用户名: 密码: 验证码:
偶氮染料的生物毒性及其与生物大分子的结合作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
染料的毒性,特别是偶氮染料的致毒作用,已经引起各国政府的高度关注。如何快速评价偶氮染料对生态环境的毒性效应,减少其对环境及人类的危害,已成为急待研究的课题。染料分子可通过多种途径被人体吸收,并引起某种生物学作用。特别是在靶部位与关键性生物大分子的结合,可引起生物大分子各种结构和功能的异常,而发生毒负作用。近年来,关于污染物不良效应的研究,已经深入到以生物大分子作为污染物作用的靶位点,从而使人们对于污染的认识及其评价更为明确,也为污染物的防治提供更为科学的依据。本论文从两个层面对三种偶氮染料的毒性进行了研究。用发光细菌法评价了它们的急性毒性,并对致毒的机理进行了研究。通过三种染料与人血清白蛋白的结合机理和与DNA结合模式、亲和力大小以及对DNA碱基序列特异性识别的研究,预测其对人类潜在的危害。主要研究内容及结果如下:
     1.利用发光菌法评价了三种偶氮染料的急性毒性,应用拉曼光谱技术测定了染料作用前后发光细菌体内生物大分子特征拉曼位移,并对发光菌与C.I.酸性红73接触前后特征拉曼位移的变化进行了详细指认。实验表明,在所测试的浓度范围内三种偶氮染料均有一定的毒性。其毒性从大到小的顺序是:C.I.酸性红73>C.I.酸性蓝113>C.I.活性红24。其中,C.I.酸性红73毒性最大,当浓度为100 mg/L,与发光细菌作用15分钟后,其发光拟制率为26.9%,毒性大小相当于氯化汞浓度为0.061mg/L时毒性,并随作用时间的延长,毒性增加。拉曼光谱也表明,三种偶氮染料和发光菌接触后,与其生物大分子发生了结合,或者使这些生物大分子所处的微环境发生了变化,导致了其特征拉曼峰的强度和位置发生不同程度的改变,影响到发光菌正常的生理代谢功能,表现在发光强度的降低。
     2.应用分子对接技术,研究了还原黄素单核苷酸(FMNH2)与菌荧光素酶的最佳结合部位位点。完成了FMNH2和荧光素酶三个区域(即α亚基、β亚基和两个亚基的交界面处)的分子对接研究。根据FMNH2与菌荧光素酶每个区域的的最低结合能,识别了两个活性位点,一个在α亚基,命名为活性位点Ⅰ(active site-Ⅰ),这个活性位点与已报道的大量实验结果是一致的。另一个是在两个亚基交界面处,命名为活性位点Ⅱ(active site-Ⅱ)。FMNH2在这两个活性部位的最低结合能分别为:-32.4 KJ mol-1(活性位点Ⅱ)和-31.2 KJ mol-1(活性位点Ⅰ),表明两个活性位点具有近似的亲合力。活性位点Ⅱ的提出,有助于理解为什么杂二聚体的催化活性高于单个亚基的催化活性;为研究化学污染物对细菌发光抑制机理提供理论依据;也为基因突变研究和分子动力学模拟提供一些基础信息。
     3.应用分子对接技术,完成了细菌催化发光反应的底物长链脂肪醛和三种染料在荧光素酶两个活性位点的分子对接模拟,计算出每种物质在两个活性位点的最低结合能。通过对比结合能的大小,分析了三种染料抑制细菌发光的分子机制。分子对接实验表明,C.I.酸性红73与底物黄素单核苷酸相比,在两个活性位点都不具备竞争优势,但是能抑制底物长链脂肪醛在两个活性位点的结合,应具有较强的细菌发光抑制效应。而C.I.酸性蓝113和C.I.活性红24在活性位点Ⅰ都具有较强的亲和力,能抑制酶与两种底物在活性位点Ⅰ的结合;但是在活性位点Ⅱ的的亲和力较差,结合能均为正值,而不能抑制它们在活性位点Ⅱ的结合,对细菌的发光抑制率应较小。这与细菌发光抑制实验得到的结果是一致的。
     4.应用荧光光谱、紫外光谱、园二色谱和分子对接技术,研究了三种染料与人血清白蛋白结合的分子机理。理论和实验研究的结果表明,三种染料与蛋白质之间具有较高的亲和力,能自发结合形成配合物。疏水作用是主要的作用力类型,而氢键和静电作用对于形成稳定的染料-蛋白质复合物也起到重要作用。另外染料与白蛋质的结合还诱导蛋白质的二级结构发生了微弱变化。
     分子对接的结果显示,两种酸性染料C.工.酸性红73和C.I.酸性蓝113与蛋白质最可能的结合位点在蛋白质第一结构域的ⅠB亚域;给体(Trp214)与受体(染料)之间的平均距离分别为3.06和2.82 nm,与实验得到的结果3.28 nm(C.I.酸性红73)和2.78(C.I.酸性蓝113)是非常接近的。而活性染料C.I.活性红24主要结合在蛋白质第二结构域的ⅡA亚域;Trp214与C.I.活性红24之间的平均距离为1.18 nm,而通过Forster能量转移理论求得的作用距离为3.11 nm,二者存在一定的误差。可能的原因是:(1)C.I.活性红24分子中含有较多的活性基团,包括带负电的三个磺酸基(-SO3)、两个氯原子(-Cl)和一个羟基(-OH),带正电的仲胺和一个三嗪环,这些活性基团使的该染料分子易与蛋白质的碱性或酸性氨基酸结合,而不能进入所研究的四个结合位点;(2)亚域ⅡA是C.I.活性红24最佳的结合位点,但是仍会有部分染料分子结合在其它几个亚域。通过Forster能量转移理论求出的作用距离应为C.I.活性红24的各结合位点与蛋白质色氨酸残基(Trp214)之间距离的平均值;其它原因需要做进一步研究。
     研究结果表明,三种染料中,C.I.酸性红73与蛋白质具有最低的结合自由能ΔG(实验值)和最大的结合常数Kb,这与其具有最大的生物毒性(抑制细菌发光)是一致的。染料与蛋白质的结合,可能会影响到生物体内重要物质的储存和运输,与它们形成竞争,干扰正常的生理功能,导致生物毒性的发生。所以,通过研究染料与蛋白质的结合,计算它们结合力的大小和结合位点,来预测它们的生物毒性是可行的。
     5.应用分子对接技术,研究了这三种染料与9个DNA片段的结合模型和对DNA序列的选择性。分子对接结果表明,小沟槽结合是三种染料与正常的DNA片段(没有插入缝隙)结合的主要结合模式。即使DNA片段中存在插入缝隙,小沟槽结合也可能是部分染料的优先结合模式。在研究的九个不同碱基序列的DNA片段中,十二聚体d(CGCGATATCGCG)2 (PDB ID:1DNE)是酸性红C.I.73最佳的结合对象,具有最低的结合自由能(-9.19kcal/mol.);六聚体d(CGATCG)2 (PDB ID:1Z3F)是C.I.酸性蓝113最佳的结合靶标,具有最低的结合自由能(-11.8kcal/mol.);含有两个插入缝隙的四聚体d(CGCG)2 (PDB ID:1D32)的小沟槽是C.I.活性红24最佳的结合靶标,具有最低的结合自由能(-8.13 kcal/mol)。结合模型分析表明,三种染料中,只有C.I.酸性红73分子中的萘二磺酸部分对DNA小沟槽的CG碱基序列具有选择性,而其它两种染料没有明显地表现出碱基序列的选择性。
     研究表明,三种染料与DNA的亲合力大小跟与小沟槽结合的芳香基团的数目有关,芳环越多亲合力越大。由于C.I.酸性蓝113比其它两种染料具有更多的芳香基团与小沟槽结合,能与DNA小沟槽形成更大的π键堆积。所以除了一个十二聚体d(CGCGATATCGCG)2 (PDB ID:1DNE)外,C.I.酸性蓝113与其它8个DNA片段的结合,都具有最强的结合能力。这是否表明该种染料具有较强的基因毒性,还需要做更深入的研究。
     DNA大沟槽是结合蛋白质的场所,研究发现,有部分构象的染料分子结合在DNA大沟槽中。如果染料分子与DNA大沟槽形成竞争性占位,而影响到与蛋白质的相互识别,可能会干扰生物体正常的生理功能,而产生毒性。
The toxicity of dyes, especially azo dyes, has been highly paid attention to by all governments around the world. How to rapidly evaluate the toxicity effect of azo dyes to the ecological environment in order to minimize its negative effects has become a pressing research issue. Dye molecules can be absorbed through various channels by the human body, causing certain biological effects. Especially their binding with key biological macromolecules in the target areas results in abnormal structure and function of biological macromolecules, thus causing poisonous effects. In this dissertation the toxicity of three azo dyes was studied on two levels. First, their acute toxicity was evaluated by luminous bacteria method and the mechanism of toxicity was analyzed by molecular docking technology. To predict potential dangers to human beings, we conducted research on the molecular mechanism of three kinds of azo dyes binding to human serum albumin, and on the possible mode of binding of the dyes with DNA. The main contents and results are following:
     1. The acute toxicity of three azo dyes (C.I. Acid red 73, C.I. Acid blue 113 and C.I. Reactive red 24) was evaluated by bioluminescence tests. Raman shift of biological macromolecules in luminous bacteria before and after exposing dyes was measured. The results were shown that all the three kinds of azo dyes contain certain level of toxicity within the range of experiment concentration. The descending order of their toxicity is:C.I. Acid red 73> C.I. Acid blue 113> C.I. Reactive red 24. Among them, C.I. Acid red 73 has the highest toxicity. Luminescence inhibition ratio of C.I. Acid red 73 (100 mg/L, exposing 15 min) is 26.9%, whose toxicity equals to HgCl2 at the concentration level of 0.061 mg/L, and the longer the time the higher the toxicity level. Raman spectrum of the luminous bacteria also shows that the three azo dyes either combined with their biological macromolecules or changed the micro-environment of macromolecules, resulting in various changes in the strength and location of Raman peaks, which further influences the normal physiological metabolism processes of luminous bacteria reflected by their reduced luminescence strength.
     2. The best binding site of flavin mononucleotide (FMNH2) and bacterial luciferase was studied applying molecular docking technology, and completed molecule docking research on FMNH2 and three areas (αsubunit,βsubunit and the interface between the two subunits) of the bacterial luciferase. Based on the lowest binding energy of FMNH2 and the three areas, two active sites were identified, one locates at a subunit, designated as active site-Ⅰ, which is consistent with the abundance of experimental results reported previously; the other locates at the interface between two subunits, designated as active site-Ⅱ. The binding energy of FMNH2 on the two sites is-32.4 KJ mol-1 (active site-Ⅱ) and -31.2 KJ mol-1 (active site-Ⅰ), indicating a similar affinity on the two sites. The introduction of active site-Ⅱhelps to understand why theα/βheterodimer has higher catalytic activity than the individualαandβsubunits, and provide theoretical basis for the study of how chemical contaminants affect luminescence strength of the bacteria as well as the studies on gene mutations and molecular dynamics simulation.
