用户名: 密码: 验证码:
创伤性脑损伤大鼠有限元模型生物力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景及目的:创伤性脑损伤(traumatic brain injury, TBI)是神经外科的常见病、多发病,始于致伤外力作用于头部导致的组织机械形变,进而引起原发性损伤和继发性损伤引起广泛的临床症状和功能障碍,对人类健康危害极大,已经成为目前社会公共卫生问题,对于原发性脑损伤详尽的生物力学机制尚未完全阐明。明确致伤时不同脑组织结构的生物力学机制,可以有效地对TBI损伤程度进行判断和预防。由于人类发生TBI时实际头部受力后的应力应变关系很难获取,而活体脑损伤力学实验研究显然是不现实的,因此各种不同的实验方法如动物实验、尸体实验、脑组织生物材料学实验等,在脑损伤生物力学研究方面得到不同程度的应用和开展,由于这些相关的实验方法对脑组织不同结构受力后的生物力学反应无法直接准确获取和分析,很多研究人员,尤其是医学生物学领域的学者将研究侧重点转向了数学模型,其中有限元方法(finite element method, FEM)作为结构分析的一种方法,因其在复杂几何形态、非均质类物质分析方面的优势,开始被应用于求解相应物质的力学响应。近年来随着计算机技术和高等数学,尤其是计算机辅助设计(computer aided design, CAD)技术的发展,越来越多的有限元模型被建立并用来进行对人类颅脑损伤后引起的生物力学变化进行相应的分析。但是在进行人类颅脑损伤有限元模型建立和分析过程中,一方面人类不同脑组织的生物力学参数的获取存在一定局限性,另一方面其所获得的有限元模型分析数据很难去和实际损伤现场的数据进行对比,因此,本研究出发点为选择合适的动物模型实验数据与有限元模型分析数据进行比较,我们选择大鼠可控性皮层撞击(controlled cortical impact, CCI)动物模型作为研究对象,构建正常大鼠脑部结构三维(three dimensional,3D)有限元模型,模拟动物实验中的损伤过程,分析不同皮层撞击深度下大鼠脑内部不同结构的生物力学反应,并应用最大主应变(maximum principal strain, MPS)参数变化对比动物实验引起的皮层损伤神经元消亡比例的变化,以期利用有限元模型参数的计算和分析来预测实验动物的损伤程度。主要研究工作包括:
     一大鼠可控性皮层损伤动物模型的建立和皮层、海马损伤定量分析
     目的:建立大鼠CCI实验动物模型,不同损伤程度皮层、海马损伤定量
     方法:应用带立体定向装置的可控性皮层损伤装置,建立对照组、2.4mm、2.8mm和3.2mmm的动物损伤组。应用Cresyl Violet染色观察各实验组大鼠皮层损伤范围和海马存活神经元。皮层损伤定量输出值为损伤侧皮层缺失体积占对侧半球体积的百分数,海马神经元输出值为锥体层CA3高倍镜视野(high power field, HPF)下存活数。数据以均数±标准差表示,多个样本均数比较采用单因素方差分析(one-way ANO VA)。
     结果:皮层损伤定量2.4mmm组损伤侧缺失体积占对侧半球的百分数3.65±2.11,2.8mm组为7.83±2.53,3.2mm组为12.85±3.02(P<0.05)。海马CA3锥体层2.4mm组别中神经元存活数26.50±4.18/HPF和2.8mm组别中神经元存活数17.67±4.08/HPF较对照组35.67±6.38/HPF明显减少(P<0.05),3.2mm组撞击出现锥体层损伤,未进行计数。
     结论:大鼠CCI模型可以有效造成皮层结构和海马结构的损伤,其损伤参数的可控性为分析损伤过程的生物力学提供了方便性;不同撞击深度调节可作为不同损伤程度的参数;在撞击参数设定为撞击物直径5mm、撞击速度4m/s条件下,3.2mm撞击深度不建议作为大鼠重度脑损伤分级建立标准。
     二正常大鼠脑三维有限元模型
     目的:构建正常大鼠脑部结构三维有限元模型
     方法:根据正常大鼠立体定向解剖图谱,选取冠状位25张切片为对象,利用Photoshop CS软件对选择切片数字化处理,留取皮层、皮层下、海马、侧脑室结构,保留立体定向图片中定位网格线,利用软件SolidWorks 2007在每个基准面上按前后顺序,以立体定向网格线提供的坐标、轮廓数据进行二维草绘,以放样命令连结各个剖面,并应用切除放样命令先后切除海马结构和侧脑室结构,建立装配体,选择海马、侧脑室结构配合形成镜像实体,保存为xt格式。在软件Unigraphics NX中导入镜像实体,建立撞击物物模型,撞击物直径5mm,撞击方向垂直,撞击接触面为皮层结构。在软件Ansys WorkBench中的Mechanical环境下按默认设置生成网格,定义单元类型,选择solid164四面体单元,目前对模型和撞击物接触的半球采用0.3mm的网格密度划分,海马结构内部组织密度为0.5mm,对侧未与撞击物接触的半球采用0.5mm的网格密度划分。
     结果:成功构建出含皮层、海马及侧脑室结构的三维大鼠脑有限元模型,同实际解剖几何形态相似。成功构建制作损伤的撞击物模型。模型总单元数205348,总节点数40412。
     结论:构建完成三维大鼠脑有限元模型。带有立体坐标标记的大鼠图谱切片为构建复杂形态结构的脑有限元模型建立提供经济、简单和准确的解剖信息;通过图像处理软件、计算机辅助分析软件和有限元软件,可以有效地建立复杂结构数学模型,并提高有限元建模的效率。
     三CCI动物模型有限元模拟、生物力学分析及皮层损伤与MPS相关性初步研究
     目的:
     1.建立大鼠脑简单化2D模型,有限元模拟皮层撞击过程,检验不同网格化密度、不同组织衰变常数下生物力学参数变化,选择合理的网格密度和衰变常数;
     2.CCI动物模型有限元模拟、生物力学分析及皮层神经元损伤与MPS相关性初步研究方法:
     1.利用大鼠脑立体定向图谱冠状缝后方3.48mm层面冠状位切片提供的解剖信息,在软件Unigraphics NX 6.0中建立四边形区域的平面模型和撞击物模型,在软件Ansys WorkBench软件中建立Explicit dynamic分析模块,设置脑组织属性,包括密度值、杨氏模量、泊松比和粘性剪切模量,设置边界条件和初始条件,标记2个不同区域AREA1、AREA2,选择不同网格密度进行对比,分别以2mm、1mm、0.8mm、0.3mm、0.2mm和0.1mm的网格密度进行撞击模拟,计算选定区域AREA1中MPS值;网格划分密度为0.5mm的条件下计算不同的组织衰变常数5ms、10ms、20ms和40ms下选定区域AREA1和AREA2的MPS值。
     2.模拟CCI动物实验制作过程,利用软件AnsysWorkbench设置符合动物实验条件下的撞击物参数,包括撞击物材料属性、撞击物直径和撞击速度,撞击深度分别为2.4mm、2.8mm和3.2mm,设置大鼠脑灰质、脑室及海马材料属性,包括密度值、杨氏模量、泊松比和粘性剪切模量,设置边界条件和初始条件,分别设定浅表皮层、深部皮层、海马和侧脑室中部分区域作为感兴趣区域,利用软件Ansys 12软件分别模拟不同撞击深度下的不同脑组织结构应力、应变、变形关系。模型计算的不同损伤程度下皮层感兴趣区域MPS值与动物实验计算获取的皮层损伤定量数据行初步一元线性回归分析。
     结果:
     1.随着网格密度的增加模型的节点数和网格数成倍增加,不同的网格密度撞击后选定区域内MPS的值存在差异;撞击分析的计算时间随着网格密度值减小而增加;在选定区域,随着网格密度的减小,区域内MPS相应增加,其增加的趋势随着密度值的进一步减小而降低,2mm和1mm网格密度之间MPS的差别是29.5%,0.2mmm和0.1mm网格密度之间的MPS的差别是4.0%,0.3mm和0.2mm、0.8mm网格密度之间的MPS差别分别为6.5%和10.4%,鉴于大鼠脑模型外形及内部结构欠规整,放置大曲率和薄壳均可导致划分的失败,选择0.3mm作为损伤侧半球大部分结构的网格密度,兼顾研究有限元模型预测MPS值过程中的准确性和效率性。网格密度0.5mm下改变不同衰变常数,以衰变常数20ms为基数进行比较,选定的浅部区域AREA1计算MPS值变化范围未超过3.2%,深部区域AREA2模型计算MPS值变化范围为0.1%。
     2撞击深度的增加相对应的von Mises应力增加,2.4mm、2.8mm和3.2mm撞击深度时von Mises应力最大值分别为0.57064Mpa、0.64684Mpa和3.0449Mpa。在所有三组不同撞击深度的模型中,撞击物下方的区域均具有最大变形,并随着辐射方向逐渐减弱。达到最大撞击深度后,随着撞击物回缩变形程度逐渐减小,在2.4mm撞击深度组别中,变形组织主要涉及皮层、皮层下和海马结构,随着撞击深度增加,变形累及丘脑及深部组织。在所有三组不同撞击深度的模型中,应变值随着撞击深度增加而递增,在2.4mm组中达到最大撞击深度后0.05ms时间步出现应变最大值1.1179,之后随着时间步增加而减低,在2.8mmm组中达到最大撞击深度时应变值为1.2535,随后出现减低,在最大撞击深度后0.1ms时间步再次出现高峰,达到1.5571,而后逐渐降低。在3.2mmm组中达到最大撞击深度时应变值为1.5658,并持续性对高峰至计算结束。在四组感兴趣区域中,不同深度的撞击模拟中,最高MPS出现在撞击侧皮层区域,并以从皮层向深部结构传导。感兴趣区域MPS时间步曲线图提示撞击后最高值均出现在撞击设定时间范围内。在不同撞击深度组别中,2.4mm和3.2mm中浅部皮层的MPS值最高,分别较深部皮层高1.2%,11.1%,在2.8mm中深部皮层的获得MPS最高值,较浅部皮层高4.4%。脑室结构内感兴趣区域标记计算MPS值显示所受到的最大主应变值变化范围较小,曲线幅度变化较其他三组感兴趣区域小,在2.4mm和2.8mm组别中海马结构较侧脑室结构MPS值分别高29.2%和40.8%,而在3.2mm组中脑室结构在撞击物达到最大深度后MPS值超过海马结构,其最大值较海马结构高27.8%。动物实验中皮层损伤缺失范围和有限元模型对应感兴趣区域计算MPS值行线性回归分析,浅部皮层和深部皮层区域与动物实验皮层缺失百分数进行线性相关性比较,R2值分别为0.9953和0.9685。
     结论:
