用户名: 密码: 验证码:
全球白菜型油菜遗传多样性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白菜型油菜是三大类型油菜之一,历史悠久,遗传资源十分丰富,有油用、菜用和饲料用的多种类型,分布广泛。在大量的种植栽培和相对独立的选育后,白菜型油菜的分类异常丰富,包括多种类型及亚种,形态上千差万别,同时具有各种优良特性,如耐贫瘠、耐干旱、抗寒性强,在一些地区具有甘蓝型油菜不可替代的作用。在利用白菜型油菜改良甘蓝型油菜多年以后,在甘蓝型油菜中出现了特定环境下遗传多样性变窄的情况。因此大范围研究白菜型油菜的遗传多样性对于有效保持种质资源多样性和品种选育的长久发展有着重要意义。本实验选取了51对SSR引物对187份来自43个国家的白菜型油菜和5份芸薹属其他作物为对照进行了遗传多样性研究,利用POPGENE和PRIMER 6等软件进行了多样性指标计算和品种聚类分析,并对中国和非中国材料的SSR专属等位基因以及其在基因组的分布情况进行了统计,主要结果如下:
     1.187份白菜型油菜表型多样,叶型丰富,其中部分芜菁类材料春化和未春化时表型上差别较大,材料的自交亲和性较差,自交亲和与不亲和的分别有96和91份。
     2.农艺性状统计显示非春化材料从播种到开花的周期跨度大,需要40-173天,春化材料跨度相对要小,需要79-153天,而且结束春化到开花过程中,开花期相对集中,最短仅需10天;187份材料中有春性、半冬性和冬性材料各87、73和23份(4份未统计),春性材料春化结束后平均22.3天即开花,而半冬性需要27.8天,冬性材料36.8天。
     3.对192份材料SSR扩增产生的数据矩阵进行聚类分析,发现16份材料没有与白菜型油菜聚在一起,而是与甘蓝型油菜或芥菜型油菜等其他芸薹属作物聚在一组;将16份可疑材料与另外16份确认为白菜型油菜的共32份材料,加入18对B基因组引物后重新聚类分析,判断出3份白菜型油菜后,将另外13份非白菜型油菜去除再进行后续分析。
     4.174份白菜型油菜共852个等位基因中,来自中国、非中国和对照组材料分别分别有605、704和353个,其中有541个等位基因在中国和非中国两个群体中均有分布;平均每对引物扩增量分别为11.86、13.80和6.92。总的平均扩增量为16.71。
     5.中国群体的专属等位基因有64个,富有度为0.74,与芸薹属其他作物共有14个;非中国群体有专属等位基因163个,富有度为1.85,与芸薹属其他作物共有40个;所有材料平均富有度为1.30。
     6.基于SSR标记的POPGENE分析结果表明,来自中国和非中国两个群体的总的遗传多样性为0.1118,群体内基因多样性为0.1086,群体间基因多样性为0.0032,基因分化系数为0.0289,基因流为16.7792。两个群体的香浓指数分别为0.1795和0.1959。数据揭示中国和非中国两个种群间变异仅占总种群变异的2.9%,而种群内的变异则为97.1%,品种的种群基因多样性变异主要来源于种群内的变异。
     7.基于SSR标记的聚类分析结果为:在遗传距离为0.4360位置将174份材料大致分为4大类。第1和第2大类材料主要来自中国,其中第1大类又可以分为a,b,c三个亚群,分别包括来自中国南方、北方各省区和西南大学新品系;第2大类则主要为中国西北地区材料和邻国的材料;第3大类则主要为印度和欧美国家材料,其中黄籽油菜普遍聚集在一起,包括来自中国的青海大黄油菜;第4大类则主要是遗传距离较远的材料,包括欧美、非洲、中亚和中国少量材料,也包括从奥罗中分离出的A基因组新型材料。不论是用遗传距离还是材料类型或自交亲和等农艺性状,都没有办法将中国的材料和非中国材料明确的区分开。
Brassica rapa L.(n=10, AA genome) is an important oilseed crop, and is also grown as a vegetable and for fodder. Due to its long history of domestication both in Europe and Asia, B. rapa has induced various crop types and subspecies with abundant genetic diversity and elite characteristics, such as adapted to poor land, drought and cold condition, thus B. rapa has played unsubstitutable function. After being made crossed with B. napus for these decades, the diversity among B. napus has been recorded to reduce and become narrower, therefore the analysis of genetic diversity of world-wide B. rapa is meaningful for crop conservation and future breeding development. This study chose 187 accessions of B. rapa from 43 countries and other 5 Brassica species as control, and used 51 pairs of SSR primers to detect the genetic diversity. After obtaining the SSR genotyping data, we analysed the global genetic diversity of B. rapa using the softwares POPGENE and PRIMER 6 and summarized the distribution of the SSR alleles, etc. The experimental results are summaried as follows:
     1. The 187 B. rapa accessions have variable phenotypes, especially in leafy shapes. Some turnip accessions diverse heavily between vernalised and non-vernalised materials; most accessions have low self-compatibility, and the number of compatible and incompatible accessions are 96 and 91, respectively.