     3. Molecular docking technology was applied to complete the docking simulation of four long chain aliphatic aldehydes and the three azo dyes on the two active sites of the bacterial luciferase. The lowest binding energy of each substance on these two sites was calculated. The molecular mechanism of inhibiting the luminescence strength of bacteria of three dyes was analyzed through comparing the binding energy. As is shown by the molecule docking experiment, comparing to the FMNH2, C.I. Acid red 73 is less competitive on the two sites, but it is able to inhibit the binding of and the long chain aliphatic aldehyde on the two active sites, thus possesses great potential in inhibiting luminescence. Whereas both C.I. Acid blue113 and C.I. Reactive red 24 have high affinity on active site-Ⅰand are able to prevent the binding of enzymes and the two objects on active site-Ⅰ, but have low affinity on active site-Ⅱshown by their positive value of binding energy, thus cannot inhibit their binding on active site-Ⅱand luminescence of bacteria. This is consistent with the results of luminescence experiment.
     4. The molecular mechanism of the three dyes binding to human serum albumin (HSA) was investigated by fluorescence, UV-visible, far-UV CD spectroscopy and molecule docking technology. Theories and experiments have revealed high affinity ability between the three dyes and the protein to spontaneously form coordination complexes. The hydrophobic interaction is the main pattern of driving force, and the hydrogen bond and static electricity effect also play an important role in forming stable dye-protein compounds. Besides, a small change in the secondary structure of the protein was also induced by the combination of dyes and the protein.
     As the results of molecule docking shows, the most possible binding site of the two acidic dyes C.I. Acid red 73 and C.I. Acid blue113 and the protein locates within the IB sub-domain of the protein. The average distances between the donor (Trp214) and the acceptor (dyes) are 3.06 and 2.82 nm respectively, which are very similar to the results from the experiment:3.28 nm (C.I. Acid red 73) and 2.78 (C.I. Acid blue 113). The main binding area of the C.I. Reactive red 24 is within the IIA sub-domain of the protein. The average distance between Trp214 and C.I Reactive red 24 is 1.18 nm, while the result obtained through Forster energy transfer theory is 3.11 nm, indicating certain level of error between the two. The reasons for this could be:(1) the molecules of C.I. Reactive red 24 are rich in active groups, including negatively charged three-SO3, two-Cl and a-OH as well as positively charged di-amine and a triazine ring. These active particles facilitate the binding of molecules to amino acid in the protein, either alkalescent or acidic, instead of binding to the four sites under this study; (2) IIA sub-domain is the best binding site for C.I. Reactive red 24, but there are also some molecules binding in other sub-domains. The distance obtained through Forster energy transfer theory should be the average of the distances between all the binding sites of C.I. Reactive red 24 and Trp214; further research needs to be done to uncover other reasons.
     According to the results, among the three dyes, C.I. Acid red 73 has the lowest binding free energy△G (the results from the experiment) and highest binding constant Kb, which is consistent with the fact that it has the highest toxicity (shown by bioluminescence tests). The binding of dyes with protein may affect the storage and transportation of vital substances in the organism by forming a competition, which consequently disturbs normal physiologic function leading to the occurrence of toxicity. Therefore, through investigating the binding of dye with protein, it is possible to predict biological toxic by calculating their binding energy and binding sites.
     5. Molecular docking techniques were applied to describe the most probable mode of nine DNA fragments binding as well as the sequence selectivity of the three dyes. As shown by the molecule docking experiment, the minor groove binding is the main pattern of the three dyes binding to normal DNA fragments (without intercalation gaps). The minor groove binding is the most preferable binding model of some dyes although DNA targets present intercalation gap. By analyzing the binding model, only the naphthalenedisulfonic acid moiety of the C.I. Acid red 73 selectively binds to the CG-rich region of DNA minor groove, while other dyes are not obviously selective to sequences of base pairs. Research shows that the affinity of the three dyes to DNA relates to the number of aromatic groups bound to the minor groove, and the more the aromatic rings the greater the affinity. Comparing to other two dyes, due to more aromatic rings bound to the minor groove to form a biggerπ-π-stack in C.I. Acid blue 113, apart from one dodecamer, C.I. Acid blue 113 has the highest binding energy to other eight DNA fragments. Further research needs to be done to decide whether this indicates greater genetic toxic of the dye.
     The major groove of DNA is the place of combining proteins where dye molecules with some conformation combined in this study. If the dye molecules form a competition with proteins, thus influencing the recognition of proteins, the normal physiological function of organism may be disturbed, leading to the production of toxicity.