     1.在进行有限元模型前处理过程中,网格密度越小,模型的网格数越多,计算结果越精确,计算时间越长,网格密度0.3mm能满足计算精确性要求,且计算时间合理;不同的衰变常数对结果存在影响,20ms的衰变常数对本研究结果影响可接受。
     2.实验很好的模拟了CCI动物实验制作流程,就撞击深度2.4mm、2.8mm和3.2mm分别进行了计算机模拟撞击大鼠脑皮层过程。当撞击物达到最大撞击深度后,在撞击载荷下,脑组织表面的变形、应力和应变随时间步向深部移动变化。有限元模型可以有效、直接的分析外力作用下脑组织内部不同结构的力学反应变化。结果提示MPS的变化与动物实验皮层损伤存在相关关系,该初步研究所能进行分析的数据偏少,需要更多的实验数例和不同前处理条件下有限元模型预测的MPS值进行对比,来求证MPS作为预测皮层神经元损伤定量生物力学参数之一的可行性。
Background and objective:Traumatic Brain Injury (TBI) is the frequently-occurring disease in the neurosurgery department. The mechanical deformation by the vulnerant force affected on the head induces the primary injury and the secondary injury. The TBI can cause the extensive clinical symptoms and dysfunctions. It has been the social public health problem now, because it is one of the major causes of the human death and disability. The understanding of the biomechanics in the different brain tissue can effectively estimate and prevent the TBI degree. But the detailed machanism of the human TBI is not completely illuminated. The stress-strain relation in the human TBI is difficult to be acquired, and the biomechanics research of brain injury in the living body is impossible. Over the half-century years, many different experimental methods are utilized and developed in the brain injuries such as animal experiment, corpse experiment and biomaterial experiment. Due to the difficulties of direct obtaining and analysis the different structures biomechanics with these relative experimental method, most researchers attempt to utilize the mathematical model for the TBI field. The finite element method (FEM) is the one of numerical method in structural analysis. It has been applied to solve the mechanics response of the several materials with the adventages in the analysis of complicated geometry shape and anisotropic material.
     For the past few years, with the development of computer technologies and the higher mathematics, especially the computer aided design system (CAD), more and more finite element models are created and used to analyse the biomechanics changes in the human TBI. Some FEMs include the detailed human anatomical structures for the different tissues stress-strain research. But the human brain finite element models have some disadvantages in the TBI simulation and analysis. On one hand there are several limitations in the acquisition of the different human brain biomechanics parameter, on the other hand the analytic datas of the human brain finite element models are difficult to compare with datas of the actual human TBI. So this study uses the rat as the research object to develop its brain three dimensional (3-D) finite element model. With this model the biomechanics relationships between the different tissues are analysed. Also this study comfirms the changes of maximum principal strain (MPS) is related with the rat cortex injury. The further research purpose is to predict the neuron injury in TBI. The research work includes:
     1. Establishment of the rat controlled cortical injury (CCI) model and the injury analysis of the cortex and the hippocampus
     Objective:Establishment of the rat controlled cortical injury model and the injury analysis of the cortex and the hippocampus
     Methods:We establish the rat CCI model using the special CCI device with the stereotaxis equipment. The impact velocity is 4m/s, the impact depth is 2.4mm, 2.8mm and 3.2mm. The animals are randomly devided into control group and groups at 2.4mm,2.8mm and 3.2mm. To evaluate the injury of the cortex and the hippocampus of every experiment groups, Cresyl Violet staining is performed to calculate the cortex injury area and hippocampus survival neurons.
     Result:The rat CCI models are established successfully. The cortex of impacted side is sharply damaged in the different impacted depth. The defective percent area in cortex of the contralateral hemisphere is 3.65±2.11 in the 2.4mm group,7.83±2.53 in the 2.8mm group and 12.85±3.02 in the 3.2mm group. The surviving neuron number in ipsilateral CA3 hippocampus 35.67±6.38/hpf in controlled group,26.50±4.18/hpf in 2.4mm group,17.67±4.08/hpf in 2.8mm,. In 3.2mm group, the impactor penetrate into the pyramidal layer, we do not count the neurons number.
     Conclusion:The rat CCI model is the scientific and advisable animalmodel for the TBI research with the controlled impacted force parameter. In the rat CCI model, the severe brain injury parameter should set that the impacted depth is 2.8mm with the 4m/s velocity.
