用户名: 密码: 验证码:
膜式水冷壁传热边界条件反演
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜式水冷壁是电站锅炉的主要受热面之一,其工作条件和工作性能对电站锅炉运行的安全性和经济性均有直接影响。膜式水冷壁的传热边界条件主要包括水冷壁向火侧辐射热流分布、水冷壁管内汽水介质温度及管内的对流换热系数。获得上述传热边界条件是采用数值模拟方法掌握膜式水冷壁金属温度分布、向火侧危险点位置与温度等相关信息的基本前提,同时也是电站锅炉运行状态分析与监测的必要条件或必要内容。膜式水冷壁的传热边界条件难以直接测量,根据膜式水冷壁的局部可测量壁温,采用传热学反问题研究方法确定膜式水冷壁的传热边界条件,是一种比较有效的技术方案。
     针对电站锅炉膜式水冷壁传热边界条件反演研究的现状及存在的主要问题,本文采用共轭梯度法(CGM)研究了膜式水冷壁传热边界条件的反演问题,主要工作包括:
     1)建立了电站锅炉膜式水冷壁传热过程的数学模型,采用有限体积法对导热微分方程进行离散,对离散后的代数方程组进行迭代求解,并对其适用性作了验证;通过数值仿真实验分析了不同传热边界条件对水冷壁金属温度分布、最高壁温点以及壁温水平的影响;
     2)介绍了共轭梯度法的基本思想;结合第二章的膜式水冷壁传热过程(正问题),以膜式水冷壁向火侧局部辐射热流q0、水冷壁管内汽水介质温度tf及水冷壁管内换热系数h三个组合参数为待反演参数,利用共轭梯度法(CGM)建立了膜式水冷壁传热边界条件的同时反演模型;
     3)对膜式水冷壁的传热边界条件反演进行了仿真试验,讨论了待反演参数的个数、初始猜测值、测点数目、测点位置、测量误差对反演精度以及向火侧温度分布的影响。仿真试验结果表明,适当增加壁温的测点数可提高反演精度,一般采用三个壁温测点即可获得满足工程要求的反演精度及水冷壁温度分布结果;虽然传热边界条件的反演结果对初值有一定的依赖性,但对于不同的初始猜测值,本文建立的反演模型仍然能够获得较好的反演结果;在一定的壁温测量误差范围内,共轭梯度反演方法能够得到较满意的结果。
The membrane water wall is one of the main heating surfaces of power plant boilers, the working condition and performance of which directly affects the safe and economic operation of the boilers. The thermal boundary conditions of membrane water wall are mainly comprised of the radiation heat flux at the fireside, the temperature of the working steam-water-mixtures and the convective heat transfer coefficient in the water wall tubes. Obtaining the above thermal boundary conditions is the basic premise to master the information such as the metal surface temperature distribution of the membrane water wall and the positions and temperatures of the dangerous points, also is the necessary requirement and content of the operation state analysis and monitoring of power plant boilers. Because of the difficulty of direct measurement, it is an effective approach to study the thermal boundary conditions of membrane water wall by using the method of inverse heat transfer problem, which bases on the local measurable temperatures on the membrane water wall.
     The inverse problem of estimating the thermal boundary conditions of membrane water wall was studied by using Conjugate Gradient Method (CGM) in this paper, aiming at the status and the main problems in the investigations of that. The main tasks of this paper are as follows.
     1) The mathematic model of the heat conduction process in the membrane water wall of power plant boiler was established. The differential equation of heat conduction was dispersed by Finite Volume Method, and the discrete algebraic equations were solved iteratively. Then the applicability was validated. The effects of different thermal boundary conditions on the temperature distribution, position of the highest temperature and temperature level of membrane water wall were analyzed through numerical experiments.
