用户名: 密码: 验证码:
轻金属储氢材料的结构和电子性质的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对清洁能源的大量需求引起了对新型储能材料的注意,而固态储氢已被认为是最有效的方法之一。为了提高这些材料的性能,就必须理解它们的基础性质,尤其是晶体结构、电子结构和弹性性质等。本课题应用从头计算方法,计算研究了Li-N-H, Li-Mg-N-H, y-AlH3等轻金属储氢体系。
     (1)应用从头计算方法研究了储氢材料Li2NH和LiNH2的结构和电子性质。通过Mulliken分布和晶体轨道分布分析得出Li和N之间的具有较强的离子性,N和H之间有较强的共价性,LiNH2中N-H之间的共价性较Li2NH中的N-H之间的共价性弱。态密度分析Li2NH和LiNH2的价带都是主要由H的s轨道和N的sp轨道贡献。在Li2NH价带部分有一个小的带隙存在,而在LiNH2价带部分有两个小的带隙存在。
     (2)应用从头计算方法研究了储氢材料a-Li2Mg(NH)2和(3-Li2Mg(NH)2两种构型的结构性质和电子性质。计算优化得到的晶胞参数和N-H键长符合实验得到的数据。通过Murnaghan状态方程得到了体积模量和零压力下的能量,计算结果表明a-Li2Mg(NH)2为基态构型。通过Mulliken分布分析说明α构型的N-Li/Mg的离子特性和N-H间的交互作用都弱于p构型。态密度分析结果表明,价带轨道主要由N原子的s轨道和p轨道占据,并与H原子的s轨道杂化。
     (3)应用密度泛函理论方法研究γ-AlH3的晶体结构,电子性质和弹性性质。计算优化得到原子坐标,键长,键角与实验测定值相符。通过Mulliken分布和晶体轨道分布分析Al和H之间有强的离子性和弱的共价性。这些电荷性质在电荷差分密度图中得到了进一步的证明。态密度分析y-AlH3的价带主要由H的s轨道和Al的sp轨道贡献。在价带的-7.5--7.0eV之间还有一个小的带隙。本文还研究了γ-AlH3晶体的弹性常数和体积模量。弹性常数C11,C22和C33的值分别为102.3514,93.4176和135.3996GPa,体积模量为49.2746GPa。
The strong demand for new clean energy has attracted the notice in materials for energy storage. Hydrogen storage in solids has been recognized as one of the most practical approaches for so long. It is indispensable to understand the fundamental properties of hydrogen storage materials, especially the electronic structure and elastic properties in order to improve their performance. In the present study, we have presented the results of Li-N-H, Li-Mg-N-H and y-AlH3 by using ab initio calculations.
     (1) The structural and electronic properties of Li2NH and LiNH2 have been investigated by ab initio calculations. The optimized coordinates of atom and the bond lengths and angles are in good agreement with the experimental data. By analyzing the overlap population and Mulliken population, we find that the interaction between N and H atom is strongly covalent characters, and the N-H interaction of LiNH2 is weaker than that of Li2NH. The valence bands in the density of stares are dominated by the presence of N sp and H s states. One and two band gaps were observed in the valence bands of Li2NH and LiNH2, respectively.
     (2) The structural and electronic properties of Li2Mg(NH)2 for hydrogen storage have been studied by ab initio calculations. The optimal unit cell parameters and the distance of N-H are determined, which are in good agreement with the experimental data. The bulk modules and the energies of zero pressure are obtained by using Murnaghan equation of states. The results show that the a-Li2Mg(NH)2 is a ground state configuration. The overlap population analysis shows that the N-Li/Mg ionic characteristics and N-H interaction of a phase are weaker than those ofβphase. The valence band is dominated by the presence of N s and p states, hybridized with the H s state.