     2. Construction of the 3-D finite element model of normal rat brain
     Objective:Construction of the 3-D finite element model of normal rat brain
     Methods:According to the normal rat stereotactic anatomical atlas, we confirm the reconstruction targets with the 25 coronal slice. Each slice anatomies are processed and digitizing with Photoshop CS software. The detailed anatomies includes the cortex, subcortex, hippocampus and lateral ventricles structures. All digital atlas are located in the stereoscopic coordinate. Each slice is saved as the TIFF format. Then with the SolidWorks 2007 software, two-dimension (2-D) draw of each slice is done according to the anatomical shapes and stereoscopic coordinates of each tissue. Each cross section is connected with the lofting order in SolidWorks 2007 software, the hippocampus and lateral ventricle structures are exsected. The assembly is built with the each part and saved as the xt format. Then this format is imported into the Unigraphics NX 6.0 software. In this software the impactor is constructed and the impactor tips located on the cortex surface. The impactor diameter is 5mm, the impacted direction is perpendicular. Then the total model is imported into the ANSYS Workbench software to define the elements type with solid 164 tetrahedron. The mesh is constructed according to the mechanical environment default setup. The mesh density in the most of ipsilateral part is 0.3mm, in the impacted side hippocampus and contralateral hemisphere is 0.5mm.
     Result:Construction of the 3-D finite element model of normal rat brain is completed. The model includes the cortex, subcortex, hippocampus and lateral ventricles structures. The FEM has a good geometric similarity with the anatomical atlas. The total number of elements was 205348, the total number of nodes is 40412.
     Conclusion:The rat anatomical atlas in the stereoscopic coordinate provides a effective, simple, economic and accurate information for the construction of finite element model of the complex shapes and structures. With the image processing software, CAD software and finite element software, it can be effective to construct the mathematical model of the complicated organism.
     3. The finite element method simulation of the CCI animals model, the biomechanical analysis and the initial research in prediction of the cortical neuron loss
     Objective:
     1) Construction of the simple rat cortex impacted model, simulation of the rat CCI model process, collating of the mesh density and decay constant
     2)The finite element simulattion and analysis of rat CCI model with the FEM, initial prediction of the neurons injury with the parameter MPS
     Methods:
     1)According to the cross section of the 3-D FE model, a plane FE model is constructed in the quadrilateral elements with the simple brain structure and the impactor by the Unigraphics NX 6.0 software. In the ANSYS Workbench software, the Explicit dynamic is built. The viscoelastic material properties of the brain grey matter and white matter are set. The properties include density, Young's modulus, poisson ratio, viscosity shear modulus and elasticity shear modulus. Two different areas are marked to compare with the different mesh density. The density includes 2mm、1mm、0.8mm、0.3mm、0.2m mand 0.1mm. According the 0.5mm mesh density, the different decay constants are choosed to analyse the MPS changes. The decay constants include 5ms、10ms、20ms and 40ms.
     2)The impacted parameters including the material attribute, impactor diameter and the impacted velocity according to the animal experiment are set in the Ansys WorkBench software. The impacted depth is 2.4mm,2.8mm and 3.2mm. The viscoelastic material properties of the brain grey matter and hippocampus and the ventricle are set. The properties include density, Young's modulus, poisson ratio, viscosity shear modulus and elasticity shear modulus. The boundary condition is set according to the skull density. And four regions in cortex, subcortex, hippocampus and ventricle are choosed as the regions of interest. In different impacted depths each regions has the different stress, strain and deformation relationship. The linear regression is carried out between cortex injury in the animal experiment and the MPSs in the FEA predicted for the regions of cortex.
     Result:
     1)There is the different MPS in the impacted simulation with different mesh density. The analysis time of the impact in the model increases obviously with the mesh density decreases. Total average MPS increases when the mesh density decreases, and the increase trend grows down. The MPS in selected region increases with the lower mesh density. The difference between 2mm mesh density and 1mm density was 29.5%. The differences between 0.3mm and 0.2mm,0.8mm were 6.5% and 10.4%. The MPSs do not have a large changes with the different decay constants. The MPS in surface selected region is 0.8165、0.8360、0.8423.0.8420 respectively, in deeper part is 0.0852、0.0852、0.0851、0.0850 respectively.
     2)The rat 3-D FE model simulates the CCI animal experiment process well in the different impacted depth. The highest value of von Mises stress 0.57064Mpa, 0.64684Mpa, 3.0449Mpa were respectively in the different vimpacted depths. When the impactor reachs the maximum depth, the area under the impactor has the largest deformations, and decrease in the radial directions, the deep part structure has the relative small deformations. And the highest value of strain in increased impacted depths were 1.1179,1.2535 and 1.5571. In 3.2mm depth the high peak of strain continued until the computer simulation analysis ended. In the four interest regions, the hightest MPS value occurred on the cortex in impacted side. All highest values in different groups were present within the foreset analysis time. In 2.4mm and 3.2mm depths simulation, the surface cortex was present the higher value than subcortex, it was 1.2%and 11.1%respectively. In the another depth the subcortex was 4.4%higher than surface cortex. The lateral ventricles had the lower change range in MPS. In 2.4mm and 2.8mm depths groups, the hippocampus was taken the higher MPS than lateral ventricles. In the another group the ventricle was taken more higher. The differences were 29.2%,40.8%and 27.8%. The initial research in linear regression between the MPSs predicted by the FE model and the neuron injury of cortex in animals experiment. The correlation coefficient R~2 were 0.9953 and 0.9685.
     Conclusion:
     1)The analysis result is more exactly and the analysis time is more longer when the mesh density decreases. The mesh density in 0.3mm is good for the precision and reasonable computing time. The decay constant in 20ms has little influence in our study.
     2)In the simulation of the CCI animal model, the different brain tissues have the complicated stress, strain and deformation relationship when the cortex has been impacted. The differences in the biomechanics responses induce the different levels of the TBIs in the primary injury and secondly injury. In the initial study the MPS can be the parameter that predicts the neurons injury in TBIs. More animals experiments and more different pre-processing conditions FE models should be developed to implore the feasibility of MPS acted as the quantitate parameter of cortical neuron injury in TBI.
引文
1. Traumatic Brain Injury in the United States:Emergency Department Visits, Hospitalizations, and Deaths. National Center for Injury Prevention and Control, Centers for Disease Control and Prevention,2006.
    2.许树耘,董凯.交通事故伤1256例分析.四川医学.1999,20(5):458-459.
    3.江基尧,朱城,罗其中.现代颅脑损伤学.上海:第二军医大学出版社.2004.
    4. Shreiber DI, Bain AC, Ross DT, Smith DH, Gennarelli TA, McIntosh TK, Meaney DF. Experimental Investigation of Cerebral Contusion:Histopathological and Immunohistochemical Evaluation of Dynamic Cortical Deformation. J Neuropathol Exp Neurol.1999,58(2):153-64.
    5. Feeney DM, Boyeson MG, Linn RT, Murray HM, Dail WG. Responses to cortical injury:Methodology and local effects of contusions in the rat. Brain Res.1981, 211(1):67-77.
    6. Marmarou A, Foda MA, van den Brink W, Campbell J, Kita H, Demetriadou K. A new model of diffuse brain injury in rats. Part I:Pathophysiology and biomechanics. J Neurosurg.1994,80(2):291-300.
    7. Foda MA, Marmarou A. A new model of diffuse brain injury in rats. Part II: Morphological characterization. J Neurosurg.1994,80(2):301-313.
    8. Erb DE, Povlishock JT. Axonal damage in severe traumatic brain injury:an experimental study in cat. Acta Neuropathol (Berl).1988(76):347-358.
    9. Conti AC, Raghupathi R, Trojanowski JQ, McIntosh TK. Experimental brain injury induces regionally distinct apoptosis during the acute and delayed post-traumatic period. J Neurosci.1998(18):5663-5672.
    10. Albensi BC, Knoblach SM, Chew BG, O'Reilly MP, Faden AI, Pekar JJ. Diffusion and high resolution MRI of traumatic brain injury in rats:time course and correlation with histology. Exp Neurol.2000(162):61-72.
    11. McIntosh TK, Yu T, Gennarelli TA. Alterations in regional brain catecholamine concentrations after experimental brain injury in the rat. J Neurochem. 1994(63):1426-1433.