     2) The basic concept of conjugate gradient method was introduced. Combining the heat conduction process (forward problem) of membrane water wall established in Chapter 2, the inverse model of estimating the thermal boundary conditions of membrane water wall was set up by Conjugate Gradient Method (CGM), which took the radiation heat flux at the fireside of membrane water wall q0, the temperature of the working steam-water-mixtures tf and the convective heat transfer coefficient h in the water wall tubes as the inversed parameters.
     3) The estimation of the thermal boundary conditions of membrane water wall was conducted by numerical experiments, and the influences of the parameter numbers, the initial guesses of inversed parameters, the number and the position of measured points and the measurement errors on the accuracy of inverse solutions and the temperature distribution at the fireside of membrane water wall were discussed. The results of numerical experiments showed that, the appropriate increase of measured points was benefit to improve the inverse accuracy, while the solution with three measured points can meet the accuracy requierment of engineering generally. Though the inversed results of the thermal boundary conditions depended on the initial values definitely, preferable results could be achieved by the inverse approach in this paper. When the measured temperatures contained some errors, satisfactory results can also be obtained by Conjugate Gradient Method.
引文
[1]刘龙淼.锅炉故障处理大全[M].兵器工业出版社, 1992.
    [2]刘树礼,刘宇航.工业锅炉安装、运行、维修禁忌手册[M].机械工业出版社, 2010.
    [3]周强泰.锅炉原理[M].中国电力出版社, 2009.
    [4]上海师范大学数学系.膜式水冷壁温度场计算方法[J].锅炉技术, 1974, 5:23-41.
    [5] Chambers A K, Wynnyckyi J R , Rhodes E. A furnace wall ash monitoring system for coal fired boilers[J]. Transaction of the ASME, 1995, 17(4):532-538.
    [6]范谨,贾鸿祥,陈听宽.膜式水冷壁温度场解析[J].热力发电, 1996, 3:10-17.
    [7]武彬.电站锅炉受热面灰污监测[D].北京:清华大学, 2000.
    [8]王为术,徐维晖,顾红芳,等.超超临界锅炉垂直水冷壁温度场的数值计算[J].动力工程, 2009, 29(8):707-712.
    [9] Andersson B, Leckner B. Experimental methods of estimating heat transfer in circulating fluidized bed boilers[J]. International Journal of Heat and Mass Transfer, 1992, 35(12):3353-3365.
    [10]李燕,李文凯,吴玉新,等. 600MW超临界循环流化床锅炉的炉膛水冷壁传热[J].清华大学(自然科学版), 2009, 29(12):1083-1087.
    [11]刘旭东,盛伟,张劲松. 600MW超临界锅炉炉膛膜式水冷壁的热行为研究[J].中国电机工程学报, 2008, 28(5):677-681.
    [12]李春燕,阎维平,梁秀俊,等. 600MW超临界锅炉燃烧器区膜式水冷壁温度场的数值计算[J].中国电机工程学报, 2008, 28(5):677-681.
    [13]王斌忠,吴占松,王民汉.煤粉炉局部结渣的故障诊断模型[J].清华大学(自然科学版), 1999, 39(12):69-71.
    [14] Fang Z H, Xie D L, Diao N R. A new method for solving the inverse conduction problem in steady heat flux measurement[J]. Heat Mass Transfer, 1997, 40(16):3947-3953.
    [15] Duda P, Taler J. A new method for identification of thermal boundary conditions in water-wall tubes of boiler furnaces[J]. International Journal of Heat and Mass Transfer, 2009, 52(5):1517-1524.
    [16] Taler J, Duda P, Taler D, et al. Identification of local heat flux to membrane water walls in steam boilers[J]. Fuel, 2009, 88(2):305-311.
    [17] Huang C H, Chao B H. An inverse problem in identifying irregular boundary configurations[J]. International Journal of Heat and Mass Transfer, 1997, 40(9):2045-2053.
    [18]张志正,孙保民,徐鸿,等.沁北发电厂超临界压力电站锅炉水冷壁截面温度场分析[J].中国电机工程学报, 2006, 26(7):25-28.
