for chain code representation[J].International Journal of Computer Mathematics,2005,82(8):941-950
    [109]Freeman H.On the encoding of arbitrary geometric configurations[J].IRE Trans Electronics and Computers,1961,10(2):260-268
    [110]Liu Y K and Zalik B.An efficient chain code with Huffman coding[J].Pattern Recognition,2005,38(4):553-557
    [111]Jiang X T.Surface reconstruction of complex contour lines based on chain code matching technique[J].Journal of Southeast University(English Edition),2005,21(4):432-435
    [112]Theodoridis S and Koutroumbas K.Pattern Recognition(Second Edition)[M].Elsevier Science (USA),2003
    [113]Bastian M J.A two equation method for calculating down-hole dynamometer cards with a study of damping effects[D].Texas A &M University,College Station,Texas,1989
    [114]邢文训,谢金星.现代优化计算方法[M].北京:清华大学出版社,1999
    [115]Sepehri N,Sassani F,Lawrence P D,et al.Simulation and experimental studies of gear backlash and stick-slip friction in hydraulic excavator swing motion[J].Journal of Dynamic Systems,Measurement and Control,1996,118(3):463-467
    [116]Brandenburg G.and Schafer U.Influence and compensation of Coulomb friction in industrial pointing and tracking system[C].In Proceedings of the Industrial Application Society,1991
    [117]Cheok K C,Hu H X and Loh N K.Modeling and identification of a class of servomechanism systems with stick-slip friction[J].Journal of Dynamic Systems,Measurement and Control,1988,110(3):324-328
    [118]Ravanbod-Shirazi L and Besancon-Voda A.Friction identification using the Kamopp model,applied to an electropneumatic actor[J].Proceedings of the Institution of Mechanical Engineers,Part Ⅰ:Journal of Systems and Control Engineering,2003,217(2):123-138
    [119]彭勇,王鸿飞,余国安,等.抽油杆柱有限元动力方程的差分解及其收敛性[J].西安石油学院学报,1994,9(3):42-46
    [120]徐灏.新编机械设计师手册[M].北京:机械工业出版社,1995
    [121]Mo Y.Design and optimization for sucker rod pumping system in deviated wells[C].The 2000SPE/AAPG Western Regional Meeting,Long Beach,California,June 19-23,2000
    [122]McCoy J N,Rowlan O L,Becker D J,et al.How to maintain high efficiency in sucker rod lift operation[C].The Production and Operations Symposium,Oklahoma City,Oklahoma,March 22-25,2003
    [123]郑海金,邓吉彬,唐东岳,等.提高机械采油系统效率的理论研究及应用[J].石油学报,2004,25(1):93-96
    [124]冯虎,吴晓东,张建军,等.有杆抽油系统井下能耗研究[J].石油钻采工艺,2005,27(6):63-66
    [125]刘合,王广昀,王中国,等.当代有杆泵抽油系统[M].北京:石油工业出版社,2000
    [126]张策,黄永强.弹性连杆机构的分析与设计(第2版)[M].北京:机械工业出版社,1997
    [127]王建平,刘宏昭,原大宁,等.一类非线性振动系统改进状态空间模型及其数值算法[J].应用力学学报,2002,19(4):112-116

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700