    12. Faden AI, Demediuk P, Panter SS, Vink R. The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science 1989(244):798-800.
    13. Faden AI, Knoblach SM, Cernak I, Fan L, Vink R, Araldi GL. Novel diketopiperazine enhances motor and cognitive recovery after traumatic brain injury in rats and shows neuroprotection in vitro and in vivo. J Cereb Blood Flow Metab.2003(23):342-354.
    14. McIntosh TK, Noble L, Andrews B, Faden AI. Traumatic brain injury in the rat: characterization of a midline fluid-percussion model. Cent Nerv Syst Trauma. 1987 (4):119-134.
    15. Schmidt RH, Grady MS. Regional patterns of blood-brain barrier breakdown following central and lateral fluid percussion injury in rodents. J Neurotrauma. 1993(10):415-430.
    16. Cernak I. Animal Models of head Trauma. NeuroRx.2005 July; 2(3):410-422.
    17.谢江波,刘亚吉,张鹏飞.有限元方法概述.现代制造技术与装备.2007(5):29-30.
    18.何黎民,吴建国,卢亦成.人颅脑损伤有限元模型研究进展.中华创伤杂志.2004,20(6):381-384.
    19.安波,李兵仓,谢大军,陈菁,陈志强.颅脑撞击伤时脑组织内动态应力场的数值模拟.生物医学工程学杂志.2001,18(1):16-18.
    20.何黎民,卢亦成,吴建国,王伟民,刘平,陈学强.额、枕部直接冲击导致脑挫裂伤的力学机制研究.中华神经医学杂志.2005,4(9):874-877.
    1. Centers of Disease and Control and Prevention, Atlanta, GA. Traumatic brain injury in the United States:a report to Congress.2001.
    2. Maas AIR, Marmarou A, Murray GD. Prognosis and clinical trial design in traumatic brain injury:the IMPACT study. J Neurotrauma,2007(24):303-314.
    3. Access Economics on behalf of the Victorian Neurotrauma Initiative,2009.
    4.朱诚,江基尧,于明琨.我国颅脑创伤研究现状与展望.中华神经外科杂志,1999,15(1):1-2.
    5.张赛,只达石.努力改进我国颅脑创伤急救体系及监测技术.中华神经外科杂志,2005,21(4):195-196.
    6. Jain KK. Neuroprotection in traumatic brain injury. Drug Discov Today, 2008(13):23-24.
    7. Maas AIR, Marmarou A, Murray GD. Prognosis and clinical trial design in traumatic brain injury:the IMPACT study. J Neurotrauma,2007(24):303314.
    8. Menon DK. Unique challenges in clinical trials in traumatic brain injury. Crit Care Med,2009(37):129-135.
    9. Baskaya MK, Rao AM, Dogan A, Donaldson D, Dempsey RJ. The biphasic opening of the blood-brain barrier in the cortex and hippocampus after traumatic brain injury in rats. Neurosci Lett,1997(226):33-36.
    10. Cherian L, Robertson CS, Contant CF Jr, Bryan RM Jr. Lateral cortical impact injury in rats:cerebrovascular effects of varying depth of cortical deformation and impact velocity. J Neurotrauma,1994(11):573-585.
    11. Bryan RM Jr, Cherian L, Robertson C. Regional cerebral blood flow after controlled cortical impact injury in rats. Anesth Analg,1995(80):687-695.
    12. Prasad MR, Ramaiah C, McIntosh TK, Dempsey RJ, Hipkens S, Yurek D. Regional levels of lactate and norepinephrine after experimental brain injury. J Neurochem,1994(63):1086-1094.
    13. Gennarelli TA. Animate models of human head injury. J Neurotrauma, 1994(11):357-368.
    14. Colicos MA, Dash PK. Apoptotic morphology of dentate gyrus granule cells following experimental cortical impact injury in rats:possible role in spatial memory deficits. Brain Res,1996(739):120-131.
    15. Smith DH, Nakamura M, McIntosh TK, Wang J, Rodriguez A, Chen XH. Brain trauma induces massive hippocampal neuron death linked to a surge in beta-amyloid levels in mice overexpressing mutant amyloid precursor protein. Am J Pathol,1998 (153):1005-1010.
    16. Kaya SS, Mahmood A, Li Y, Yavuz E, Goksel M, Chopp M. Apoptosis and expression of p53 response proteins and cyclin D1 after cortical impact in rat brain. Brain Res,1999(818):23-33.
    17. Beer R, Franz G, Schopf M, Reindl M, Zelger B, Schmutzhard E. Expression of Fas and Fas ligand after experimental traumatic brain. J Cereb Blood Flow Metab, 2000,20(4):669-677.
    18. Matzilevich DA, Rall JM, Moore AN, Grill RJ, Dash PK. Highdensity microarray analysis of hippocampal gene expression following experimental brain injury. J Neurosci Res,2002(67):646-663.
    19. Long Y, Zou L, Liu H, Lu H, Yuan X, Robertson CS. Altered expression of randomly selected genes in mouse hippocampus after traumatic brain injury. J Neurosci Res,2003(71):710-720.
    20. Kawamata T, Katayama Y, Maeda T, Mori T, Aoyama N, Kikuchi T. Antioxidant, OPC-14117, attenuates edema formation and behavioral deficits following cortical contusion in rats. Acta Neurochir Suppl (Wien),1997(70):191-193.
    21. Verweij BH, Muizelaar JP, Vinas FC, Peterson PL, Xiong Y, Lee CP. Mitochondrial dysfunction after experimental and human brain injury and its possible reversal with a selective N-type calcium channel antagonist (SNX-111). Neurol Res,1997(19):334-339.
    22. Faden AI, Fox GB, Fan L, Araldi GL, Qiao L, Wang S, Novel TRH analog improves motor and cognitive recovery after traumatic brain injury in rodents, Am J Physiol (Lond),1999(277):1196-1204.
    23. Kroppenstedt SN, Stroop R, Kern M, Thomale UW, Schneider GH, Unterberg AW. Lubeluzole following traumatic brain injury in the rat. J Neurotrauma, 1999(16):629-637.
    24. Dempsey RJ, Baskaya MK, Dogan A. Attenuation of brain edema, blood-brain barrier breakdown, and injury volume by ifenprodil, a polyamine-site N-methyl-D-aspartate receptor antagonist, after experimental traumatic brain injury in rats. Neurosurgery,2000(47):399-404.
    25. Sullivan PG, Thompson M, Scheff SW. Continuous infusion of cyclosporin A postinjury significantly ameliorates cortical damage following traumatic brain injury. Exp Neurol,2000(161):631-637.
    26. Faden AI, Fox GB, Di X, Knoblach SM, Cernak I, Mullins P. Neuroprotective and nootropic actions of a novel cyclized dipeptide after controlled cortical impact injury in mice. J Cereb Blood Flow Metab,2003(23):355-363.
    27. Elizabeth H. Sinz, Patrick M. Kochanek, C. Edward Dixon, Robert S.B. Clark, Joseph A. Carcillo, Joanne K. Schiding, Minzhi Chen, Stephen R. Wisniewski, Timothy M. Carlos, Debra Williams, Steven T. DeKosky, Simon C. Watkins, Donald W. Marion, Timothy R. Billiar8 Inducible nitric oxide synthase is an endogenous neuroprotectant after traumatic brain injury in rats and mice. J Clin Invest,1999,104(5):647-656.
    28. Forbes ML, Clark RS, Dixon CE, Graham SH, Marion DW, DeKosky ST, Schiding JK, Kochanek PM. Augmented neuronal death in CA3 hippocampus followinghyperventilation early after controlled cortical impact. J Neurosurg, 1998,88(3):549-556.