     (3) The structural, elastic and electronic properties of y-AlH3 have been investigated by density functional theory. The optimized lattice constants, the coordinates of atom and the bond lengths and angles are in good agreement with the experimental data. By analyzing the overlap population and Mulliken population, we find that the interaction between Al and H atom is strongly ionic with weak covalent characters. The valence band in the DOS is dominated by the presence of H s and Al sp states. A small band gap is separated the valence band from-7.5 to-7.0 eV. The elastic constants and bulk modulus are calculated. The elastic constants C11, C22, and C33 are 102.3514,93.4176 and 135.3996 GPa, respectively. The bulk modulus of y-AlH3 is 49.2746 GPa.
引文
[1]仇逸,杨金志,张建松,安蓓,许祖华.代表委员为低碳经济出谋划策[DB/OL].新华网.2010.03.07
    [2]胡子龙.贮氢材料[M].北京:化学工业出版社,2002.1-2
    [3]孙大林,陈国荣,江建军,雷永泉,王启东.新型贮氢材料研究的最新动态[J].材料导报2004,18(5):72-75
    [4]严义刚,陈云贵,阎康平,郑群.贮氢技术在燃料电池汽车上的应用及展望[J].节能2004,(4):3-5
    [5]张春香,石广新,关绍康,时爱菊,陈晶阳.储氢材料研究进展[J].汽车工艺与材料2005,(5)
    [6]许炜,陶占良,陈军.储氢研究进展[J].化学进展2006,18(2):200-210
    [7]陈异,蒋利军.Ti-Mn基Laves相贮氢合金的研究[J].稀有金属快报2005,24(5):28-32
    [8]尚福亮,杨海涛,韩海涛.金属储氢材料研究概况[J].稀有金属快报2006,25(2):11-16
    [9]刘淑生,孙立贤,徐芬.金属-氮-氢体系储氢材料[J].化学进展2008,20(2/3):280-287
    [10]Qi-Feng Tian, Yao Zhang, Li-Xian Sun, Fen Xu, Zhi-Cheng Tan, Hua-Tang Yuan, Tao Zhang. Effects of Pd substitution on the electrochemical properties of Mgo.9-xTio.1PdxNi (x=0.04-0.1) hydrogen storage alloys [J]. Journal of Power Sources 2006,158(2):1463-1471
    [11]J. Chen, S. L. Li, Z. L. Tao. Novel hydrogen storage properties of MoS2 nanotubes[J]. Journal of Alloys and Compounds 2003,356-357:413-417
    [12]杨勇,沈泓滢,邢航,潘毅,白俊峰.微孔配位聚合物作为新型储氢材料的研究[J].化学进展2006,18(5):648-656
    [13]詹亮,李开喜,朱星明,宋燕,吕春祥,凌立成.超级活性炭储氢性能研究[J].材料科学与工程2002,20(1):31-34,57Hayakawa Hiroshi, Akiba Etsuo, Gotoh Midori, Kohno Tatsuoki. Crystal structures of
    [14]La-Mg-Nix (x= 3-4) system hydrogen storage alloys [J]. Materials Transactions 2005,46(6):9
    [15]吴全兴.镁系合金的贮氢性能[J].稀有金属快报2002,(11):18-19
    [16]墨伟,孙洪亮,张海昌,杨化滨,周作祥.纳米镁储氢材料吸放氢动力学性能的研究进展[J].电化学2006,12(1)
    [17]A. Zutel, P. Wenger, S. Rentsch, P. Sudan, Ph. Mauron, Ch. Emmenegger. LiBH4 a new hydrogen storage material[J]. Journal of Power Sources 2003,118(1-2):1-7
    [18]Ping Chen, Zhitao Xiong, Jizhong Luo, Jianyi Lin, Kuang Lee Tan. Interaction of hydrogen with metal nitrides and imides[J]. Nature 2002,420(6913):302-304
    [19]Takayuki Ichikawa, Shigehito Isobe, Nobuko Hanada. Lithium nitride for reversible hydrogen storage[J]. Journal of Alloys and Compounds 2004,365(1/2):271-276
    [20]S. Isobe, T. Ichikawa, N. Hanada, H. Y. Leng, M. Fichtner, O. Fuhr, H. Fujii. Effect of Ti catalyst with different chemical form on Li-N-H hydrogen storage properties[J]. Journal of Alloys and Compounds 2005,404-406:439-442
    [21]Y. Nakamori, G. Kitahara, S. Orimo. Synthesis and dehydriding studies of Mg-N-H systems[J]. Journal of Power Sources 2004,138(1-2):309-312
    [22]Yong Chen, Cheng-Zhang Wu, Ping Wang, Hui-Ming Cheng. Structure and hydrogen storage property of ball-milled LiNH2/MgH2 mixture[J]. International Journal of Hydrogen Energy 2006,31(9):1236-1240
    [23]M. Aoki, T. Noritake, G. Kitahara, Y. Nakamori, S. Towata, S. Orimo. Dehydriding reaction of Mg(NH2)2-LiH system under hydrogen pressure[J]. Journal of Alloys and Compounds 2007,428(1-2):307-311