    [19]张志正,曲志忠,刘汉政,等.膜式水冷壁特定点温度相关性的研究[J].动力工程, 2005, 25(6):25-28.
    [20]关荣华,曹春梅,陈衡.工业设备内部缺陷的红外热诊断研究[J].激光与红外, 2001, 31(4):28-29.
    [21] Huang C H, Chen C W. A boundary element-based inverse problem in estimating transient boundary conditions with conjugate gradient method[J]. International journal of Numerical Methods Engineering, 1998, 42(5):943-965.
    [22] Chen C K, Wu L W, Yang Y T. Application of the inverse method to the estimation of heat flux and temperature on the external surface in laminar pipe flow[J]. Applied Thermal engineering, 2006, 26:1714-1724.
    [23]程建杰,殷亮,张小松.导热反问题原理辨识均质材料导热系数及体积热容的算法[J].沈阳建筑大学学报(自然科学版), 2008, 24(1):115-119.
    [24]巫英伟,卢义,索晓娜,等.板坯连铸二冷区表面传热系数的预测方法[J].西安交通大学学报, 2006, 40(1):26-31.
    [25]刘慧开,杨立,孙丰瑞.设备内热源的红外无损辨识研究[J].红外技术, 2006, 28(8):493-495.
    [26]肖庭延,张俊丽.一类热传导问题源项识别的快速稳定算法[J].计算物理, 2008, 25(3):335-343.
    [27]范春利,孙丰瑞,杨立,等.电气设备零件内部三维缺陷的定量红外识别算法研究[J].中国电机工程学报, 2006, 26(2):159-164.
    [28] Huang C H, Chaing M T. A transient three-dimensional inverse geometry problem in estimating the space and time-dependent irregular boundary shapes[J]. International Journal of Heat and Mass Transfer, 2008, 51(21):5238-5246.
    [29]胡国俊.传热中的多宗量反演研究[D] .大连:大连理工大学, 2002.
    [30] Ling X W. Stability analysis for inverse heat conduction problems[J]. Computer Modeling in Engineering and Sciences, 2006, 13(3):219-228.
    [31] Beck J V, Blackwell B, Haji-Sheikh A. Comparison of some inverse heat conduction methods using experimental data[J]. International Journal of Heat and Mass Transfer, 1996, 39(17):3649-3657.
    [32]刘迎曦,王登刚,李守巨,等.材料物性参数识别的梯度正则化方法[J].计算力学学报, 2000, 17(01):69-75.
    [33]王登刚,刘迎曦,李守巨,等.识别材料导热系数和导温系数的温度场逆分析[J].上海理大学学报, 2001, 23(03):233-237.
    [34]王登刚,刘迎曦,李守巨,等.非线性二维导热反问题的混沌-正则化混合解法[J].应用数学和力学, 2002, 23(8):864-870.
    [35]吴洪潭,李希靖.边值传热反问题误差评估的正则化仿真模型[J].系统仿真学报, 2008, 20(6):1448-1451.
    [36] Huang C H, Chao B H. An inverse geometry problem in identifying irregular boundary configurations [J]. International Journal of Heat and Mass Transfer, 1997, 40:2045-2053.
    [37]范春利,孙丰瑞,杨立.基于红外测温的内部缺陷尺寸、方位的计算方法研究[J].热科学与技术, 2005, 4(1):82-86.
    [38]顾元宪,周业涛,陈飚松,林巍.基于灵敏度的热传导辨识问题求解方法[J].土木工程学报, 2002, 35(3):94-98.
    [39]李新禹,林瑞泰.测算物体导温系数及定压比热的方法研究[J].天津纺织工学院学报, 2000, 19(01):16-19.
    [40]李长庚,周孑民.中高温熔点金属材料固-液相变点导热系数测量[J].电子元件与材料, 2003, 22(10):42-45.