     2. The period from seed sowing to the first flower takes 40-173 days for non-vernalised materials and 79-153 days for vernalised ones; besides, for the vernalised materials, the flowering time is similar and only takes 10 days for the shortest accession. There are 87, 73 and 23(4 unknown) accessions belonging to spring, semi-winter and winter types, and the spring types take about 22.3 days from the end of vernalisation to first flower, while semi-winter and winter type need 27.8 and 36.8 days on average, respectively.
     3. Primary cluster analyses are carried out on total 192 accessions, and 16 suspicious accessions are found not to cluster with B. rapa group but with other species such as B. napus or B. juncea. By extra experiment with 18 pairs of B-genome SSR primers for these suspicious accessions and 16 additional B. rapa accessions.3 are identified to be B. rapa after clustering with preliminary A/C genome SSR data and the other 13 are non B. rapa types and excluded from later analysis.
     4. There are a total of 852 alleles are detected from 174 B. rapa accessions:The China, Non-China and Control groups have 605,704 and 353 alleles respectively. The average alleles developed by each pair of SSR marker for the three groups are 11.86,13.80 and 6.92, and 16.71 for all accessions.
     5. There are 64 private alleles within China group with the richness of 0.74 and 14 are shared with other Brasscia species; and there are 163 private alleles within Non-China groups with the richness of 1.85 and 40 are shared with other Brassica species.
     6. The POPGENE calculation based on the matrix data shows that the total gene diversity is 0.1118, the diversity within groups is 0.1086 while the gene diversity among the two groups is 0.0032, and differentiation coefficient and the gene flow is 0.0289 and 16.7792, respectively. The Shannon's Information Indexs is 0.1795 and 0.1959 for China and Non-China groups, respectively. These results revealed that the variations among the two groups only accounted for 2.9% while most variatiori(97.1%) are from within groups.
     7. The final cluster based on the SSR matrix data indicates that the 174 accessions can be divided into 4 groups when the GD (genetic distance) is 0.4360. Most accessions in Group 1 and Group 2 are from China, and Group 1 can be divided into another 3 sub-groups (a, b, c), including the accessions most from South China, North China and new materials developed by South West University; Group 2 covers the accessions from Northwest China and China's neighbours; Group3 includes all the Indian accessions and some European or American accessions, most yellow sarson types are clustered together including Qinghai yellow sarson; Group 4 includes most diverse materials coming from Europe, Africa, Middle Asia as well as the new B. rapa derived from Oro. Neither the genetic distance nor phenotypic characters can distinguish China and Non-China types.
引文
1. 安贤惠,陈宝元,傅廷栋,刘后利.利用RAPD标记研究中国芥菜型油菜遗传多样性.华中农业大学学报,1999,18(6):524-527
    2. 陈碧云,伍晓明,许鲲,王汉中,李响枝.55份湖南省白菜型油菜遗传多样性分析.中国油料作物学报,2004,26(3):10-14