    29. Denny-Brown DE, Russell WR. Experimental Concussion:(Section of Neurology). Proc R Soc Med,1941,34(11):691-692.
    30. Dixon CE, Lyeth BG, Povlishock JT, Findling RL, Hamm RJ, Marmarou A, Young HF, Hayes RL. A fluid percussion model of experimental brain injury in the rat. J Neurosurg,1987,67(1):110-119.
    31. Feeney DM, Boyeson MG, Linn RT, Murray HM, Dail WG. Responses to cortical injury:I. Methodology and local effects of contusions in the rat. Brain Res, 1981,211(1):67-77.
    32. Gennarelli TA, Thibault LE, Adams JH, Graham DI, Thompson CJ, Marcincin RP. Diffuse axonal injury and traumatic coma in the primate. Ann Neurol, 1982,12(6):564-574.
    33. Lindgren S, Rinder L.Experimental studies in head injury. I. Some factors influencing results of model experiments.Biophysik.1965,2(5):320-329.
    34. Madsen FF, Reske-Nielsen E.A simple mechanical model using a piston to produce localized cerebral contusions in pigs. Acta Neurochir (Wien), 1987;88(1-2):65-72.
    35. Millen JE, Glauser FL, Zimmerman M. Physiological effects of controlled concussive brain trauma. J Appl Physiol,1980,49(5):856-862.
    36.王双坤,刘佰运,郝淑煜,李欢.创伤性脑损伤的动物实验模型.中国交通医学杂志,2005,19(4):327-329.
    37.谭源福,曹美鸿,刘运生.减速性脑损伤动物模型的创建.中华创伤杂志,2001,17(4):212-215.
    38. Finnie JW, Van den Heuvel C, Gebski V,et al. Effect of impact on different regions of the head of lambs. J Comp Pathol,2001,124 (2-3):159-164.
    39.卢海涛,孙晓川,郑履平.弥散性轴索损伤模型研究进展.国外医学神经病学神经外科学分册,2003,30(3):218-221.
    40.吴旭,王保捷,张国华.大鼠脑损伤分级自由落体打击模型的建立.中华法医学杂志,2005,20(1):1-3.
    41.霍永强,谭源福.一种改进的落体脑创伤模型.广西医科大学学报,2007,24(2):217-219.
    42.李雪峰,刘绍明,闫志强,李建.液压脑损伤大鼠大脑皮质突触素的动态变化.现代生物医学进展,2008,8(2):225-228.
    43. Gutierrez E, Huang Y, Haglid K. A new model for diffuse brain injury by rotational acceleration. I:Model, gross appearance, and astrocytosis. J Neurotrauma,2001,18 (3):247-257.
    44.陈建良,吕文,郭伟,李雪松,何升学,赵庆锁.大鼠脑损伤动物模型研制方法的探讨.中华实验外科杂志,2003,20(3):281-282.
    45.王君宇,霍雷.弥漫性轴突损伤合并局灶性脑挫伤动物模型.湖南医科大学学报,2000,25(3):233-237.
    46.刘晓斌,宋锦宁,陈景宇,张芬茹,刘守勋.脑弥漫性轴索损伤实验装置的研制及动物模型的建立.西安交通大学学报(医学版),2008,29(5):595-598.
    47. Lighthall JW. Controlled cortical impact:a new experimental brain injury model. J Neurotrauma,1988,5(1):1-15.
    48. Lighthall JW, Dixon CE, Anderson TE. Experimental Models of Brain Injury. J Neurotrauma,1989,6(2):83-97.
    49. C. Edward Dixon, Guy L. Clifton, James W. Lighthal, Amy A. Yaghmai, Ronald L. Hayes, A controlled cortical impact model of traumatic brain injury in the rat. J Neurosci Methods,1991,39(3):253-262.
    50. Baldwin SA, Gibson T, Callihan CT, Sullivan PG, Palmer E, Scheff SW. Neuronal cell loss in the CA3 subfield of the hippocampus following cortical contusion utilizing the optical disector method for cell counting. J Neurotrauma, 1997,14(6):385-398.
    51. Hall ED. High-dose glucocorticoid treatment improves neurological recovery in head-injured mice. J Neurosurgery,1985(62):882-887.
    52. Morris RG, Garrud P, Rawlins JN, O'Keefe J. Place navigation impaired in rats with hippocampal lesions. Nature,1982,297(5868):681-683.
    53. Smith DH, Okiyama K, Thomas MJ, Claussen B, McIntosh TK. Evaluation of memory dysfunction following experimental brain injury using the Morris water maze. J Neurotrauma,1991,8(4):259-269.
    54. Hamm RJ, Dixon CE, Gbadebo DM, Singha AK, Lyeth BG, Jenkins LW, Hayes RL. Cognitive deficits following traumatic brain injury produced by controlled cortical impact. J Neurotrauma,1992,9(1):11-20.
    55. Kline AE, Bolinger B, Kochanek PM, Carlos TM, Yan HQ, Jenkins LW, Marion DW, Dixon CE. Systemic administration of interleukin-10 suppresses the beneficial effects of moderate hypothermia following traumatic brain injury in rats. Brain Res,2002(937):22-31.
    56. Kline AE, Massucci JL, Ma X, Zafonte RD, Dixon CE. Bromocriptine reduces lipid peroxidation and enhances spatial learning and hippocampal neuron survival in a rodent model of focal brain trauma. J Neurotrauma,2004(21):1712-1722.
    57. Kline AE, Massucci JL, Zafonte RD, Dixon CE, DeFeo JR, Rogers EH. Differential effects of single versus multiple administrations of haloperidol and risperidone on functional outcome after experimental brain trauma. Crit Care Med,2007(35):919-924.
    58. Dash PK, Mach SA, Blum S, Moore AN. Intrahippocampal wortmannin infusion enhances long-term spatial and contextual memories. Learn Mem, 2002,9(4):167-177.
    59. Smith DH, Soares HD, Pierce JS, Perlman KG, Saatman KE, Meaney DF, Dixon CE, McIntosh TK. A model of parasagittal controlled cortical impact in the mouse: cognitive and histopathologic effects. J Neurotrauma 1995,12(2):169-178.
    60. Manley GT, Rosenthal G, Lam M, Morabito D, Yan D, Derugin N, Bollen A, Knudson MM, Panter SS. Controlled cortical impact in swine:Pathophysiology and biomechanics. J Neurotrauma,2006,23(2):128-139.
    61. Nemoto EM, Rao G, Robinson T, Saunders T, Kirkman J, Davis D, Kuwabara H, Dixon CE. Effect of local cooling (15 degrees C for 24 hours) with the Chillerpad after traumatic brain injury in the nonhuman primate. Adv Exp Med Biol, 2006(578):311-315.
    62. Thompson SN, Gibson TR, Thompson BM, Deng Y, Hall ED. Relationship of calpain-mediated proteolysis to the expression of axonal and synaptic plasticity markers following traumatic brain injury in mice. Exp Neurol, 2006,201(1):253-265.
    63. Dixon CE. The application of rodent models to the study of brain injury biomechanics. Head and Neck Injuries in Sports, ASTM STP 1229. Philadelphia: American Society for Testing and Materials,1994:154-167.
    64. Hoffman SW, Fulop Z, Stein DG. Bilateral frontal cortical contusion in rats: Behavioral and anatomic consequences. J Neurotrauma,1994,11(4):417-431.
    65. Lowenstein DH, Thomas MJ, Smith DH, McIntosh TK. Selective vulnerability of dentate hilar neurons following traumatic brain injury:a potential mechanistic link between head trauma and disorders of the hippocampus. J Neurosci, 1992,12(12):4846-4853.
    66. Hicks R, Soares H, Smith D, McIntosh T. Temporal and spatial characterization of neuronal injury following lateral fluid-percussion brain injury in the rat. Acta Neuropathol,1996,91(3):236-46.