    [41] S. Deng, Y. Hwang. Applying neural networks to the solution of forward and inverse heat conduction problems[J]. International Journal of Heat and Mass Transfer, 2006, 49:4732-4750.
    [42]孙金金,朱彤,吴家正.神经网络法求解墙体传热系数关键输入变量的分析[J].新型建筑材料, 2006(12):61-63.
    [43] Raudensky M, Horsky J, Krejsa J, Slama L. Usage of artificial intelligence methods in inverse problems for estimation of material parameters[J]. International Journal of Numerical method heat fluid flow, 1996, 6(8):19 -29.
    [44]杨晨,高思云.基于热传导反问题的各向异性材料热物性预测方法[J].化工学报, 2007, 58(6):1378-1374.
    [45] Jaw-Yeong Chiang, Chao-Kuang Chen. Application of grey prediction to inverse nonlinear heat conduction problem[J].International Journal of Heat and Mass Transfer, 2008, 51:576-585.
    [46]吴洪潭.二维对流换热反问题的共轭梯度法求解[J].宇航计测技术, 2005, 4:25-28.
    [47] Huang C H. Inverse heat conduction problem of estimating boundary fluxes in an irregular domain with conjugate gradient method[J]. International Journal of Heat and Mass Transfer, 1998, 34(1):47-54.
    [48]李斌,刘林华.一种基于边界元离散的导热问题几何边界识别算法[J].中国电机工程学报, 2008, 28(20):38-43.
    [49]李斌,刘林华.基于双倒易边界元法的非稳态导热几何边界识别[J]. 2009, 29(05): 66-71.
    [50]吴洪潭,崔志尚,许祝安.一种基于反问题算法的管道壁面热流密度测量技术[J].计量学报, 2007, 28(3):237-239.
    [51]张有为,李辉等.采用共扼梯度法的管内壁温度导热反问题求解[J].工程热物理学报, 2009, 30(7):1188-1190.
    [52]范春利,孙丰瑞,杨立.二维缺陷的定量识别技术研究[J].热科学与技术, 2008, 7(03):262-267.
    [53]范春利,孙丰瑞,杨立.基于红外测温的圆管内壁不规则边界的识别算法研究[J].热科学与技术, 2006, 5(02):112-117.
    [54]张建涛.基于红外测温技术的工业热设备内部缺陷诊断方法[D].重庆:重庆大学大学, 2008.
    [55]杨海天,胡国俊.共轭梯度法求解多宗量稳态传热反问题[J].应用基础与工程科学学报, 2002, 10(2):174-181.
    [56]杨海天,胡国俊,薛齐文.共轭梯度法求解稳态传热组合边界条件反问题[J].大连理工大学学报, 2003, 43(2):136-140.
    [57]周一工. 600MW锅炉水冷壁温度场计算外边界条件的确定[J].锅炉制造, 1999, 1:1-7.
    [58]杨世铭,陶文铨.传热学(第三版)[M].高等教育出版社, 1998.
    [59]盛春红,陈听宽.矩形鳍片膜式水冷壁辐射角系数的求解[J].锅炉技术, 1997, 1:8-11.
    [60]陶文铨.数值传热学(第二版)[M].西安:西安交通大学出版社, 2001.
    [61] Smith G D. Numerical solutions of partial differential equations (finite different methods). 3rded. Oxford: Clarendon Press, 1967.
    [62]孔祥谦.有限元法在传热学中的应用(第三版)[M].北京:科学出版社, 1998.
    [63]盛春红,陈听宽.膜式水冷壁温度场分布的数值计算[J].热能动力工程,1998,13(73):61-65.
    [64]董卫江.超超临界锅炉膜式水冷壁危险点壁温在线监测研究[D].北京:华北电力大学, 2005.
    [65]傅英定,成孝予,唐应辉.最优化理论与方法[M].北京:国防工业出版社, 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700