    3. 陈灵芝.中国的生物多样性—现状及其保护对策.科学出版社,1993,99-113
    4. 陈伦林,邹小云,李书宇,邹晓芬,张建模,宋来强.SSR和SRAP标记揭示甘蓝型油菜遗传多样性的差异分析.分子植物育种,2008,6(3):511-516
    5. 陈松.甘蓝型双低油菜三系及杂种酯酶同工酶分析.江苏农业科学,1995,2:27-28
    6. 程必芳,陈宝元.甘蓝型、白菜型油菜和白花芥蓝的同工酶比较研究.中国油料,1991,2:24-27
    7. 代文东,代继跃,黄泽素,王璐璐,杨晓容,李德珍.气候及栽培因子对黔油14号母本结实率及制种产量的影响.贵州农业科学,2008,36(4):31-33
    8. 旦巴,涂金星,胡书银,何余堂,王建林,陈宝元,栾运芳,尼玛卓玛,孟霞,卓嘎.西藏油菜种质资源的RAPD分子标记分析.作物学报,2003,29(1):1-7
    9. 方华丽.西藏芥菜型油菜遗传多样性分析.[硕士学位论文].西藏大学农牧学院,2008
    10. 高志红,章镇,韩镇海.SSR技术及其在果树科学研究中的发展.果树学报,2002,19(5):281-285
    11. 顾晓红.中国玉米种质资源品种性状的分析与评价.玉米科学,1998,6(1):14-16
    12. 关鹤,赵泓,云兴福,刘凡.基因组原位杂交技术在植物研究中的应用.分子植物育种,2006,4(3):99-105
    13. 郭小平,刘毓侠,赵元明.SSR技术及其在植物遗传育种中的应用.华北农学报,1998,13(3):73-76
    14. 何余堂,陈宝元,傅廷栋,李殿荣,涂金星.白菜型油菜在中国的起源与进化.遗传学报,2003,30(11):1003-1012
    15. 何余堂,涂金星,傅廷栋,李殿荣,陈宝元.陕西省白菜型油菜核心种质的初步构建.中国油料作物学报,2002,24(1):6-9
    16. 何余堂,涂金星,傅廷栋,李殿荣,陈宝元.中国白菜型油菜种质资源的遗传多样性研究.作物学报,2002,28(5):697-703
    17. 何余堂.白菜型油菜的遗传多样性及特殊种质资源的研究.[博士学位论文].华中农业大学,2003
    18. 胡书银,王建林,栾运芳,旦巴,孟霞,卓嘎,尼玛卓玛,唐琳.西藏白菜型汕菜的遗传分类研究.西藏科技,2002,11:35-40
    19. 贾继增.分子标记种质资源鉴定和分子标记育种.中国农业科学,1996,29(4):1-10
    20. 金梦阳,刘列钊,付福友,张正圣,张学昆,李加纳.甘蓝型油菜SRAP、SSR、AFLP和TRAP标记遗传图谱构建.分子植物育种,2006,4(4):520-526
    21. 金文林,山口裕文,蓬原雄三.栽培小豆与野生小豆种间差异性研究.作物品种资源,1993,5(1):4-6
    22. 李汝刚,朱莉,伍宁丰,范云六,伍晓明,钱秀珍.我国芥菜型油菜品种遗传多样性初探.生物技术通报,1997,5:26-31
    23. 李新海,傅骏骅,张世煌,袁力行,李明顺.玉米自交系遗传变异的RFLP分析.植物学报,2000,42(11):1156-1161
    24. 李询,官春云,李少骞.新疆野生油菜细胞遗传学研究,染色体的形态特征、过氧化物酶同工酶和mtDNA分析.遗传学报,1995,22:470-477
    25. 李媛媛,沈金雄,王同华,傅廷栋,马朝芝.利用SRAP、SSR和AFLP标记构建甘蓝型油菜遗传连锁图谱.中国农业科学,2007,40(6):1118-1126
    26. 林忠旭,张献龙,聂以春,贺道华,吴茂清.棉花SRAP遗传连锁图构建.科学通报,2003,48:1676-1679
    27. 凌磊,李廷春,李正鹏,蔡沂,孙旭,苏翔,林毅,蔡永萍.利用SRAP标记分析彩色棉与白色棉的遗传差异.中国农学通报,2009,25(16):32-38
    28. 刘辉,吴孝兵.根据12s rRNA和cyt6基因部分序列鉴定药用猴骨样品.激光生物学报,2006,15(2):184-190
    29. 刘后利.几种芸薹属油菜的起源与进化.作物学报,1984,10(1):9-18
    30. 刘后利.油菜的遗传和育种.上海:上海科学技术出版社,1985,29:32-37
    31. 刘后利.实用油菜栽培学.上海科学技术出版社,1987
    32. 刘后利.油菜遗传育种学.北京:中国农业大学出版社,2000:26-31
    33. 刘丽娟,刘灶长,陈海荣,罗利军.SRAP标记技术及其在蔬菜作物遗传多样性分析中的应用.中国农学通报,2009,25(21):43-48
    34. 刘淑艳,刘忠松,官春云.芥菜型油菜种质资源研究进展.植物遗传资源学报,2007,8(3):351-358
    35. 柳李旺,龚义勤,黄浩,朱献文.新型分子标记SRAP与TRAP及其应用.遗传,2004,26(5):777-781
    36. 罗玉明,张卫明,丁小余,沈洁,保曙琳,褚必海,毛善国.紫苏属药用植物的rDNA ITS区SNP分子标记与位点特异性PCR鉴别.药学学报,2006,41(9):840-845
    37. 马朝芝,傅廷栋,Stine T, Gertsson B.用ISSR标记技术分析中国和瑞典甘蓝型油菜的遗传多样性.中国农业科学,2003,36(11):1403-1408
    38. 马克平.试论生物多样性的概念.生物多样性,1993,1(1):20-22
    39. 孟金陵,Sharpe A, Bowman C,田志宏,傅廷栋,钱秀珍,Lydiate D用RFLP标记分析甘蓝型油菜的遗传多样性.遗传学报,1996,23(4):293-306
    40. 孟淑春,郑晓鹰,刘玉梅,何伟明,刘庞沅.大白菜种质资源形态性状的多样性分析.华北农学报,2005,20(4):57-61
    41. 欧阳英.野生稻与栽培稻的酯酶同工酶研究.农业与技术,2003,23(4):35-39
    42. 潘大建,范芝兰,李晨,周汉钦,陈建酉.水稻种质资源收集、保存、评价与创新.广东农业科学,2006,6:84-87
    43. 潘俊松,王刚,李效尊,何欢乐,吴爱忠,蔡润.黄瓜SRAP遗传连锁图的构建及始花节位的基因定位.自然科学通报,2005,15(2):167-172
    44. 蒲晓斌,王茂林,栾丽,王湘君,张锦芳,李浩杰,张启行,李熠毅,曹毅,蒋梁材,赵云.中国西南地区芥菜型油菜资源遗传多样性分析.中国农业科学,2007,40(8):1610-1621
    45. 齐晓花,张明方.芸薹属作物分子连锁图及QTL研究进展.分子植物育种,2004,2(5):704-712
    46. 钱秀珍,伍晓明.油菜种质资源的搜集鉴定保存和利用.中国油料学报,1996,18(1):60-63
    47. 任小平,廖伯寿,黄家权,张晓杰,姜慧芳.利用SRAP标记分析花生属花生区组种质亲缘关系.中国油料作物学报,2009,31(4):449-454
    48. 史勇忠,邓秀新,郭文武.RAPD分析技术在果树种质资源进化和育种研究中的应用.中国果树,1997,2:46-48
    49. 宋凤英.我省小麦种质资源研究现状与发展方向.黑龙江农业科学,2006,(1):71-73