    [24]Zhitao Xiong, Guotao Wu, Jianjiang Hu, Ping Chen. Ternary Imides for Hydrogen Storage[J]. Advanced Materials 2004,16(17):1522-1525
    [25]Kazuhiko Tokoyoda, Satoshi Hino, Takayuki Ichikawa. Hydrogen desorption/absorption properties of Li-Ca-N-H system[J]. Journal of Alloys and Compounds 2007,439(1/2):337-341
    [26]G T. Wu, Z. T. Xiong, T. Liu, Y. F. Liu, J. J. Hu, P. Chen, Y. P. Feng, ATS Wee.Synthesis and characterization of a new ternary imide-Li2Ca(NH)2[J]. Inorganic Chemistry 2007,46(26):517-521
    [27]Hui Wu. Structure of Ternary Imide Li2Ca(NH)2 and Hydrogen Storage Mechanisms in Amide-Hydride System[J]. Journal of the American Chemical Society 2008,130(20):6515-6522
    [28]Ping Chen, Zhitao Xiong, Guotao Wu, Yongfeng Liu, Jianjiang Hu, Weifang Luo. Metal-N-H systems for the hydrogen storage[J]. Scripta Materialia 2007,56(10):817-822
    [29]周素芹.金属储氢材料理论研究综述[J].淮阴工学院学报2009,18(3)
    [30]D. G. Westlake. A geometric model for the stoichiometry and interstitial site occupancy in hydrides (deuterides) of LaNi5, LaNi4Al and LaNi4Mn[J]. Journal of the Less Common Metals 1983,91(2):275-292
    [31]S. Ono, K. Nomura, E. Akiba, H. Uruno. Phase transformations of the LaNi5-H2 system [J]. Journal of the Less Common Metals 1985,113(1):113-117
    [32]Tejs Vegge, Lise S. Hedegaard-Jensen, Jacob Bonde, Ture R. Munter, Jens K. Noskov. Trends in hydride formation energies for magnesium-3d transition metal alloys[J]. Journal of Alloys and Compounds 2005,386(1-2):1-7
    [33]A. J. Du, Sean C. Smith, X. D. Yao, G Q. Lu. The Role of Ti as a Catalyst for the Dissociation of Hydrogen on a Mg(0001) Surface[J]. The Journal of Physical Chemistry B 2005,109(38):18037-18041
    [34]Tejs Vegge. Locating the rate-limiting step for the interaction of hydrogen with Mg(0001) using density-functional theory calculations and rate theory[J]. Physical Review B 2004,70(3):35412
    [35]Abderrahman El Gridani, Mohamed El Mouhtadi. Electronic and structural properties of CaH2:an ab initio Hartree-Fock study[J]. Chemical Physics 2000,252(1-2):1-8
    [36]C. Wolverton, V. Ozolins, M. Asta. Hydrogen in aluminum:First-principles calculations of structure and thermodynamics[J]. Physical Review B 2004,69(14):144109
    [37]Kazutoshi Miwa, Nobuko Ohba, Shin-ichi Towata, Yuko Nakamori, Shin-ichi Orimo. First-principles study on lithium amide for hydrogen storage[J]. Physical Review B 2005,71(19):195109
    [38]Changjun Zhang, Ali Alavi. A First-Principles Investigation of LiNH2 as a Hydrogen-Storage Material:Effects of Substitutions of K and Mg for Li[J]. The Journal of Physical Chemistry B 2006,110(14):7139-7143
    [39]Michele Gupta, Raju P. Gupta. First principles study of the destabilization of Li amide-imide reaction for hydrogen storage[J]. Journal of Alloys and Compounds 2007,446/447:319-322
    [40]Y. Song, Z. X. Guo. Electronic structure, stability and bonding of the Li-N-H hydrogen storage system[J]. Physical Review B (Condensed Matter and Materials Physics) 2006,74(19):195120-195127
    [41]T. Tsumuraya, T. Shishidou, T. Oguchi. First-principles study on lithium and magnesium nitrogen hydrides for hydrogen storage[J]. Journal of Alloys and Compounds 2007,446-447:323-327
    [42]Changjun Zhang, Matthew Dyer, Ali Alavi. Quantum Delocalization of Hydrogen in the Li2NH Crystal[J]. The Journal of Physical Chemistry B 2005,109(47):22089-22091