引文
[1]孙占怀.谈禁用偶氮染料[J].化学教育,2005,6:1-3.
    [2]钟金汤.偶氮染料及其代谢产物的化学结构与毒性关系的回顾与前瞻[J].环境与职业医学,2004,21(1):58-62.
    [3]周琪,赵由才.染料对人体健康和生态环境的危害[J].环境与健康杂志,2005,22(3):229-231.
    [4]王建平,陈荣圻,吴岚等.REACH法规与生态纺织品[M].北京:中国纺织出版社,2009.
    [5]章杰.有关环保型染料的几个热点问题[J].环境保护,2000,25(12):4-8.
    [6]刘金齐,刘厚田.偶氮染料对小球藻的毒性研究[J].环境科学研究,1990,3(4):23-28.
    [7]陈宇.水污染应急与水生生物毒性监测[J].污染防治技术,2010,23(5):81-83.
    [8]黄正,王家玲.发光细菌的生理特性及其在环境监测中的应用[J].1995,16(3): 87-90.
    [9]叶伟红,刘维屏.大型蚤毒理试验应用与研究进展[J].环境污染治理技术与设备,2005,5(4):4-7
    [10]王晓辉,金静,任洪强水质生物毒性检测方法研究进展[J].河北工业科技,2007,24(1):58-62.
    [11]孙迎雪,张光辉,顾平.医院污水对水环境毒理学风险的研究进展[J].卫生研究,2006,35(2):244-246.
    [12]赵风云,孙根行.工业废水生物毒性的研究进展[J].工业水处理,2010,30(4):22-25.
    [13]刘国光,王莉霞,徐海娟等.水生生物毒性试验研究进展[J].环境与健康杂志,2004,21(6):419-42.
    [14]卢玲,宋福.鱼类急性毒性实验[J].生物学通报,2002,37(7):52-53.
    [15]陈其晨,张克俭,徐关文.重金属对鱼类毒性的综合研究[J].水产学报,1988,12(1):21-33.
    [16]凋杜挺,何可佳,氟虫腈等.7种杀虫剂对鲫鱼的毒性及安全性试验研究[J].农药科学与管理,2006,25(9):18-20.
    [17]沈燕飞,张咏,厉以强.水质生物毒性检测方法的研究进展[J].环境科技,2009,22(2):68-72.
    [18]刘超,姚站馨.发光细菌用于环境检测的研究进展[J].军事医学科学院院刊,2009,33(2):179-182.
    [19]Trott D., Dawson J.J., Killham K.S., et al. Comparative evaluation of a bioluminescent bacterial assay in terrestrial ecotoxicity testing [J]. Environ. Monit.,2007,9(1):44-50.
    [20]Hwang E.T., Lee J.H., Chae Y.J., et al. Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria [J]. Small, 2008,4(6):746-750.
    [21]Ahn J.M., Hwang E.T., Youn C.H. Prediction and classification of the modes of genotoxic actions using bacterial biosensors specific for DNA damages [J]. Biosens.3Bioelectron.,2009,25(4):767-772.
    [22]吴泳标,张国霞,许玫英等.发光细菌在水环境生物毒性检测中应用的研究进展[J].微生物学通报,2010,37(8):1222-1226.
    [23]Nakamura H., Karube I. Current research activity in biosensors [J]. Anal. Bioanal. Chem,2003,377:446-468.
    [24]霍传林,王菊英,韩庚辰等.鱼体内EROD活性对多氯联苯类的指示作用[J].海洋环境科学,2002,21(1):5-8.
    [25]Chequer F.M.D., Angeli J.P.F., Ferraz E.R.A., et al. The azo dyes Disperse Red 1 and Disperse Orange 1 increase the micronuclei frequencies in human lymphocytes and in HepG2 cells [J]. Mutat. Res.,2009,676:83-86.
    [26]Liu G.., Zhou J., Wang J., et al. Acceleration of azo dye decolorization by using quinone reductase activity of azoreductase and quinone redox mediator [J]. Bioresource Technol.,2009,100:2791-2795.
    [27]Villanueva-Rodrigueza M., Hernandez-Ramireza A., Peralta-Hernandez J.M., et al. Enhancing the electrochemical oxidation of acid-yellow 36 azo dye using boron-doped diamond electrodes by addition of ferrous ion [J]. J. Hazard. Mater.,2009,167:1226-1230.
    [28]Bae J.S., Freeman H. S. Aquatic toxicity evaluation of copper-complexed direct dyes to the Daphnia magna [J]. Dyes Pigments,2007,73:126-132.
    [29]Verma Y. Acute toxicity assessment of textile dyes and textile and dye industrial effluents using Daphnia magna bioassay [J]. Toxicol. Ind. Health,2008,24(7): 491-500.
    [30]党亚爱,王国栋,辛宝平等.几种染料抑制斜生栅藻生长的毒性效应[J].西北植物学报,2003,23(2):332-335.
    [31]孙红文,黄国兰,王春节等.偶氮染料对斜生栅藻的毒性作用及结构活性相关性研究[J].环境科学,1998,4:22-25.
    [32]黄永辉,罗艳.活性染料的毒性初探[J].印染,2001,7:16-17.
    [33]童中华,马梅,王子健等.利用淡水发光菌评估电化学法处理模拟印染废水的效果[J].环境化学,1997,16(2):130-134.
    [34]党亚爱,王国栋,辛宝平等.利用发光菌评价17种染料的毒性效应[J].西北农林科技大学学报(自然科学版),2003,31(3):183-186.
    [35]Novotny C., Dias N., Kapanen A., et al. Comparative use of bacterial, algal and protozoan tests to study toxicity of azo-and anthraquinone dyes [J]. Chemosphere,2006,63:1436-1442.
    [36]Al-Sabti K. Chlorotriazine Reactive Azo Red 120 Textile Dye Induces Micronuclei in Fish [J]. Ecotox. Environ. Safe.,2000,47:149-155.
    [37]Rajaguru P., Fairbairn L.J., Ashby J., et al. Genotoxicity studies on the azo dyeDirect Red 2 using the in vivo mouse bone marrow micronucleus test [J]. Mutat. Res.,1999,444,175-180.
    [38]Tsuboy M.S., Angeli J.P.F., Mantovani M.S., et al. Genotoxic, mutagenic and cytotoxic effects of the commercial dye C.I. Disperse Blue 291 in the human hepatic cell line HepG2 [J]. Toxicol. In Vitro,2007,21:1650-1655.
    [39]Chequer F.M.D., Angeli J.P.F., Ferraz E.R.A., et al. The azo dyes Disperse Red 1 and Disperse Orange 1 increase the micronuclei frequencies in human lymphocytes and in HepG2 cells [J]. Mutat. Res.,2009,676:83-86.
    [40]Carter D.C., Hoj X. Structure of serum albumin [J]. In Advances in Protein Chemistry,1994,45:153-203.
    [41]王玲,张崭,梁瑞玲.药物小分子与蛋白质相互作用研究进展[J].河南城建学院学报,2010,19(5):39-42.
    [42]俞天智,杨汝栋.芦丁与血清白蛋白的作用研究[J].光谱学与光谱分析,2003,23(4):763-765.
    [43]潘祖亭,余军平.盐酸多西环素与牛血清白蛋白的相互作用研究[J].武汉大学学报(理学版),2003,49(4):415-418.
    [44]王海人,肖忠柏,宋功武等.荧光素与牛血清白蛋白作用的光谱研究与分析应用[J].分析测试学报,2001,20(4):45-46.
    [45]张猛,杨频.核磁共振研究蛋白二级结构的方法[J].化学通报,2000(12):26-33.
    [46]Moy F.J., Haraki K., Mobilio D., et al. MS/NMR:A structure-based approach for discovering protein ligands and drug design by coupling size exclusion chromatography, mass spectrometry, and nuclear magnetic resonance spectroscopy [J]. Anal. Chem,2001,73(3):571-581.