    67. Smith DH, Lowenstein DH, Gennarelli TA, McIntosh TK. Persistent memory dysfunction is associated with bilateral hippocampal damage following experimental brain injury.Neurosci Lett,1994,168(1-2):151-154.
    68. Goodman JC, Cherian L, Bryan RM Jr, Robertson CS. Lateral cortical impact injury in rats:pathologic effects of varying cortical compression and impact velocity. J Neurotrauma.1994,11(5):587-597.
    69. Azmitia EC, Liao B. Dexamethasone reverses adrenalectomy-induced neuronal de-differentiation in midbrain raphe-hippocampus axis. Ann N Y Acad Sci, 1994(746):180-193.
    70. Stanley A. Baldwin, Onya Gibson, C. Todd Callihan, Patrick G. Sullivan, Erick Palmer, Stephen W. Scheff. Neuronal Cell Loss in the CA3 Subfield of the Hippocampus Following Cortical Contusion Utilizing the Optical Disector Method for Cell Counting, J Neurotrauma,1997,14(6):385-398.
    71. Mattson MP, Rychlik B. Cell culture of cryopreserved human fetal cerebral cortical and hippocampal neurons:neuronal development and responses to trophic factors.Brain Res,1990,522(2):204-214.
    72. Siesjo BK, Zhao Q, Pahlmark K, Siesjo P, Katsura K, Folbergrova J. Glutamate, calcium, and free radicals as mediators of ischemic brain damage. Ann Thorac Surg,1995,59(5):1316-1320.
    73. Mattson MP, Scheff SW. Endogenous neuroprotection factors and traumatic brain injury:mechanisms of action and implications for therapy. J Neurotrauma, 1994,11(1):3-33.
    74. Panter SS, Faden AI. Pretreatment with NMDA antagonists limits release of excitatory amino acids following traumatic brain injury. Neurosci Lett.1992 Mar 2;136(2):165-168.
    75. Braughler JM, Hall ED. Involvement of lipid peroxidation in CNS injury. J Neurotrauma,1992,9(Suppl 1):1-7.
    76. Marion DW, White MJ. Treatment of experimental brain injury with moderate hypothermia and 21-aminosteroids.J Neurotrauma,1996,13(3):139-147.
    77. Sinson G, Voddi M, McIntosh TK. Combined fetal neural transplantation and nerve growth factor infusion:effects on neurological outcome following fluid-percussion brain injury in the rat. J Neurosurg,1996,84(4):655-662.
    78. Schmanke TD, Avery RA, Barth TM. The effects of amphetamine on recovery of function after cortical damage in the rat depend on the behavioral requirements of the task. J Neurotrauma,1996,13(6):293-307.
    79. Saatman KE, Bozyczko-Coyne D, Marcy V, Siman R, McIntosh TK. Prolonged calpain-mediated spectrin breakdown occurs regionally following experimental brain injury in the rat. J Neuropathol Exp Neurol,1996,55(7):850-860.
    80. Mattson MP, Scheff SW. Endogenous neuroprotection factors and traumatic brain injury:mechanisms of action and implications for therapy. J Neurotrauma.1994 Feb;11(1):3-33.
    81. Hovda DA, Becker DP, Katayama Y. Secondary injury and acidosis. J Neurotrauma,1992,9 (Suppl 1):47-60.
    82. Inao S, Marmarou A, Clarke GD, Andersen BJ, Fatouros PP, Young HF. Production and clearance of lactate from brain tissue, cerebrospinal fluid, and serum following experimental brain injury. J Neurosurg,1988,69(5):736-744.
    83. Yamakami I, McIntosh TK. Alterations in regional cerebral blood flow following brain injury in the rat. J Cereb Blood Flow Metab.1991 Jul;11(4):655-60.
    84. Okiyama K, Rosenkrantz TS, Smith DH, Gennarelli TA, McIntosh TK. (S)-emopamil attenuates acute reduction in regional cerebral blood flow following experimental brain injury. J Neurotrauma,1994,11 (1):83-95.
    85. Regan RF, Choi DW. The effect of NMDA, AMPA/kainate, and calcium channel antagonists on traumatic cortical neuronal injury in culture. Brain Res.1994 Jan 7;633(1-2):236-42.
    86. Kempski OS, Volk C. Neuron-glial interaction during injury and edema of the CNS. Acta Neurochir Suppl (Wien).1994(60):7-11.
    87. Mattson MP, Cheng B, Baldwin SA, Smith-Swintosky VL, Keller J, Geddes JW, Scheff SW, Christakos S. Brain injury and tumor necrosis factors induce calbindin D-28k in astrocytes:evidence for a cytoprotective response. J Neurosci Res,199,15;42(3):357-370.
    88. Bazan NG, Rodriguez de Turco EB, Allan G. Mediators of injury in neurotrauma: intracellular signal transduction and gene expression. J Neurotrauma,1995,12(5):791-814.
    89. Dash PK, Moore AN, Dixon CE. Spatial memory deficits, increased phosphorylation of the transcription factor CREB, and induction of the AP-1 complex following experimental brain injury.J Neurosci,1995,15(3):2030-2039.
    90. Gorman LK, Shook BL, Becker DP. Traumatic brain injury produces impairments in long-term and recent memory. Brain Res.1993 Jun 18;614(1-2):29-36.
    91. Vnek N, Rothblat LA. The hippocampus and long-term object memory in the rat. J Neurosci,1996,16(8):2780-2787.
    92. Conrad CD, Roy EJ. Dentate gyrus destruction and spatial learning impairment after corticosteroid removal in young and middle-aged rats. Hippocampus. 1995:5(1):1-15.
    93. Jarrard LE. On the role of the hippocampus in learning and memory in the rat. Behav Neural Biol,1993,60(1):9-26.
    94. Moser El. Learning-related changes in hippocampal field potentials. Behav Brain Res.1995Nov;71(1-2):11-8.
    95. Colicos MA, Dixon CE, Dash PK. Delayed, selective neuronal death following experimental cortical impact injury in rats:possible role in memory deficits. Brain Res.1996Nov 11;739(1-2):111-9.
    96. Schmanke TD, Avery RA, Barth TM. The effects of amphetamine on recovery of function after cortical damage in the rat depend on the behavioral requirements of the task. J Neurotrauma,1996,13(6):293-307.
    1. Hardy WN, Foster CD, Mason MJ, Yang KH, King AI, Tashman S. Investigation of Head Injury Mechanisms Using Neutral Density Technology and High-Speed Biplanar X-ray.Stapp Car Crash J,2001 (45):337-368.
    2. Zhang L, Ramesh S, Yang KH, King AI. Effectiveness of the football helmet assessed by finite element modeling and impact testing. Proceedings of the IRCOBI Conference,2003, Lisbon (Portugal),2003:27-38.
    3. Zhang L, Yang KH, King AI, Viano DC. A new biomechanical predicator for mild traumatic brain injury-A preliminary finding. ASME Summer Bioengineering Conf,2003:37-38.
    4. Zhang L, Yang KH, King AI. A proposed injury threshold for mild traumatic brain injury. J Biomech Eng,2004,126(2):226-236.
    5. Viano DC, Casson IR, Pellman EJ, Zhang L, King AI, Yang KH. Concussion in professional football:brain responses by finite element analysis:part 9. Neurosurgery,2005,57(5):891-916.
    6. Franklyn M, Fildes B, Zhang L, Yang K, Sparke L. Analysis of finite element models for head injury investigation:reconstruction of four real-world impacts. Stapp Car Crash J,2005(49):1-32.
    7. Shreiber DI, Bain AC, Meaney DF. In vivo thresholds for mechanical injury to the blood-brain barrier.41st Annual Stapp Car Crash Conference SAE, Society of Automotive Engineers, Warrendale, PA.1997.