    50. 苏光华,张元跃.SNP分子标记及其应用.畜牧兽医科技信息,2005,12:11-13
    51. 王凤涛,蔺瑞明,欧阳宏雨,徐世昌.利用SRAP标记分析河南小麦栽培品种的遗传多样性.植物遗传资源学报,2009,10(4):517-521
    52. 王芙蓉,张军,刘勤红,张传云.我国棉花种质创新进展与展望.棉花学报,2001,13:50-53
    53. 王兰岚,宋桂英,徐正平,陆仲康,梁宏.激光微束切割小冰麦异附加系染色体的研究.遗传学报,1997,24(3):238-240
    54. 王美,张凤兰,孟祥栋,刘秀村,赵岫云,樊治成.中国白菜AFLP分子遗传图谱的构建.华北农学报,2004,19(1):28-33
    55. 吴沿友,王宝利,Paul W, Taylor J.油菜与诸葛菜的几种分子标记比较研究.中国油料作物学报,2002,24:22-25
    56. 伍宁丰,李汝刚,伍晓明,朱莉,范云六,钱秀珍.中国甘蓝型油菜遗传多样性的RAPD分子标记.生物多样性,1997,5(4):246-250
    57. 谢宗铭,陈福隆.生化指纹在向日葵育种上的应用.同工酶的研究及应用作物杂志,1999,2:1-4
    58. 辛翠娜,彭建军,王莹,王利利.Cytb分子标记技术在物种鉴定中的应用.野生动物杂志,2009,30(4):217-221
    59. 徐爱遐,傅廷栋,马朝芝,张改生,肖恩时,权景春,马长珍,田广文,涂金星.中国西部芥菜型油菜遗传多样性研究.作物学报,2008,34(5):754-763
    60. 徐美兰,金正勋,李晓光,张忠臣,刘海英,张丰转,赵书宇,张海彬.7个粳稻SSR和SRAR分子标记遗传距离比较及其与产量性状杂种优势的关系.分子植物育种,2009,7(6):1084-1092
    61. 许鲲,陈碧云,王汉中等.长江中、下游地区白菜型油菜遗传多样性RAPD分析及其与农艺性状的相关性.中国油料作物学报,2004,26(4):20-26
    62. 颜勇刚,任纬.玉米种质资源研究进展.安徽农业科学,2007,35(35):11434-11438
    63. 杨杰.芥菜型油菜遗传多样性分析.[硕士学位论文].甘肃农业大学,2009
    64. 应存山.中国稻种资源.北京,中国农业科技出版社,1993
    65. 张建成,王传堂,焦坤等.SRAP标记技术在花生种子纯度鉴定中的应用.中国农学通报,2005,21(12):35-39
    66. 赵朝森.中国、澳大利亚和印度甘蓝型油菜遗传多样性和杂种优势分析.[硕士学位论 文].华中农业大学,2008
    67. 周国岭,刘平武,杨光圣,傅廷栋.甘蓝型油菜杂交种亲本的遗传多样性评价.中国农业科学,2004,37(11):1766-1771
    68. 朱莉,李汝刚,伍晓明,伍宁丰,范云六,钱秀珍.我国部分白菜型油菜RAPD的研究.生物多样性,1998,6(2):99-104
    69. 朱立民.浅谈生物多样性概念及意义.天津农业科学,1996,2(4):42-43
    70. Akbar M A. Chromosomal stability and performance of resynthesized Brassica napus produced for gain in earliness and short-day response. Hereditas,1989,111:247-253
    71. Anthony J. Brookes. The essence of SNPs. Gene,1999,234:177-186
    72. Atta O, Heiko C, Becker, Friedrich J, Kopisch O. Effect of crop improvement on genetic diversity in oilseed Brassica rapa (turnip-rape) cultivars detected by SSR markers. J Appl Genet,2008,49(3):207-212
    73. Attia T, RObbelen G. Cytogenetic relationship within cultivated Brassica analyzed in amphihaploids from the three diploid ancestors. Can J Genet Cytol,1986,28:323-329
    74. Bate G B, et al. Microdissection and microcloning from the short arm of human chromosome 2. Cell Biol,1986,6:3826-3830
    75. Botstein D, White R L, Skolnick M, Davis R W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet,1980,32:314-331
    76. Boukema I W, Hintum T J L. Biology of Brassica coenospecies. Genetic Resources,1999: 462-479
    77. Cavell A C, Lydiate D J, Parkin I AP, Dean C, Trick M. Collinearity between a 30 centimorgan segment of Arabidopsis thaliana chromosome 4 and duplicated regions within the Brassica napus genome. Genome,1998,41:62-69
    78. Chen C X, Yu Q Y, Hou S B, Li Y J, Moriah E, Rachel L. Skelton, Olivia V, Rachel E, Lauren D, Jimmy S, Yun F, Qian W B, Lee B, Wang L, Paul H M, Robert E P, Maqsudul A and Ray M. Construction of a Sequence-Tagged high-density genetic map of papaya for comparative structural and evolutionary genomics in Brassicales. Genetics,2007,177:2481-2491
    79. Chen S., Nelson M N, Ghamkhar K, Fu T, and Cowling W A. Divergent patterns of allelic diversity from similar origins:the case of oilseed rape (Brassica napus L.) in China and Australia. Genome,2008,51:1-10