    [47]孙伟,焦奎,刘晓云.电化学法研究蛋白质和茜素红S的相互作用[J].分析化学,2002,30(3):312-314.
    [48]易平贵,俞庆森,商志才等.牛血清白蛋白与金霉素结合反应的机制研究[J].化学物理学报,2003,16(5):420-424.
    [49]Soltes L., Mach M. Estimation of drug-protein binding parameters on assumingthe validity of thermodynamic equilibrium [J]. J. of Chromatogr. B, 2002,768:113-119.
    [50]Pastukhov A.V, Levchenko L.A, Sadkov A.P. Spectroscopic study on binding of rutin to human serum albumin [J]. J. Mol. Struct.,2007,842:60-66.
    [51]Gong A.Q., Zhu X.S., Hu Y.Y., et al. A fluorescence spectroscopic study of the interaction between epristeride and bovin serum albumine and its analytical application [J]. Talanta,2007,73:668-673.
    [52]Xiao J.B., Chen J.W., Cao H., et al. Study of the interaction between baicalin and bovine serum albumin by multi-spectroscopic method [J]. J. Photoch. Photobio. A,2007,191:222-227.
    [53]李娜,魏永巨.药物分子与血清白蛋白结合反应的荧光法研究进展[J],河北师范大学学报(自然科学版),2003,27:176-18.
    [54]刘永春,胡之德.药物与蛋白相互作用的荧光光谱法研究概述[J].宝鸡文理学院学报,2005,25(1):42-49.
    [55]陈国珍.荧光分析法[M].北京:科学出版社,1990.
    [56]Barik A., Mishra B., Kunwar A., et al. Interaction of curcumin with human serum albumin:Thermodynamic properties, fluorescence energy transfer and denaturation effects [J]. Chem. Phys. Lett.,2007,436:239-243.
    [57]Chen X.D., Dong Y,P., et al. Resonance scattering method for the ultrasensitive determination of peptides using semiconductor nanocrystals [J]. Anal. Chim. Acta.,2007,597(2):300-305..
    [58]Huang C.Z., Lu W., Li Y.F., et al. On the factors affecting the enhanced resonance light scattering signals of the interactions between proteins and multiply negatively charged chromophores using water blue as an example [J]. Anal. Chim. Acta.,2006,556:469-475.
    [59]Chen Y.H., Gao D.J., Tian Y., et al. Resonance light scattering technique for the determination of proteins with polymethacrylic acid (PMAA) [J]. Spectrochim. Acta Part A.,2007,67:1126-1130.
    [60]John C.C., David D.J., Robert R.L. Fluorescence spectroscopy in biochemistr: basic principles with visual demonstrations [J]. Biochenl. Mole. Biology Edu., 2001,29:60-65.
    [61]Zsila F., BikMi Z., Simonyi M. Probing the binding of the flavonoid quercefin to human serum albumin by circular dichroism, electronic absorption spectroscopy and molecular modeling methods [J]. Biochem. Pharmacol.,2003, 65:447-456.
    [62]Krell T., Horsburgh M.J., Cooper A., et al. Localization of the active site of type II dehydroquinases. Identification of a common arginine-containing motif in the two classes of dehydroquinases [J]. J. Biol. Chem.,1996,271:24492-24497.
    [63]Krittanai C., Johnson W.C. Correcting the circular dichroism spectra of peptides for contributions of absorbing side chains [J]. Anal. Biochem.,1997,253: 57-64.
    [64]Ptitsyn O.B. Molten globule and protein folding [J]. Adv. Protein Chem.,1995, 47:83-229.
    [65]Li Y., Timothy M., Logan A., etal. Design of small volume HX and triple-resonance probes for improved limits of detection in protein NMR experiments [J]. J. Magn. Res.,2003,164(1):128-135.
    [66]Smith R.D., Light-Wahl K.J. The observation of non-covalent interactions in solution by electrospray ionization mass spectrometry:promise, pitfalls and prognosis [J]. Biol. Mass Spectrom.,1993,22(9):493-501.
    [67]Moy F. J., Haraki K., Mobilio D., et al. MS/NMR:A structure based approach for discovering protein ligands and drug design by coupling size exclusion chromatography, mass spectrometry, and nuclear magnetic resonance spectroscopy [J].Anal. Chem,2001,73(3):571-581.
    [68]Yue Y.Y., Chen X.G., Qin J., et al. Characterization of interaction between C.I. Acid Green 1 and human serum albumin:Spectroscopic and molecular modeling method [J]. Dyes and Pigments,2009,83:148-154.
    [69]Yue Y.Y, Chen X.G., Qin J., et al. A study of the binding of C.I. Direct Yellow 9 to human serum albumin using optical spectroscopy and molecular modeling [J]. Dyes Pigments,2008,79:176-182.
    [70]Ding F., Li N., Han B.Y., et al. The binding of C.I. Acid Red 2 to human serum albumin:Determination of binding mechanism and binding site using fluorescence spectroscopy [J]. Dyes and Pigments,2009,83:249-257.
    [71]Zhu K.,Tong S.Y.. A study on the reaction of Acidic Chrome Blue with protein [J]. Acta chimica. Sinica.,1996,54:620-624.
    [72]罗宗铭,张煜,崔英德等.蛋白质与酸性染料相互作用的分光光度研究[J].光谱学与光谱分析,2001,21(2):251-253.
    [73]罗宗铭,张煽,崔英德等.酸性品红分光光度法测定蛋白质的研究[J].光谱实验室,1999,16(5):594-59.
    [74]Yi G.., Liu J.F., Shang Z.C., et al. Study on the interaction between methylene blue and bovine serum albumin by fluorescence Spectroscopy [J]. Spectrosc. Spect. Anal.,2001,21 (6):826-828.
    [75]马萍,迟燕华,庄稼等.人血清白蛋白与酸性铬兰K相互作用机理的光谱[J].应用化学,2008,25(9):1032-1036.
    [76]Holt P.A., Chaires J.B., Trent J.O. Non-covalent ligand/DNA interactions:Minor groove binding agents [J]. Mutat. Res.,2007,623:24-40.
    [77]方玉春,邵长伦,李静等.鱼藤中抗肿瘤活性化合物的追踪分离及与DNA的相互作用[J].高等学校化学学报,2009,30(10):1976-1979.
    [78]周琪,赵由才.染料对人体健康和生态环境的危害[J].环境与健康杂志,2005,22(3):229-231.
    [79]章杰.有关环保型染料的几个热点问题[J].上海化工,2000,25(12):4-8.
    [80]钱崇濂.致癌染料---芳香胺的致癌机理[J].染整技术,1996,18(2):30-32.
    [81]钟金汤.偶氮染料及其代谢产物的化学结构与毒性关系的回顾与前瞻[J].环境与职业医学,2004,21(1):58-62.
    [82]Bi W., Hayes R.B., Feng P., et al. Mortality and incidence of bladder cancer in benzidine exposed workers in China[J]. Am. J. Ind. Med.,1992,21:481-489.
    [83]Shinka T., Sawada Y., Morimoto S., et al. Clinical study on urothelial tumors of dye workers in Wakayama City [J]. J. Urol.,1991,46:1504-1507.
    [84]陈建国,陆建华.国内外癌症防制现状[J].肿瘤,2007,27(9):755-759.
    [85]计亮年,张黔玲,刘劲刚.生物医学中DNA的结构、构象、作用机制及其生物功能的研究进展[J].科学(B辑),2001,31(3):193-204.
    [86]张国梅,双少敏,钞建宾等.环糊精超分子化学在生命科学研究中的新进展[J].分析科学学报,2005,21(2):200-204.
    [87]Selvi P.T., Palaniandavar M. Spectral, viscometric and electrochemical studies Oil mixed ligand cobalt(111)complexes of certain diimine ligands bound to calfthymus DNA [J]. Inorg. Chim. Acta,2002,337:420-428.