    8. Pena A, Pickard JD, Stiller D, Harris NG, Schuhmann MU. Brain tissue biomechanics in cortical contusion injury:a finite element analysis. Acta Neurochir Suppl,2005(95):333-336.
    9. Haojie Mao, Xin Jin, Liying Zhang, King H. Yang, Takuji Igarashi, Linda J. Noble-Haeusslein, Albert I. King, Finite Element Analysis of Controlled Cortical Impact-Induced Cell Loss. J Neurotrauma,2010(27):877-888.
    10. Bayly PV, Black EE, Pedersen RC, Leister EP, Genin GM. In vivo imaging of rapid deformation and strain in an animal model of traumatic brain injury. J Biomech,2006,39(6):1086-1095.
    11. Gefen A, Gefen N, Zhu Q, Raghupathi R, Margulies SS. Age-dependent changes in material properties of the brain and braincase of the rat. J Neurotrauma, 2003,20(11):1163-1177.
    12. Prange MT, Margulies SS. Regional directional and age-dependent properties of the brain undergoing large deformation. J Biomech Eng,2002,124(2):244-252.
    13. Zhang L, Yang KH, Dwarampudi R, Omori K, Li T, Chang K, Hardy WN, Khalil TB, King AI. Recent advances in brain injury research:a new human head model development and validation. Stapp Car Crash,2001(45):369-393.
    14. Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates,6th Ed, San Diego. Elsevier Academic Press.2005
    15. Hollowell JP, Reinartz J, Pintar FA. Failure of synthes anterior cervieal fixation device by fracture of Morscher screws:a biomechanical study. J Spinal Disord,1994,7(2):120-125.
    16. Masatoshi S, Osamu K, Masanori I. Atlantoaxial Dislocation:A Follow-up Study of Surgical Results, Spine,1997,22(7):759-763.
    17. Kuijpers AH, Claessens MH, Sauren AA. The influence of different boundary conditions on the response of the head to impacta:a two-dimensional finite element study. J Neurotrauma,1995(12):715-724.
    18. Zhang LY, Hardy W, Omori K. Recent advances in brain injury research:a new model and new experimental data. Bioengineering Conference, 2001(50):833-834.
    19. Pintar FA, Kumaresan S, Yoganandan N. Biomechanical modeling of penetrating traumatic head injuries:a finite element approach. J Biomed Sci Instrum, 2001(37):429-434.
    20.何黎民,卢亦成,吴建国,刘平,丁祖泉,陈学强,王保华.国人头颅三维有限元模型有效性检验.生物医学工程与临床,2005,9(6):320-324.
    21. Kleiven S. Influence of impace direction on the human head in prediction of subdural hematoma. J Neurotrauma,2003(20):365-379.
    22.邵煜,邹冬华,刘宁国,陈忆九.有限元方法在法医学颅脑损伤分析中的应用.法医学杂志,2010,26(6):449-453.
    23.陈灼彬,万磊.医学有限元的建模方法.中国组织工程研究与临床康复,2007,11(31):6265-6267.
    24.赵辉,尹志勇,蒋建新.准静态下颞部撞击致颅脑伤的有限元模拟分析及其临床意义.创伤外科杂志,2008,10(2):141-144.
    25.何黎民,吴建国,卢亦成.人颅脑损伤有限元模型研究进展.中华创伤杂志,2004,20(6):381-384.
    26. Adam Wittek, Karol Miller, Ron Kikinis, Simon K. Warfield. Patient-specific model of brain deformation:Application to medical image registration. J Biomech,2007 (40):919-929.
    27. Kurosawa Y, Kato K, Takahashi T, Kubo M, Uzuka T, Fujii Y, Takahashi H.3-D finite element analysis on brain injury mechanism. Conf Proc IEEE Eng Med Biol Soc,2008:4090-4093.
    28.张建国,周蕊,薛强.基于挥鞭样损伤研究的颈部有限元模型的建立及验证.中国生物医学工程学报,2008,27(3):389-392.
    29.许伟,杨济匡.研究颅脑交通伤的有限元模型的建立及验证.生物医学工程学杂志,2008,25(3):556-561.
    30.王勖成,邵敏.有限单元法基本原理与数值方法.北京:清华大学出版社,1988.
    31. AI-Bsharat AS, Hardy WN, Yang KH. Brain/skull relative displacement magnitude due to blunt head impact:new experimental data and model. Proeeedings of Stpp Car Crash Conf,1999:321-332.
    32. Zhou C, Khalil TB, King AI. A new nodel comparing impact response of the homogeneous and inhomogeneous human brain. Proceedings of Stapp Car Crash Conf,1995:121-137.
    33. Willinger R, Taleb L, Kopp CM. Modal and temporal analysis of head mathematical models. J Neurotrauma,1995,12(4):743-754.
    34. Willinger R, Taleb L, Kopp CM. Modal and temporal analysis of head mathematical models. J Neurotrauma,1995,12(4):743-754.
    35. Bandak FA, Vander Vorst MJ, Stuhmiller LM, Mlakar PF, Chilton WE, Stuhmiller JH. An imaging-based computational and experimental study of skull fracture: finite element model development. J Neurotrauma,1995,12(4):679-688.
    36. Shafieian M, Darvish KK, Stone JR. Changes to the viscoelastic properties of brain tissue after traumatic axonal injury.J Biomech,2009,42(13):2136-2142
    37. Prange MT, Margulies SS. Regional, directional, and age-dependent properties of the brain undergoing large deformation. J Biomech Eng,2002,124(2):244-252.
    38. Zhang L, Yang KH, Dwarampudi R, Omori K, Li T, Chang K, Hardy WN, Khalil TB, King AI. Recent advances in brain injury research:a new human head model development and validation. Stapp Car Crash J,2001(45):369-394.
    39. Ishikawa R, Kato K, Kubo M, Uzuka T, Takahashi H. Finite element analysis and experimental study on mechanism of brain injury using brain model. Conf Proc IEEE Eng Med Biol Soc,2006(1):1327-1330.
    40. Takahashi T, Kato K, Ishikawa R, Watanabe T, Kubo M, Uzuka T, Fujii Y, Takahashi H.3-D finite element analysis and experimental study on brain injury mechanism. Conf Proc IEEE Eng Med Biol Soc,2007:3613-3616.
    41. Haojie Mao, Liying Zhang, King HY, Albert IK. Application of a Finite Element Model of the Brain to Study Traumatic Brain Injury Mechanisms in the Rat. Stapp Car Crash J,2006(50):583-600.
    1. King AI, Yang KH, Zhang L, Hardy, WN. Is head injury caused by linear or angular acceleration? IRCOBI Conf. Lisbon (Portugal),2003.
    2. Meaney DF, Smith DH, Ross DT, Gennarelli TA. Biomechanical analysis of experimental diffuse axonal injury in the miniature pig. J Neurotrauma 1995,12(4):689-695.
    3. Ruan JS, Khalil TB, King AI. Finite element modeling of direct head impact. Proc.37th Stapp Car Crash Conference, Society of Automotive Engineers, Warrendale,1993.
    4. Zhou C, Khalil TB, King AI. A new model comparing impact responses of the homogeneous and inhomogeneous human brain. Proc.39th Stapp Car Crash Conference, Society of Automotive Engineers, Warrendale,1995.
    5. Zhang L, Yang KH, Dwarampudi R, Omori K, Li T, Chang K, Hardy WN, Khalil TB, King AI. Recent advances in brain injury research:a new human head model development and validation. Stapp Car Crash J,2001(45):369-393.
    6. Zhang L, Ramesh S, Yang KH, King AI. Effectiveness of the football helmet assessed by finite element modeling and impact testing. Proceedings of the IRCOBI Conference,2003, Lisbon (Portugal),2003:27-38.