    80. Clive S, Jose E A. The dresden meeting on genetic resources management for food and agriculture. Global forum on agricultural research, Dresden, Germany,2000
    81. Cowling W A. Genetic diversity in Australian canola and implications for crop breeding for changing future environments. Field Crop Research,2007,104:103-111
    82. Cowling W A. Genetic diversity in Australian canola and implications for crop breeding for changing future environments. Field crop research,2007,104:103-111
    83. Demeke T, Adams R P, Chibbar R. Potential taxonomic use of random amplified polymorphic DNA (RAPD):a case study in Brassica. Theor Appl Genet,1992,84:990-992
    84. Diers B W, Osborn T C. Genetic diversity of oilseed Brassica napus germplasm based on fragment length polymorphisms. Theor Appl Genet,1994,88:662-668
    85. Diers B W, Osborn T C. Genetic diversity of oilseed Brassica napus germplasm based on restriction fragment length polymorphisms. Theor Appl Genet,1994,88:662-668
    86. Erickson L R, Straus N A, Beversdorf W D. Restriction pattern reveals origins of chloroplast genomes in Brassica amphiploids. Theor Appl Gent,1983,65:201-206
    87. Garber K. More SNPs on the way. Sci,1998,281:1788
    88. Goldstein D B, Schl_tterer C. Microsatellites:evolution and applications. Oxford University Press, Oxford,1999
    89. Grike A, Becker H C, Engqvist G. Resynthesized rapeseed as a new gene pool for hybrid breeding. The 10th International Rapeseed Congress, Canberra, Australia,1999
    90. Han Z G, Wang C B, Song X L, Guo W Z, Gou J Y, Li C H, Chen X Y, Zhang T Z. Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in allotetraploid cotton. Theor Appl Genet,2006,112:430-439
    91. Hara K, Tobe K, Okada T, et al. A genetic variation in the PGC-1 gene could conter insulin resistance and susceptibility to type2 diabetes. Diabetologia,2002,45:740
    92. Heather M C, Timothy P, Nicholas J, Carll L, Henry C. Lee. An overview of DNA methods for the identification and individualization of Marijuana. Forensic Sciences,2003,44:315-321
    93. Huang D, Wu W, Lu L. Microdissection and molecular manipulation of single chromosomes in woody fruit trees with small chromosomes using pomelo (Citrus grandis) as a model. Ⅱ. Cloning of resistance gene analogs from single chromosomes. Theor Appl Genet,2004,108: 1371-1377
    94. Kresovich S, Szewc-McFadden A K, Bliek S M, McFerson J R. Abundance and characterization of simple sequence repeats (SSR) loci isolated from a size-fractionated genomic library of Brassica napus L. (rapeseed). Theor Appl Genet,1995,91:206-211
    95. Indu K, Pratibha T, Rakesh K, Vilas N, Nisha T, Bhudev C D, Mausumi B. Association of single nucleotide polymorphisms (SNPs) in TNF-LTA locus with breast cancer risk in Indian population. Breast Cancer Res Treat,2009,114:347-355
    96. Jain A, Bhatia S, Banga S S, Prakash S, Lakshmikumaran M. Potential use of random amplified polymorphic DNA (RAPD) technique to study the genetic diversity in Indian mustard (Brassica juncea) and its relationship to heterosis. Theor Appl Genet,1994,88(1):116-122.