    [43]C. Moyses Araujo, Ralph H. Scheicher, Puru Jena, Rajeev Ahuja. On the structural and energetic properties of the hydrogen absorber Li2Mg(NH)2[J]. Applied Physics Letters 2007,91(9):91924
    [44]Zhu Ma, M. Y. Chou. Low-energy ordered structures of Li2Mg(NH)2 [J]. Journal of Applied Physics 2008,104(8):83516-83519
    [45]A. R. Akbarzadeh, V. Ozoli ncedil, scaron, C. Wolverton. First-Principles Determination of Multicomponent Hydride Phase Diagrams:Application to the Li-Mg-N-H System[J]. Advanced Materials 2007,19(20):3233-3239
    [46]Kyle J. Michel, Alireza R. Akbarzadeh, Vidvuds Ozolins. First-Principles Study of the Li-Mg-N-H System:Compound Structures and Hydrogen-Storage Properties[J]. The Journal of Physical Chemistry C 2009,113(32):14551-14558
    [47]V. Ozolins, A. R. Akbarzadeh, H. Gunaydin, K. Michel, C. Wolverton, E. H. Majzoub. First-principles computational discovery of materials for hydrogen storage[J]. Journal of Physics:Conference Series 2009,180:12076
    [48]A. R. Akbarzadeh, C. Wolverton, V. Ozolins. First-principles determination of crystal structures, phase stability, and reaction thermodynamics in the Li-Mg-Al-H hydrogen storage system[J]. Physical Review B 2009,79(18):184102
    [49]陈光巨,黄元河.量子化学[M].上海:华东理工大学出版社,2008.221-256
    [50]赵成大.固体量子化学——材料化学的理论基础[M].北京:高等教育出版社,2003.47-81
    [51]D. R. Hartree. The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part Ⅰ. Theory and Methods[J]. Mathematical Proceedings of the Cambridge Philosophical Society 1928,24(01):89-110
    [52]D. R. Hartree. The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part Ⅱ. Some Results and Discussion[J]. Mathematical Proceedings of the Cambridge Philosophical Society 1928,24(01):111-132
    [53]V. Fock. Naherungsmethode zur Losung des quantenmechanischen Mehrkorperproblems[J]. Zeitschrift fur Physik a Hadrons and Nuclei 1930,61(1):126-148
    [54]P. Hohenberg, W. Kohn. Inhomogeneous Electron Gas[J]. Physical Review 1964,136(3B): B864
    [55]W. Kohn, L. J. Sham. Self-Consistent Equations Including Exchange and Correlation Effects[J]. Physical Review 1965,140(4A):A1133
    [56]P. A. M. Dirac. Note on Exchange Phenomena in the Thomas Atom[J]. Mathematical Proceedings of the Cambridge Philosophical Society 1930,26(03):376-385
    [57]L. Wilk S H Vosko, M Nusair. Accurate spin-dependent electron liquid correlation energies for local spin density calculations:a critical analysis[J]. Canadian Journal of Physics 1980,58(8):1200
    [58]John P. Perdew, Wang Yue. Accurate and simple density functional for the electronic exchange energy:Generalized gradient approximation[J]. Physical Review B 1986,33(12):8800
    [59]A. D. Becke. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. Physical Review A 1988,38(6):3098
    [60]John P. Perdew, Yue Wang. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Physical Review B 1992,45(23):13244
    [61]John P. Perdew, Wang Yue. Erratum:Accurate and simple density functional for the electronic exchange energy:Generalized gradient approximation[J]. Physical Review B 1989,40(5):3399
    [62]Chengteh Lee, Weitao Yang, Robert G. Parr. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B 1988,37(2):785
    [63]John P. Perdew. Density-functional approximation for the correlation energy of the inhomogeneous electron gas[J]. Physical Review B 1986,33(12):8822
    [64]John P. Perdew. Electronic Structure of Solids 1991[M]. Berlin:Akademie Verlag,1991.