    7. Zhang L, Yang KH, King AI, Viano DC. A new biomechanical predicator for mild traumatic brain injury-A preliminary finding. ASME Summer Bioengineering Conf,2003:37-38.
    8. Zhang L, Yang KH, King AI. A proposed injury threshold for mild traumatic brain injury. J Biomech Eng,2004,126(2):226-236.
    9. Viano DC, Casson IR, Pellman EJ, Zhang L, King AI, Yang KH. Concussion in professional football:brain responses by finite element analysis:part 9. Neurosurgery,2005,57(5):891-916.
    10. Franklyn M, Fildes B, Zhang L, Yang K, Sparke L. Analysis of finite element models for head injury investigation:reconstruction of four real-world impacts. Stapp Car Crash J,2005(49):1-32.
    11. Pena A, Pickard JD, Stiller D, Harris NG, Schuhmann MU. Brain tissue biomechanics in cortical contusion injury:A finite element analysis. Acta Neurochir. Suppl.2005(95):333-336.
    12. Levchakov A, Linder-Ganz E, Raghupathi R, Margulies SS, Gefen A. Computational studies of strain exposures in neonate and mature rat brains during closed head impact. J Neurotrauma,2006(23):1570-1580.
    13. Haojie Mao, Liying Zhang, King HY, Albert IK. Application of a Finite Element Model of the Brain to Study Traumatic Brain Injury Mechanisms in the Rat. Stapp Car Crash J,2006(50):583-600.
    14. Haojie Mao, Xin Jin, Liying Zhang, King H. Yang, Takuji Igarashi, Linda J. Noble-Haeusslein, Albert I. King. Finite Element Analysis of Controlled Cortical Impact-Induced Cell Loss. J Neurotrauma,2010(27):877-888.
    15. Bayly PV, Black EE, Pedersen RC, Leister EP, Genin GM. In vivo imaging of rapid deformation and strain in an animal model of traumatic brain injury. J Biomech,2006,39(6):1086-1095.
    16. Gefen A, Gefen N, Zhu Q, Raghupathi R, Margulies SS. Age-dependent changes in material properties of the brain and braincase of the rat. J Neurotrauma, 2003,20(11):1163-1177.
    17. Prange MT, Margulies SS. Regional directional and age-dependent properties of the brain undergoing large deformation. J Biomech Eng,2002,124(2):244-252.
    18. Zhang L, Yang KH, Dwarampudi R, Omori K, Li T, Chang K, Hardy WN, Khalil TB, King AI. Recent advances in brain injury research:a new human head model development and validation. Stapp Car Crash,2001(45):369-393.
    19. Takhounts EG, Crandall JR, Darvish K.. On the importance of nonlinearity of brain tissue under large deformations. Stapp Car Crash J,2003(47):79-92.
    20. Gurdjian ES. Re-evaluation of the biomechanics of blunt impact injury of the head. Surg Gynecol Obstet,1975,140(6):845-850.
    21. Gennarelli TA, Thibault LE, Adams JH, Graham DI, Thompson CJ, Marcincin RP. Diffuse axonal injury and traumatic coma in the primate. Ann Neurol, 1982,12(6):564-574.
    22. Huang HM, Lee MC, Lee SY, Chiu WT, Pan LC, Chen CT. Finite element analysis of brain contusion:an indirect impact study. Med Biol Eng Comput, 2000(38):253-259.
    23. Ward CC, Chan M, Nahum AM. Intracranial pressure-a brain injury criterion. Stapp Car Crash Conf, Troy, MI, U.S.A.,1980:163-185
    24. King AI. Fundamentals of impact biomechanics:part Ⅰ-biomechanics of the head, neck, and thorax. Annu Rev Biomed Eng,2000(2):55-81.
    25. Nahum AM, Smith R, Ward CC. Intracranial pressure dynamics during head impact. Stapp Car Crash Conf, New Orleans, LA, U.S.A.,1977:339-366.
    26. Margulies SS, Thibault LE. A proposed tolerance criterion for diffuse axonal injury in man. J Biomech,1992(25):917-923.
    27. Zhang L, Yang KH, King AI. A proposed injury threshold for mild traumatic brain injury. J Biomech Eng,2004(126):226-236.
    28. Ruan JS, Khalil T, King AI. Dynamic response of the human head to impact by three-dimensional finite element analysis. J Biomech Eng.1994,116(1):44-50.
    29. Zhou P, Khalil C, King AI. A new model comparing impact responses of the homogeneous and inhomogeneous human brain. Society of Automotive Engineers:Warrendale, PA,1995.
    30. Bandak FA, Eppinger RH. A three-dimensional finite element analysis of the human brain under combined rotational and translational accelerations.38th Stapp Car Crash Conference SAE, Society of Automotive Engineers, Fort Lauderdale, FL,1994.
    31. Zhang L, Yang KH, King AI. A proposed injury threshold for mild traumatic brain injury. J Biomech Eng,2004(126):226-236.
    32. Cater HL, Sundstrom LE, Morrison B 3rd. Temporal development of hippocampal cell death is dependent on tissue strain but not strain rate. J Biomech, 2006,39(15):2810-2818.
    33. Shreiber DI, Bain AC, Meaney DF. In vivo thresholds for mechanical injury to the blood-brain barrier.41 st Annual Stapp Car Crash Conference SAE, Society of Automotive Engineers, Warrendale, PA.1997.
    34. Mao H, Zhang L, Yang KH, King AI. Finite element analysis of a close head axonal injury model—relating brain tissue biomechanics to skull deformation. Proceedings of the ASME 2008 Summer Bioengineering Conference, Marco Island, FL,2008.
    35. Gefen A, Gefen, N, Zhu Q, Raghupathi R, Margulies SS. Age-dependent changes in material properties of the brain and braincase of the rat. J Neurotrauma, 2003(20):1163-1177.
    36. Geddes DM, LaPlaca MC, Cargill RS 2nd. Susceptibility of hippocampal neurons to mechanically induced injury. Exp Neurol,2003(184):420-427.
    37. Morrison B 3rd, Cater HL, Wang CC, Thomas FC, Hung CT, Ateshian GA, Sundstrom LE. A tissue level tolerance criterion for living brain developed with an in vitro model of traumatic mechanical loading. Stapp Car Crash J,2003(47): 93-105.
    38. Toth Z, Hollrigel GS, Gorcs T, Soltesz I. Instantaneous perturbation of dentate interneuronal networks by a pressure wave-transient delivered to the neocortex. J Neurosci,1997(17):8106-8117.
    39. Schmidt RH, Grady MS. Regional patterns of blood-brain barrier breakdown following central and lateral fluid percussion injury in rodents. J Neurotrauma, 1993(10):415-430.
    40. Di X, Gordon J, Bullock R. Fluid percussion brain injury exacerbates glutamate-induced focal damage in the rat. J Neurotrauma,1999(16):195-201.
    41. Lowenstein DH, Thomas MJ, Smith DH, McIntosh TK. Selective vulnerability of dentate hilar neurons following traumatic brain injury:A potential mechanistic link between head trauma and disorders of the hippocampus. J Neurosci, 1992(12):4846-4853.
    42. Zanier ER, Lee SM, Vespa PM, Giza CC, Hovda DA. Increased hippocampal CA3 vulnerability to low-level kainic acid following lateral fluid percussion injury. J Neurotrauma,2003(20):409-420.
    43. Anderson KJ, Miller KM, Fugaccia I, Scheff SW. Regional distribution of fluoro-jade b staining in the hippocampus following traumatic brain injury. Exp Neurol,2005(193):125-130.
    44. Kim BT, Rao VL, Sailor KA, Bowen KK, Dempsey RJ. Protective effects of glial cell line-derived neurotrophic factor on hippocampal neurons after traumatic brain injury in rats. J Neurosurg,2001(95):674-679.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700