    97. Khlestkina E K, Pestsova E G, Salina E, Roder M S, Arbuzova V S, Koval S F, Borner A Genetic mapping and tagging of wheat genes using RAPD, STS and SSR markers. Cell Mol Biol Lett,2002,7:795-802
    98. Laura J, Rasmussen T, James S, Pankow, David R, Jacobs J, Julia S, Antoinette M, Alan R S. The association of SNPs in ADIPOQ, ADIPOR1, and ADIPOR2 with insulin sensitivity in a cohort of adolescents and their parents. Hum Genet,2009,125:21-28
    99. Li G, and Quiros. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica. Theor Appl Genet,2001,103:455-461
    100. Li H M, Zhang S H, Hu R F. Impacts of genetic uniformity on maize production in China. Biodiversity Science,2005,13:91-96
    101. Li J W. The origins and evolution of vegetable crops in China. Sci Agric Sinm,1981,14:90-95
    102. Li M, Li Z, Qian W, Meng J. Construction of novel Brassica napus genotypes through chromosomal substitution and elimination using interploid species hybridization. Chromosome Research,2004,12:417-426
    103. Li M, Li Z, Zhang C, Qian W, Meng J. Reproduction and cytogenetic characterization of interspecific hybrids derived from crosses between Brassica carinata and B. rapa. Theor Appl Genet,2005,110:1284-1289
    104. Li Z Y, Wu J Q Liu Y, Liu H L, Heneen W K. Production and cytogenetics of intergeneric hybrids Brassica juncea×Orychophragmus Violaceus and B. carinata×O. violaceus. Theor Appl Genet,1998,96:251-265
    105. Litt M and Lutv J A. Hypervariable microsattelite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle action gene. American Journal of Human Genet, 1989,44:391-401
    106. Liu R H, Meng J L. RFLP and AFLP Analysis of Inter- and Intraspecific variation of Brassica rapa and B. napus shows that B. rapa is an important genetic resource for B. napus improvement. Acta Genetica Sinica,2006,33(9):814-823
    107. Lowe A J, Moule C, Trick M, Edwards KJ. Efficient large scale development of microsatellites for marker and mapping application in Brassica crop species. Theor Appl Genet,2004,108: 1103-1112
    108. Luo J, Xiao Y, Song L. Phylogenetic separation of lanceled in China revealed by mitochondrial COI and Cytb gene analysis. South China Fisheres Science,2007,3:8-14
    109. Marcio D M S. How can multilateral systems for plant genetic resources for fod and agricultue benefit national agricultural research systems? Global forum on agricultural research, Dresden, Germany,2000
    110. Mitchell J, McGrath C, Quiros E. Genetic diversity at isozyme and RFLP loci in Brassica campestris. Theor Appl Genet,1992,83:783-790
    111. Mizushima U. Karyogenetic studies of species and genus hybrids in the tribe Brassiceae of Cruciferae. Tohoku J Agric Res,1950,1:1-14
    112. Monique W, Irene K. Species identification of botanical trace evidence using molecular markers. Forensic Science International:Genetics Supplement Series,2008,1:630-632
    113. Morinaga T. Interspecific hybridization in Brassica. I. The cytology of F1 hybrids of B. napella and various other species with 10 chromosomes. Cytologia,1929,1:16-27
    114. Mukai Y, Gill B S. Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome,1993,36:489-494