    [88]Xu Z.D., Pilch S., Srinivasan A.R., et al. Modulation ofnucleic acid structure by liganA binding:induction of a DNA-RNA-DNA hybrid triplex by DAPI intercalation [J]. Bioorgan. Med. Chem.,1997,5:1137-1147.
    [89]Bard A. J. New Challenges in Electrochemistry and Eleclroanalysis [J]. Pure Appl. Chem.,1992,64:185-19.
    [90]周家宏,姜慧君,冯玉英等.中性红与小牛胸腺DNA相互作用机理的电化学和紫外可见光谱研究[J].应用化学,2001,18(12):994-997.
    [91]Ohyama T., Mita H., Yamamoto Y. Binding of 5,10,15,20-tetrakis-(N-methylpyridinium-4-yl)-21H,23H-porphyrin to an AT-Rich Region of a Duplex DNA [J]. Biophysical Chemistry,2005,113(1):53-59.
    [92]杨铭.结构生物学与药物研究[M].北京:科学出版社,2003.
    [93]Guliaev A.B., Leontis N.B. Cationic 5,10,15,20-tetrakis(N-methylpyr-idinium-4-yl)porphyrin fully intercalates at 5V-CG-3V step of duplex DNA solution [J]. Biochemistry,1999,38:15425-15437.
    [94]Rieke R.D., Schulte L.D., Dawson B.T. Synthesis of 4-Alkyl-4-(4-methoxyphenyl)cyclohex-2-en-1-ones and 5-Alkyl-5-phenyl-1,3-yclohe-xadienes from Bis(tricarbon ylchromium)-Coordinated Biphenyls [J]. J. Am. Chem. SOC.,1990,112:8388-8398.
    [95]席小莉,杨曼曼,韩小见等.荧光染料探针与脱氧核糖核酸作用机理研究[J].无机化学学报,2001,17(6):781-786.
    [96]王海燕,栾尼娜,宋玉民.曙红B及变色酸与核酸作用的光谱学性质研究[J].化学研究与应用,2009,21(4):491-495.
    [97]曹瑛,何锡文.吩嗪染料与DNA分子相互作用的紫外-可见光谱研究[J].高等学校化学学报,1998,19(5):714-716.
    [98]俞英,吴霖,谭丽贤.碱性品红荧光法测定脱氧核糖核酸及其机理的研究[J].分析化学,2004,32(5):628-632.
    [99]朱艳艳,苏延伟,漆遥等.金属核酸酶及寡聚酰胺与双链DNA分子对接模式的理论研究[J].高等学校化学学报,2009,30(4):781-785.
    [100]汤兆明,王琳,胡丽华.血型A抗原模拟多肽与抗A抗体的分子对接[J].临床血液学杂志,2010,23(10):577-579.
    [101]Mao W. J., Lu P. C., Shi L., et al. Synthesis, molecular docking and biological evaluation of metronidazole derivatives as potent H elicobacter pylori urease inhibitors [J]. Bioorg. Med. Chem.,2009,17:7531-7536.
    [102]Shi L., Yang Y., Li Z. L., et al. Design of novel nico tinamides as potent and selective monoamine oxidase a inhibitors [J]. Bioorg. Med. Chem.,2010,18: 1659-1664.
    [103]Cheng K., Zheng Q. Z., Jin H., et al. Synthesis, molecular modeling and biolog ical ev aluatio n of PSB as targeted antibiotics [J]. Bioorg. Med. Chem.,2010, 18:2447-2455.
    [104]王靖方,张成城,魏冬青.细胞色素酶2D6的分子对接以及分子动力学研究[J].科技通报,2010,55(1):40-44.
    [105]徐倩,邓丹丹,曹志娟等.荧光法和分子对接研究4种黄酮与血清白蛋白的相互作用[J].分析化学,2010,38(4):483-487.
    [106]伟尧,朱琛,张卓等.硝基咪唑衍生物作为尿素酶抑制剂的分子对接研究[J].扬州大学学报,2010,31(2):6-9.
    [107]钟广蓉,邓乾民,李星月等.植物源蛋白酶体抑制剂的分子对接研究[J].科学技术与工程,2009,9(11):3057-3059.
    [108]Mu Y., Korneel R., Rene R., et al. Decolorization of azo dyes in bioelectrochemical systems [J]. Environ. Sci. Technol.,2009,43:5137-5143.
    [109]Filiz A., Ebru C. C., Fikret K., A statistical experiment design approach for advanced oxidation of Direct Red azo-dye by photo-Fenton treatment [J]. J. Hazard Mater.,2009,162:230-236.
    [110]孙占怀.谈禁用偶氮染料[J].化学教育,2005,3:1-10.
    [111]Wang C.X., Ayfer Y., Doris L., et al. Toxicity evaluation of reactive dyestuffs, auxiliaries and selected effluents in textile finishing industry to luminescent bacteria Vibrio fischeri [J]. Chemosphere,2002,46:339-344.
    [112]Adela F., Carmen T., Fernando C., et al. Assessment of toxicity of river water and effluents by the bioluminescence assay using photobacterium phosphoreum [J]. Wat. Res.,1995,29:1281-1286.
    [113]Georg G. Sensitivity and significance of luminescent bacteria in chronic toxicity testing based on growth and bioluminescence [J]. Ecotox. Environ. Safe.,2000, 45:87-91.
    [114]Klaus L., Kaiser E. Correlations of vibrio fischeri bacteriatest data with bioassay data for other organisms [J]. Environ. Health Persp.,1998,106(2): 583-591.
    [115]陈荣李永增冯尚等.人体组织拉曼光谱研究进展[J].源激光与光电子学进展,2008,45(1):16-23.
    [116]Shahid P., Chandra V., Suparna M. A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals [J]. Environ. Int.,2006,32:265-268.
    [117]Yue Z.C., Zhuang F.F., Rajar K., et al. Stephen B.C., Liu Y.H. Cell kinase activity assay based on surface enhanced Raman spectroscopy [J]. Spectrochimica Acta Part A,2009,73:226-230.
    [118]Christoph K., Thomas K., Axel S., et al. Mapping of single cells by near infrared Raman microspectroscopy [J]. Vib. Spectrosc.,2003,32:75-83.
    [119]Christoph K., Thomas K., Richard H.W.F., et al. Studies on stress-induced changes at the subcellular level by raman microspectroscopic mapping [J]. Anal. Chem.,2006,78:4424-4429.
    [120]Kurt W.S., Susan C., James P.F., et al. Raman spectroscopy detects biochemical changes due to proliferation in mammalian cell cultures [J]. Biophys. J.,2005,88: 4274-4288.
    [121]Maria F.E., Jeanne M. Van B., et al. Raman spectroscopy and chemical imaging for quantification of filtered waterborne bacteria [J]. J. Microbiol. Meth.,2006, 66:63-72.
    [122]Grimbergen M.C.M., Swol C.F.P V., Moorselaar R.J.A. V., et al. Raman spectroscopy of bladder tissue in the presence of 5-aminolevulinic acid [J]. J. Photoch. and Photobio. B.,2009,95:170-176.
    [123]Hale W., Rachel K., Cory S., et al. Raman spectroscopy detects and distinguishes neuroblastoma and related tissues in fresh and (banked) frozen specimens [J]. J. Pediatr. Surg.,2009,44:386-391.
    [124]Huang Z.W., Williams A.M., Lui H., et al. Near infrared Raman spectroscopy for optical diagnosis of lung cancer [J]. Int. J. Cancer.,2003,107:1047-1052.
    [125]Min Y.K., Yamamoto T., Kohda E., et al.1064nm near- infrared multichannel Raman spectroscopy of fresh human lung tissues [J]. J. Raman Spectrosc.,2005, 36:73-76.