    [65]John P. Perdew, Kieron Burke, Matthias Ernzerhof. Generalized Gradient Approximation Made Simple[J]. Physical Review Letters 1996,77(18):3865
    [66]R. Dovesi V R Saunders, C Roetti, C. M. Zicovich-Wilson R Orlando, K. Doll N M Harrison, I. Bush B Civalleri, M. Llunell Ph D Arco. CRYSTAL2003 User's Manual [M]. Torino:University of Torino,2003.
    [67]Merawa Mohammadou, Pierre Labeguerie, Piero Ugliengo, Klaus Doll, Roberto Dovesi. The structural, electronic and vibrational properties of LiOH and NaOH:an ab initio study[J]. Chemical Physics Letters 2004,387(4-6):453-459
    [68]C. Gatti, V. R. Saunders, C. Roetti. Crystal field effects on the topological properties of the electron density in molecular crystals:The case of urea[J]. The Journal of Chemical Physics 1994,101(12):10686-10696
    [69]James D. Pack, Hendrik J. Monkhorst. "Special points for Brillouin-zone integrations" ——a reply[J]. Physical Review B 1977,16(4):1748
    [70]H. Jacobs, R. Juza. Neubestimmung der Kristallstruktur des Lithiumamids[J]. Zeitschrift Fur Anorganische und Allgemeine Chemie 1972,391(3):271-279
    [71]Ohoyama Kenji, Nakamori Yuko, Orimo Shin-ichi, Yamada Kazuyoshi. Revised Crystal Structure Model of Li2NH by Neutron Powder Diffraction[J]. The Physical Society of Japan 2005,74(1):483-487
    [72]T. Noritake, H. Nozaki, M. Aoki, S. Towata, G. Kitahara, Y. Nakamori, S. Orimo. Crystal structure and charge density analysis of Li2NH by synchrotron X-ray diffraction[J]. Journal of Alloys and Compounds 2005,393(1-2):264-268
    [73]A. Rabenau, Heinz Schulz. Re-evaluation of the lithium nitride structure[J]. Journal of the Less Common Metals 1976,50(1):155-159
    [74]M. H. Sorby, Y. Nakamura, H. W. Brinks, T. Ichikawa, S. Hino, H. Fujii, B. C. Hauback. The crystal structure of LiND2 and Mg(ND2)2[J]. Journal of Alloys and Compounds 2007,428(1-2):297-301
    [75]Michael P. Balogh, Camille Y. Jones, J. F. Herbst, Jr. Louis G. Hector, Matthew Kundrat. Crystal structures and phase transformation of deuterated lithium imide, Li2ND[J]. Journal of Alloys and Compounds 2006,420(1-2):326-336
    [76]Weifang Luo. (LiNH2-MgH2):a viable hydrogen storage system[J]. Journal of Alloys and Compounds 2004,381(1-2):284-287
    [77]Weifang Luo, Shane Sickafoose. Thermodynamic and structural characterization of the Mg-Li-N-H hydrogen storage system[J]. Journal of Alloys and Compounds 2006,407(1-2):274-281
    [78]Haiyan Leng, Takayuki Ichikawa, Hironobu Fujii. Hydrogen Storage Properties of Li-Mg-N-H Systems with Different Ratios of LiH/Mg(NH2)2[J]. The Journal of Physical Chemistry B 2006,110(26):12964-12968
    [79]Job Rijssenbeek, Yan Gao, Jonathan Hanson, Qingzhen Huang, Camille Jones, Brian Toby. Crystal structure determination and reaction pathway of amide-hydride mixtures [J]. Journal of Alloys and Compounds 2008,454(1-2):233-244