    115. Nei M. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci, USA,1973, 70:3321-3323
    116. Noss R F. A regional landscape approach to maintain diversity. Bioscience,1983,33(11): 700-706
    117. Palmer J D. Intraspecific variation and multicircularity in Brassica mitochondrial DNAs. Genetics,1988,118:341-351
    118. Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, et al.2005. Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet,111: 1514-1523
    119. Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, Perret D, Villeger M J, Vincourt P., Blanchard P. Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet,2005,111:1514-1523
    120. Pradhan A K, Gupta V, Mukhopadhyay A, Arumugam N, Sodhi Y S, and Pental D, A high-density linkage map in B.juncea using AFLP and RFLP markers, Theor Appl Genet,2003, 106:607-614
    121. Pradhan A K, Prakash S, Mukhopadhyay A, Pental D. Phylogeny of Brassica and allied genra based on variation in chloroplasts and mitochondrial DNA patterns:molecular and taxonomic classifications are incongruous. Theor Appl Genet,1992,85:331-340
    122. Prakash S, Hinata K. Taxonomy, cytogenetics and origin of crop Brassicas, a review. Opera Bot,1980,55:1-57
    123. Prakash S. Haploidy in Brassica nigra Koch. Euphytica,1974,22:613-614.
    124. Qian W, Meng J, Li M, Frauen M, Sass O, Noack J, Jung C. Introgression of genomic components from Chinese Brassica rapa contributes to widening the genetic diversity in rapeseed (B. napus L.), with emphasis on the evolution of Chinese rapeseed. Theor Appl Genet, 2006,113:49-54
    125. Rae S J, Aldam C, Dominguez I, Hoebrechts M, Barnes S R, Edwards K J. Development and incorporation of microsatellite markers into the linkage map of sugar beet (spp.Beta vulgaris). Theor Appl Genet,2002,100:1240-1248
    126. Rafalski J A, Tingey S V. Genetic diagnostics in plant breeding:RAPDs, microsatellites and machines. Trends Genet,1993,9:275-279
    127. Rohme D, et al. Molecular clones of the mouse t comlex derived from microdissected metaphase chromosome. Cell,1984,36:783-788
    128. Rongwen J, Akkaya M S, Bhagwat A A, Lavi U, Cregan PB. The use of microsatellite DNA markers for soybean genotype identification. Theor Appl Genet,1995,90:43-48
    129. Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W. Ribosomal DNA spacer-length polymorphism in barley:Mendelian inheritance, chromosomal location and population dynamics. Proc Natl Acad Sci,1984,81:8014-8018
    130. Scaleghe F, et al. Microdissection and cloning of DNA from a specific region of Drosophila melanomaster polytene chromosomes. Chromosome,1981,182:205-216
    131. Schaal B A, Leverich W J, Rogstad S H. Comparison of methods for assessing genetic variation in plant conservation biology. Genetics and Conservation of Rare Plants, New York, Oxford University Press,1991,123-134
    132. Seyis F, Snowdon R J, Luhs W, Friedt W. Molecular characterization of novel resythesized rapeseed (Brassica napus) lines and analysis of their genetic diversity in comparison with spring rapeseed cultivars. Plant Breeding,2003,122:473-478