    [126]朱淼,何敏,舒雨雁.拉曼光谱技术在癌症诊断中的应用[J].疾病控制杂志,2006,10(2):186-189.
    [127]Lin S.Y., Li M.J., Cheng W.T. FT-IR and Raman vibrational micro-spectroscopies used for spectral biodiagnosis of human tissues [J]. Spectroscopy,2007,21(1):1-30.
    [128]闫循领,王秋国,董瑞新等.结肠癌病人几种细胞的Raman光谱[J].光谱学与光谱分析,2003,23(6):1129-1131.
    [129]闫循领,董瑞新,王秋国.人血单个红细胞的共振拉曼光谱研究[J].光谱学与光谱分析,2004,24(5):576-578.
    [130]Ermakov I.V., Ermakova M.R., Gellermann W., et al. Noninvasive selective detection of lycopene and bcarotene in human skin using Raman spectroscopy [J]. J. Biomed. Opt.,2004,9(2):332-338.
    [131]Sebastian W.H., Tyler W., Thomas H. Chemical analysis in vivo and in vitro by Raman spectroscopy from single cells to humans [J]. Curr. Opin. Biotech,2009,20:63-73.
    [132]李秀珍,李斌莲,范俊欣等.油田化学剂和钻井液生物毒性检测新方法及毒性分级标准研究[J].钻井液与完井液,2004,21(6):41-43.
    [133]许以明.拉曼光谱及其在结构生物学中的应用[M].北京:化学工业出版社,2005.
    [134]Christoph K., Daniela C., Gloria P., et al. Raman and FTIR imaging of lung tissue:bronchopulmonary sequestration [J]. J. Raman Spectrosc.,2009,40: 595-603.
    [135]Chenxu Y.P., Erin G.P., Kristin E.P., et al. Characterization of human breast epithelial cells by confocal Raman microspectroscopy [J]. Cancer Detect. Prev., 2006,30:515-522.
    [136]Vladimir K.J., Vladimir B. Structure of the ring in drop coating deposited proteins and its implication for Raman spectroscopy of biomolecules. Vib. Spectrosc.,2006,42:184-187.
    [137]Xu Y.M., Yang H.Y., Zhang Z.Y. Raman spectroscopic study of space structure of membrane proteins and membrane lipids in photodamaged human erythrocyte sensitized by hypocrellin B [J]. Sci. China C.,1998,41(6):608-616.
    [138]Parvez, S., Venkataraman, C., Mukherji, S. A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals [J]. Ion. Int.,2006,32:265-268.
    [139]Nemtseva, E.V., Kudryasheva, N.S., Nemtseva, E.V., et al. Themechanismof electronic excitation in the bacterial bioluminescent reaction [J]. Russ. Chem. Rev.,2007,76:91-100.
    [140]Yamasaki, S., Nakashima, S., Yamada, S., et al. Steady-state bioluminescence of bacterial luciferase using electrochemical regeneration of flavin substrate and its application to inhibitory analysis, Bioelectrochemistry [J].2009,75:67-70.
    [141]邹承鲁.酶活性部位的柔性[M].济南:山东科学技术出版社,2004.
    [142]Fisher, A.J., Raushel, F.M., Baldwin, T.O., et al. Three-dimensional structure of bacterial luciferase from Vibrio haweyi at 2.4 a resolution [J]. Biochemistry, 1995,34:6581-6586.
    [143]Vetrova, E.V., Kudryasheva, N.S., Cheng, K.H. Effect of quinone on the fluorescence decay dynamics of endogenous flavin bound to bacterial luciferase [J]. Biophys. Chem.,2009,141:59-65.
    [144]Li, Z., Meighen, E.A. Tryptophan 250 on the a subunit plays an important role in flavin and aldehyde binding to bacterial luciferase. Effects of W-Y mutations on catalytic function, Biochemistry [J].1995,34:15084-15090.
    [145]Li, Z., Valkova, N., Meighen, E. Spectral properties of Trp182, Trp194, and Trp250 on the a subunit of bacterial luciferase [J]. Biochem. Bioph. Res. Co., 1999,263:820-824.
    [146]Chen, L.H., Baldwin, T.O. Random and Site-Directed Mutagenesis of Bacterial Luciferase:Investigation of the Aldehyde Binding Site [J]. Biochemistry,1989, 28:2684-2689.
    [147]Lin, L.Y., Szittner, R., Friedman, R., et al. Changes in the kinetics and emission spectrum on mutation of the chromophore-binding platform in Vibrio harveyi luciferase [J]. Biochemistry,2004,43:3183-3194.
    [148]Li, C.H., Tu, S.C. Active site hydrophobicity is critical to the bioluminescence activity of Vibrio harveyi luciferase [J]. Biochemistry,2005,44:12970-12977.
    [149]Madvar, A.R., Hosseinkhani, S., Khajeh, K., et al. Implication of a critical residue (Glu175) in structure and function of bacterial luciferase [J]. FEBS Lett., 2005,579:4701-4706.
    [150]Hosseinkhani, S., Szittner, R., Meighen, E.A. Random mutagenesis of bacterial luciferase:critical role of Glu175 in the control of luminescence decay [J]. Biochem. J.,2005,385:575-580.
    [151]Shirazy, N.H., Ranjbar, B., Hosseinkhani, S., et al. Critical role of Glul75 on stability and folding of bacterial luciferase stopped-flow fluorescence study [J]. J. Biochem. Mol. Biol.,2007,40:453-458.
    [152]Lin, L.Y., Sulea, T., Szittner, R., et al. Modeling of the bacterial luciferase-flavin mononucleotide complex combining flexible docking with structure-activity data [J]. Protein Sci.,2001,10:563-1571.
    [153]Inlow, J.K., Baldwin, T.O. Mutational analysis of the subunit interface of Vibrio harveyi bacterial luciferase [J]. Biochemistry,2002,41:3906-3915.
    [154]Tanner, J.J., Miller, M.D., Wilson, K.S., et al. Structure of bacterial luciferase P2 homodimer:implications for flavin binding [J]. Biochemistry,1997,36: 665-672.
    [155]Campbell, Z.T., Weichsel, A., Montfort, W.R., et al. Crystal structure of the bacterial luciferase/flavin complex provides insight into the function of the β subunit [J]. Biochemistry,2009,48:6085-6094.
    [156]Xin, X., Xi, L., and Tu, S.C. Probing the vibrio harveyi luciferase β subunit functionality and the intersubunit domain by site-directed mutagenesis [J]. Biochemistry,1994,33:12194-12201.
    [157]Waddle, J., Baldwin, T.O. Individual a and β subunits of bacterial luciferase exhibit bioluminescence activity [J]. Biochem. Bioph. Res. C.,1991,178: 1188-1193.
    [158]Sanner, M.F. A programming language for software integration and development [J]. J. Mol. Graph. Mod.,1999,17:57-61.
    [159]Hosseinkhani, S., Szittner, R., Meighen E. A. Random mutagenesis of bacterial luciferase:Critical role of Glu175 in the control of luminescence decay [J]. Biochem. J.,2005,385:575-580.
    [160]朱文杰.一种新型的环境污染检测方法[J].化学世界,2009,4:247-256.
    [161]Ding F., Huang J.L., Lin J.; et al. A study of the binding of C.I. Mordant Red 3 with bovine serum albumin using fluorescence spectroscopy [J]. Dyes Pigments, 2009,82:1-6.
    [162]Ma H.M., Chen X., Zhang N., et al. Spectroscopic studies on the interaction of a water-soluble cationic porphyrin with proteins [J]. Spectrochimica. Acta Part A,2009,72:465-469.
    [163]张丽娜,陈欣,夏阳等.荧光光谱法研究四苯基(?)锌金属卟啉与蛋白质的相互作用机理[J].光谱学与光谱分析,2009,29(3):773-776.