    [80]Y. Nakamura, S. Hino, T. Ichikawa, H. Fujii, H. W. Brinks, B. C. Hauback. Dehydrogenation reaction of Li-Mg-N-H systems studied by in situ synchrotron powder X-ray diffraction and powder neutron diffraction[J]. Journal of Alloys and Compounds 2008,457(1-2):362-367
    [81]L. Valenzano, Y. Noel, R. Orlando, C. Zicovich-Wilson, M. Ferrero, R. Dovesi. Ab initio vibrational spectra and dielectric properties of carbonates:magnesite, calcite and dolomite[J]. Theoretical Chemistry Accounts:Theory, Computation, and Modeling (Theoretica Chimica Acta) 2007,117(5):991-1000
    [82]A. E. Finholt, A. C. Bond, H. I. Schlesinger. Lithium Aluminum Hydride, Aluminum Hydride and Lithium Gallium Hydride, and Some of their Applications in Organic and Inorganic Chemistry[J]. Journal of the American Chemical Society 1947,69(5):1199-1203
    [83]J. P. Maehlen, V. A. Yartys, R. V. Denys, M. Fichtner, Ch Frommen, B. M. Bulychev, P. Pattison, H. Emerich, Y. E. Filinchuk, D. Chernyshov. Thermal decomposition of AlH3 studied by in situ synchrotron X-ray diffraction and thermal desorption spectroscopy[J]. Journal of Alloys and Compounds 2007,446-447:280-289
    [84]Volodymyr A. Yartys, Roman V. Denys, Jan Petter Maehlen, Christoph Frommen, Maximilian Fichtner, Boris M. Bulychev, Hermann Emerich. Double-Bridge Bonding of Aluminium and Hydrogen in the Crystal Structure of y-AlH3[J]. Inorganic Chemistry 2007,46(4):1051-1055
    [85]Jason Graetz, James J. Reilly. Thermodynamics of the and polymorphs of AlH3[J]. Journal of Alloys and Compounds 2006,424(1-2):262-265
    [86]Yan Wang, Jia-An Yan, M. Y. Chou. Electronic and vibrational properties of γ-AlH3[J]. Physical Review B (Condensed Matter and Materials Physics) 2008,77(1):14101-14108
    [87]Xuezhi Ke, Akihide Kuwabara, Isao Tanaka. Cubic and orthorhombic structures of aluminum hydride Al H3 predicted by a first-principles study[J]. Physical Review B 2005,71 (18):184107
    [88]M. Catti, G. Valerio, R. Dovesi, M. Caus. Quantum-mechanical calculation of the solid-state equilibrium MgO+a-Al2O3(?)MgAl2O4 (spinel) versus pressure[J]. Physical Review B 1994,49(20):14179
    [89]R. Dovesi, C. Ermondi, E. Ferrero, C. Pisani, C. Roetti. Hartree-Fock study of lithium hydride with the use of a polarizable basis set[J]. Physical Review B 1984,29(6):3591
    [90]Francis Birch. Finite Elastic Strain of Cubic Crystals[J]. Physical Review 1947,71(11):809
    [91]Francis Birch. The Effect of Pressure Upon the Elastic Parameters of Isotropic Solids, According to Murnaghan's Theory of Finite Strain[J]. Journal of Applied Physics 1938,9(4):279-288
    [92]Woldemar Voigt. Lehrbuch der Kristallphysik [M]. Leipzig, Berlin:B.G Teubner,1928.
    [93]P. Vajeeston, P. Ravindran, H. Fjellvag. Novel High Pressure Phases of p-AlH3:A Density-Functional Study[J]. Chemistry of Materials 2008,20(19):5997-6002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700