    133. Shannon C E, Weaver W. The mathematical theory of communication. Univ. of Illinois Press, 1949,Urbana.
    134. Shohei T, Taihachi K, Ohmi O. Phylogenetic relationships among cultivated types of Brassica rapa L. em. Metzg. as revealed by AFLP analysis. Genetic Resources and Crop Evolution, 2007,54:279-285
    135. Slatkin M. Gene flow and the geographic structure of nature populations. Science,1987,236: 787-792
    136. Snowdon R J, Winter H, Diestel A, Sacristan M D. Development and characterization of Brassica napus-Sinapis arvensis addition lines exhibiting resistance to Leptosphaeria maculans. Theor Appl Genet,2000,101:1008-1014
    137. Solbrig O T. From genes to ecosysterm- a research agenda for biodiversity. Paris:IUBS,1991
    138. Song K M, Osborn T C, Wilfiams P H. Brassica taxonomy based on nuclear restriction fragment length polymorhisms (RFLPs).1. Genome evolution of diploid and amphidiploid species. Theor Appl Genet,1988a,75:784-794
    139. Song K M, Osborn T C, Williams P H. Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs).2. Preliminary analysis of subspecies within B. rapa (syn. campestris) and B. oleracea. Theor Appl Genet,1988b,76:593-600
    140. Song K M, Osborn T C, Williams P H. Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs).3. Genome relationships in Brassica and related genera and the origin of B. oleracea and B. rapa (syn. campestris). Theor Appl Genet,1990,79: 497-506
    141. Srivastava A, Gupta V, Pental D, Pradhan A K. AFLP based genetic diversity assessment amongst agronomically important natural and some newly synthesized lines of Brassica juncea. Theor Appl Genet,2001,102:193-199
    142. Su R C, Graham R T, Prikshit P, Jeong H K; Charlotte J A; Elena B; Zhong Y P; Tae H H; Graham J K; Guy C B, Paul H; Jae W B, Beom S P, Yong P L.国际白菜基因组测序项目中的参考遗传图(英文).第十二届国际油菜大会,2007
    143. Sudupak M A. Inter and intra-species Inter Simple Sequence Repeat (ISSR) variations in the genus Cicer. Euphytica,2004,135:229-238
    144. Szewc-McFadden A. K., Kresovich S., Bliek S. M., Mitchell S. E., McFerson J. R. Identification of polymorphic, conserved simple sequence repeats (SSRs) in cultivated Brassica species. Theor Appl Genet,1996,93:534-538
    145. Tang S, Yu J K, Slabaugh M B, Shintani D K, Knapp S J. Simple sequence repeat map of the sunflower genome. Theor Appl Genet,2002,105:1124-1136
    146. Tautz D, Renz M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic acids research,1984,12:4127-4138
    147. Tautz D. Hypervariability of simple sequence as a general source for polymorphic DNA markers. Nucleic Acids Res,1989,17:6463-6471
    148. Tu Y Q, Sun J, Ge X H, Li Z Y. Production and genetic analysis of partial hybrids from intertribal sexual crosses between Brassica napus and Isatis indigotica and progenies. Genome, 2010,53:146-156
    149. U N. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot,1935,7:389-452
    150. Vaughan J G. A multidisciplinary study of the taxonomy and origin of Brassica crops. Bioscience,1977,27:35-40
    151. Ward J, R. Peakalla, Gilmoreab S R, Robertson J. A molecular identification system for grasses: a novel technology for forensic botany. Forensic Science International,2005,152:121-131
    152. Ward J. A molecular forensic identification system for trace botanical evidence. Honours Thesis, The Australian National University,2002
    153. Warwick S I, Black L D. Molecular systematics of Brassica and allied genera (subtribe Brassicinae) chloroplast genome and cytodeme congruence. Theor Appl Genet,1991,82: 81-92
    154. Warwick S I., James T, Falk K C. AFLP-based molecular characterization of Brassica rapa and diversity in Canadian spring turnip rape cultivars. Plant Genetic Resources,2008,6:11-21
    155. Weber J L, May P E. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet,1989,44:388-396
    156. Wesley A., Beckstead, Bryan C, Bjork, Rolf W S, Shamil S, David R B. SNP to RFLP:a computational tool to facilitate genetic mapping using benchtop analysis of SNPs. Mamm Genome,2008,19:687-690
    157. Zhao J, Becker H C. Genetic variation in Chinese and European oilseed rape (B. napus) and turnip rape (B.campestris) analysed with isozymes. Acta Agron Sin,1998,24:213-220.
    158. Zhao J, Wang X, Deng B, Lou P., Wu J., Sun R., Xu Z., Vromans J., Koornneef M., and Bonnema G., Genetic relationships within Brassica rapa as inferred from AFLP fingerprints. Theor Appl Genet,2005,110:1301-1314
    159. Zhao Z G, Hu T T, Du X Z, Ding L, Li Z Y. Production and characterization of intertribal somatic hybrids between Brassica napus and Orychophragms violaceus and their backcrossing progenies. Plant Cell Rep,2008,27:1611-1621

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700