    [164]姜红,安普丽,蒋哗.药物与蛋白质相互作用研究方法的进展[J].第二军医大学学报,2007,28(6):662-666.
    [165]Farzaneh R., Hamidch N.J., Abdolhossein N. Mohammad-Reza R.Fluorescence quenching study of quercetin interaction with bovine milk xanthine oxidase [J]. Spectrochimica. Acta Part A,2009,72:190-193.
    [166]Zhang G.C., Wang Y.Q., Zhang H.M., et al. Human serum albumin interaction with paraquat studied using spectroscopic methods [J]. Pestic. Biochem. Phys., 2007,87:23-29.
    [167]Chen X.D., Dong Y.P., Fan L., et al. Fluorescence for the ultrasensitive detection of peptides with functionalized nano-ZnS [J]. Anal. Chim. Acta.,2007, 582:281-287.
    [168]Pastukhov A.V, Levchenko L.A, Sadkov A. P. Spectroscopic study on binding of rutin to human serum albumin [J]. J. Mol. Struct.,2007,842:60-66.
    [169]Gong A.Q., Zhu X.S., Hu Y.Y, et al. A fluorescence spectroscopic study of the interaction between epristeride and bovin serum albumine and its analytical application [J]. Talanta,2007,73:668-673.
    [170]Xiao J.B., Chen J.W., Cao H., et al. Study of the interaction between baicalin and bovine serum albumin by multi-spectroscopic method [J]. J. Photoch. Photobio. A.,2007,191:222-227.
    [171]Chen Y.H., Gao D.J, Tian Y., et al. Resonance light scattering technique for the determination of proteins with polymethacrylic acid (PMAA) [J]. Spectrochim. Acta Part A.,2007,67:1126-1130
    [172]Ghosh S. Conformational study of papain in the presence of sodium dodecyl sulfate in aqueous medium [J]. Colloid. Surface. B.,2005,41:209-216.
    [173]Filenko A., Demchenko M., Mustafaeva Z., et al. Fluorescence study of Cu2+-induced interaction between albumin and anionic polyelectrolytes [J]. Biomacromolecules,2001,2:270-277.
    [174]Yue Y., Chen X., Qin J., et al. A study of the binding of C.I. Direct Yellow 9 to human serum albumin using optical spectroscopy and molecular modeling [J]. Dyes Pigments,2008,79:176-182.
    [175]An W.T., Jiao Y., Dong C., et al. Shaomin Shuang. Spectroscopic and molecular modeling of the binding of meso-tetrakis(4-hydroxyphenyl)porphyrin to human serum albumin [J]. Dyes Pigments,2009,81:1-9.
    [176]Iribarne F., Gonza'lez M., Cerecetto H., et al. Interaction energies of nitrofurans with trypanothione reductase and glutathione reductase studied by molecular docking [J]. J. Mol. Struct.,2008,818:7-22.
    [177]Liu J.Q., Tian J.N., He W.Y., et al. Spectrofluorimetric study of the binding of daphnetin to bovine serum albumin [J]. J. Pharm. Biomed. Anal.,2004,35: 671-677.
    [178]Ranjan K.N., Nilmoni S., Rintu B. Probing the interaction of ellagic acid with human serum albumin:a fluorescence spectroscopic study [J]. J. Photochem. Photobiol. A Chem.,2007,192:152-158.
    [179]Lakowicz J.R., Weber G. Quenching of protein fluorescence by oxygen. Detection of structural fluctuations in proteins on the nanosecond time scale [J]. Biochemistry,1973,12:4171-4179.
    [180]Lakowicz J.R., Weber G. Quenching of fluorescence by oxygen. Probe for structural fluctuations in macromolecules [J]. Biochemistry,1973,12: 4161-4170.
    [181]Qi Z.D., Zhou B., Xiao Q., et al. Interaction of rofecoxib with human serum albumin:determination of binding constants and the binding site by spectroscopic methods [J]. J. Photochem. Photobiol. A Chem.,2008,193: 81-88.
    [182]Ware W.R. Oxygen quenching of fluorescence in solution:an experimental study of the diffusion process [J]. J. Phys. Chem.,1962,66:455-458.
    [183]Basir A., Suphiya P., Rizwan H.K. Effect of albumin conformation on the bindingof ciprofloxacin to human serum albumin:a novel approach directly assigning binding site [J]. Biomacromolecules,2006,7:1350-1356.
    [184]Klotz I.M. Physicochemical aspects of drug-protein interactions:a general perspective. Ann. N. Y. Acad. Sci.,1973,226:18-35.
    [185]Philip D.R., Subramanian S. Thermodynamics of protein association reactions: forces contributing to stability [J]. Biochemistry,1981,20:3096-3102.
    [186]Rahman M.H., Maruyama T., Okada T., et al. Study of interaction of carprofen and its enantiomers with human serum albumin-I mechanism of binding studied by dialysis and spectroscopic methods [J]. Biochem. Pharm.,1993,46: 1721-1731.
    [187]Forster T., Sinanoglu O. Modern quantum chemistry, vol. Ⅲ. Academic Press, New York,1966, p:93-137.
    [188]Shaikh S.M.T., Seetharamappa J., Kandagal P.B., et al. Binding of bioactive component isothipendyl hydrochloride with bovine serum albumin [J]. J. Mol. Struct.,2006,786:46-52
    [189]Deleage, G., Geourjon, C., An interactive graphic program for calculating the secondary structure content of proteins from circular dichroism spectrum [J]. Comput. Appl Biosci.,1993,2:197-199.
    [190]Greenfield N.J. Determination of the folding of proteins as a function of denaturants, osmolytes or ligands using circular dichroism [J]. Nat. Protoc., 2006,1:2733-2741.
    [191]Kelly S.M., Jess T.J., Price N.C. How to study proteins by circular dichroism [J]. Biochimica. Biophysica. Acta,2005,1751:119-139.
    [192]Michael D., Daniel C.C., Florian R. The three recombinant domains of human serum albumin [J]. J. Boil. Chem.,1999,274:29303-29310.
    [193]Khataee A.R., Zarei M., Moradkhannejhad L. Application of response surface methodology for optimization of azo dye removal by oxalate catalyzed photoelectro-Fenton process using carbon nanotube-PTFE cathode [J]. Desalination,2010,258:112-119.
    [194]Yigitoglu M., Temocin Z. Removal of Benzidine-based Azo Dye from Aqueous Solution Using Amide and Amine-functionalized Poly(ethylene terephthalate) Fibers [J]. Fiber. Polym.,2010,11:996-1002.
    [195]Bradu C, Frunza L., Mihalche N., et al. Removal of Reactive Black 5 azo dye from aqueous solutions by catalytic oxidation using CuO/Al2O3 and NiO/Al2O3 [J]. Appl.Catal B-Environ.,2010,96:548-556.
    [196]Moussavi G.., Mahmoudi M. Degradation and biodegradability improvement of the reactive red 198 azo dye using catalytic ozonation with MgO nanocrystals [J]. Chem. Eng. J.,2009,152:1-7.
    [197]Yanga S., Wang P., Yang X., et al. Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: Persulfate, peroxymonosulfate and hydrogen peroxide [J]. J. Hazard. Mater., 2010,179:552-558.
    [198]Wang Q., Gao F., Yuan X., et al. Electrochemical studies on the binding of a carcinogenic anthraquinone dye, Purpurin (C.I.58 205) with DNA [J]. Dyes Pigments,2010,84:213-217.
    [199]Chequera F.M.D., Angeli J.P.F., Ferraz E.R.A., et al. The azo dyes Disperse Red 1 and Disperse Orange 1 increase the micronuclei frequencies in human lymphocytes and in HepG2 cells [J]. Mutat. Res.2009,676:83-86.
    [200]Sharma S., Sharma S., Singh P.K., et al. Exploring fish bioassay of textile dye wastewaters and their selected constituents in terms of mortality and erythrocyte disorders [J]. Bull. Environ. Contam. Toxicol.,2009,83:29-34.
    [201]Parshetti G.K., Telke A.A., Kalyani D.C., et al. Decolorization and detoxification of sulfonated azo dye methyl orange by Kocuria rosea MTCC 1532 [J]. J. Hazard. Mater.,2010,176:503-509.
    [202]Arruda S.M., Souza G.U., Bonilla K.A.S., et al. Removal of COD and color from hydrolyzed textile azo dye by combined ozonation and biological treatment [J]. J. Hazard. Mater.,2010,179:35-42.
    [203]Modi H.A., Rajput G., Ambasana C. Decolorization of water soluble azo dyes by bacterial cultures, isolated from dye house effluent [J]. Bioresource Technol., 2010,101:6580-6583.
    [204]Murata M., Nishimura T., Chen F., et al. Oxidative DNA damage induced by hair dye components ortho-phenylenediamines and the enhancement by superoxide dismutase [J]. Mutat. Res.,2006,607:184-19.
    [205]Riu J., Schonsee I., Barcelo D. Determination of sulphonated azo dyes in water and wastewater [J]. Trends Anal. Chem.,1997,16:405-419.
    [206]Stiborova M., Martinek V., Rydlova H., et al. Sudan I is a potential carcinogen for humans:evidence for its metabolic activation and detoxication by human recombinant Cytochrome P450 1A1 and liver microsomes [J]. Cancer Res., 2002,62:5678-5684.
    [207]Stiborova M., Martinek V., Rydlova H., et al. Expression of cytochrome P450 1A1 and its contribution to oxidation of a potential human carcinogen 1-phenylazo-2-naphthol (Sudan Ⅰ) in human livers [J]. Cancer Lett.,2005,220: 145-154.
    [208]Stiborova M., Martinek V., Schmeiser H., et al. Modulation of CYP1A1-mediated oxidation of carcinogenic azo dye Sudan I and its binding to DNA by cytochrome b5 [J]. Neuro. Endocrinol. Lett.,2006,27:35-39.
    [209]An Y, Jiang L., Cao J., et al. Sudan I induces 4 genotoxic effects and oxidative DNA damage in HepG2 cells [J]. Mutat. Res.,2007,627:164-170.
    [210]Dawkar V.V., Jadhav U.U., Jadhav M.U., et al. Decolorization and detoxification of sulphonated azo dye Red HE7B by Bacillus sp. VUS [J]. World J. Microbiol. Biotechnol.,2010,26:909-916.
    [211]Wahyuni M.E.T., Tjahjono D.H., Yoshioka N.I., et al. Spectroscopic studies on the thermodynamic and thermal denaturation of the ct-DNA binding of methylene blue [J]. Spectrochimica Acta Part A,2010,77:528-534.
    [212]Hannon M.J. Supramolecular DNA recognition [J]. Chem. Soc. ReV.,2007,36: 280-295.
    [213]Tse W.C., Boger D.L. Sequence-Selective DNA Recognition:Natural products and Nature's lessons [J]. Chem. Biol.,2004,11:1607-1617.
    [214]Tse W.C., Boger D.L. Sequence-selective DNA recognition:natural products and nature's lessons [J]. Chem. Biol.,2004,11:1607-1617.
    [215]Reha D., Kabelac M, Ryjacek F., et al. Intercalators.1. Nature of stacking interactions between intercalators (ethidium, daunomycin, ellipticine, and 4 ,6-diaminide-2-phenylindole) and DNA base pairs. Ab initio quantum chemical, density functional theory, and empirical potential study [J]. J. Am. Chem. Soc.,2002,124:3366-3376.
    [216]Nelson S.M., Ferguson L.R., Denny W.A. DNA and the chromosome-varied targets for chemotherapy [J]. Cell Chromosome,2004,3:2.
    [217]Holt P.A., Chaires J.B., Trent J.O. Molecular Docking of Intercalators and Groove-Binders to Nucleic Acids Using Autodock and Surflex [J]. J. Chem. Inf. Model.,2008,48:1602-1615.
    [218]Holt P.A., Chaires J.B., Trent J.O. Non-covalent ligand/DNA interactions: Minor groove binding agents [J]. Mutat. Res.2007,623:24-40.
    [219]Sobhani A.M., Amini S.R., Tyndall J.D.A., et al. A theory of mode of action of azolylalkylquinolines as DNA binding agents using automated flexible ligand docking [J]. J. Mol. Graph. Model.,2006,25:459-469.
    [220]Bischoff G.., Hoffmann S. DNA-binding of drugs used in medicinal therapies [J]. Curr. Med. Chem.,2002,9:312-348.
    [221]Han X., Gao X. Sequence specific recognition of ligand-DNA complexes studied by NMR [J]. Curr. Med. Chem.,2001,8:551-581.
    [222]Neidle S., Nunn C.M. Crystal structures of nucleic acids and their drug complexes [J]. Nature Prod. Rep.,1998,15:1-15.
    [223]Rohs R., Bloch I., Sklenar H., et al. Molecular flexibility in ab initio drug docking to DNA:binding-site and binding-mode transitions in all-atom Monte Carlo simulations [J]. Nucleic Acids Res.,2005,33:7048-7057.
    [224]Kapetanovic I.M. Computer-aided drug discovery and development (CADDD): In silico-chemico-biological approach [J]. Chem-Biol. Interact.,2008,171: 165-176.
    [225]Kitchen D.B., Decornez H., Furr J.R., et al. Docking and scoring in virtual screening for drug discovery:Methods and applications [J]. Nat. Re. Drug Disco ery,2004,3:935-949.
    [226]Moitessier N., Englebienne P., Lee D., et al. Towards the development of universal, fast and highly accurate docking/scoring methods:a long way to go [J]. Br. J. Pharmacol.,2008,153:S7-S26.
    [227]Loza-Mejia M.A., Castillo R., Lira-Rocha A. Molecular modeling of tricyclic compounds with anilino substituents and their intercalation complexes with DNA sequences [J]. J. Mol. Graph. Model.,2009,27:900-907.
    [228]Wang J.F, Wei D.Q, Zheng S.Y, et al.3D structure modeling of cytochrome P450 2C19 and its implication for personalized drug design [J]. Biochem Biophys Res Commun.,2007,355:513-519.
    [229]Wang J.F, Wei D.Q., Wang Y.H., et al. Insight from modeling the 3D structure of NAD(P)H-dependent D-xylose reductase of Pichia stipitis and its binding interactions with NAD and NADP [J]. Biochem Biophys Res Commun,2007, 359:323-329
    [230]Wang J.F, Wei D.Q., Du H.L., et al. Molecular modeling studies on NADP-dependent of candida tropicalis strain xylose reductase [J]. Open Bioinformatics J.,2008,2:89-96.
    [231]Ricci C.G.., Netz P.A. Docking studies on DNA-ligand interactions:building and application of a protocol to identify the binding mode [J]. J. Chem. Inf. Model.,2009,49:1925-1935.
    [232]Pandya P., Islam M.M., Kumar G.S., et al. DNA minor groove binding of small molecules:Experimental and computational evidence [J]. J. Chem. Sci.,2010, 122:247-257.
    [233]Hannon M. J. Supramolecular DNA recognition [J]. Chem. Soc. Rev.,2007,36: 280-295.
    [234]Canals A., Purciolas M., Aymami J., et al. The anticancer agent ellipticine unwinds DNA by intercalative binding in an orientation parallel to base pairs [J]. Acta Crystallogr., Sect D:Biol. Crystallogr.,2005,61:1009-1012.
    [235]Moitessier N., Englebienne P., Lee D., et al. Towards the development of universal, fast and highly accurate docking/scoring methods:a long way to go [J]. Br. J. Pharmacol.,2008,153:S7-S26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700