用户名: 密码: 验证码:
复杂模型分割制造关键技术研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界经济一体化和制造全球化的发展,制造业市场竞争将更加激烈,用户需求趋于多样化和个性化,产品更新周期不断加快,从而促进了快速设计与制造技术的发展。如快速原型制造、分割制造等先进制造技术不断涌现,并迅速应用于制造业中。
     在一定条件下,由于加工资源、加工成本和加工时间等限制,复杂的产品或模型不能作为一个整体进行加工,需要将其分割成更小、更简单的块分别加工,再将各个块组合以得到所需的零件或模型,该项技术称为分割制造技术。分割制造技术可解决待加工零件/模型因结构复杂、体积过大(超出材料尺寸或机床加工范围)等造成的整体加工困难、材料利用率低等问题,已成为近年来学术界和产业界关注的热点。该技术具有降低加工设备要求、提高生产率,缩短新产品的设计与试制周期,降低开发费用等优点,应用十分广泛,不但可用于各种复杂零件或其原型件的加工,还可用于快速模具设计与制造。
     现有研究中通常将模型的所有组成面作为研究对象,或者将整体模型三角面片化,以面片作为研究对象,这样的处理会降低计算效率和计算精度。结合近年来特征领域所取得的进展,本文首次在分割制造技术中引入特征的概念,以特征作为研究对象,无论是分割面的获取还是约束条件的生成都是面向特征的,这不但可以在很大程度上减少计算量,提高计算精度,同时有利于后续制造过程中CAD/CAM的集成。
     可加工性分析是一个贯穿于整个分割过程中的重要部分,是判断分割与否的决定性因素。当模型不具有可加工性时,需要对其进行分割;在分割的过程中,各个分割块也要递归进行可加工性分析,直至所有的分割块都具有可加工性。本文以可视性分析代替可加工性分析,提出基于特征的全局可视性分析算法。该算法应用VMap可视性分析方法获得各个特征的局部可视性,并对具有局部可视性的特征进一步分析,将局部可视性分析扩大到全局可视性的范围,使可加工性分析结果更加符合生产的需要。
     为了获得最佳分割方案,本文首次提出分割方案多目标优化算法。首先在保证可加工性的前提下,充分考虑影响生产成本的各种因素,建立包括分割块数量、材料利用率(切削体积大小)、加工特征数和分割面积(组合面积)的目标函数,以及用于分割过程中的可加工性约束条件;然后采用遗传算法实现最优分割方案的获取;最后提出合并算法,通过冗余分割块的合并,进一步减少分割方案中分割块数量、加工特征数量以及分割面积。同时,对新兴的多块模具设计进行了探讨,并实现了自动多块模具设计。
     基于上述关键技术研究,利用VC++和UG/OPEN API,在UG NX平台上实现了复杂模型分割方案优选系统的开发。通过典型的零件分割和多块复杂模具设计实例验证了系统的合理性和有效性。
With the development of world economic integration and manufacture globalization, competition of manufacture market is more intensive than ever. Requirements of customers are tending to diversification and individuation and the life span of a product tends to be shorter than before. All these promote the development of rapid design and rapid manufacture. More and more advanced manufacture technologies, such as rapid prototyping and partitioning manufacture, spring up and are applied speedily.
     Subjecting to manufacturing resource, cost and lead time constraints, sometimes,a complex product or model can not be machined as a whole, and need to be partitioned into a number of smaller and simpler manufacturable pieces. After manufactured,the individual pieces can be assembled to get the original product or model. That technology is called partitioning manufacture technology. It can reduce requirements for process equipment, shorten the periodicity of design/trial manufacture and decrease development cost, and it also can be used in industry widely, not only in various complex parts or its prototype processing but also in the automation of mold design and manufacture.
     In previous researches, all composed faces of the model are taken as the research objectives or triangle facets modeling is built first and triangle facets are treated as objectives. These methods will result in low computational efficiency and for triangle facets modeling is approximate model, it will cause low precision. Considering the achievement of feature technology during last decades, features are introduced into partitioning manufacture as the objective investigated for the first time and it can avoid the above shortages. At the same time, features introduction is propitious to CAD/CAM integration.
     Machinability analysis is an important part across partitioning process and is the crucial factor to decide whether to execute partitioning. In this paper, visibility analysis is instead of machinability analysis and a global visibility analysis algorithm is proposed. Firstly, local visibility is obtained using VMap ; and then each feature with local visibility will be analysis further. Global analysis result can fit for production equipment.
     For the first time, a multi-objective optimal algorithm is proposed to get the optimum partitioning scheme. In the algorithm partitioning pieces number, material utilization, machining features and partitioning area are considered synchronously to build objective function. Genetic algorithm is taken to implement the multi-objective optimal. In this paper, a combination algorithm is introduced to reduce the partitioning pieces number, machining features and partitioning area further. Combination of redundancy partitioning piece is propitious to optimal partitioning schemes. At the same time, an emerging multi-piece mold design is investigate and automatic mold design is realized in this paper.
     Based on the above key technologies research, using Visual C++6.0 and UG/OPEN API on the platform of UG NX, a prototype system of intelligent CAPP and integration with CAD/CAM in mold digital manufacturing is developed. Two typical parts of plastic mold are used to validate the feasibility and validity.
引文
[1] http://www.zgbfw.com/info/pump-news-326141.html.
    [2] http://baike.machine365.com/doc.php?action=view&docid=6396.
    [3]许亚南.试论我国先进机械制造技术的特点及发展趋势[J].科技创业月刊, 2005, 11: 80-81.
    [4]焦振学.先进制造技术[M].北京:北京理工大学出版社, 1997.
    [5]陈永亮,徐燕申,牛文铁,等.机械产品快速响应设计/制造的关键技术及其应用[J].航空制造技术, 2003, 4: 67-71.
    [6] http://www.glue.umd.edu/~skgupta/Multi-PieceMolds.htm.
    [7]李德群,张宜生.模具企业数字制造技术的现状与发展. http://www.e-works.net.cn/-ewkArticles/Category174/Article15095.htm, 2003.
    [8] http://www.2mould.com/News_show/2006/3/9/11794.html.
    [9]吴丽萍,施法中,许鹤峰.模具先进制造技术集成的探讨[J].锻压技术, 2000, 25(6): 54-56.
    [10]钟佩思,沈友徽,马静敏,模具先进制造技术发展趋势综述[J].模具制造, 2005, 3: 1-4.
    [11]居乃仁.第七届国际模展模具现代化制造技术综述[J].电加工与模具, 1998, 12: 1-4.
    [12]中国模协技术委员会专家组.第八届国际模展模具技术综述[J] .电加工与模具, 2000, 4: 6-12.
    [13] Kim C, Vance JM. Collision detection and part interaction modeling facilitate immersive virtual assembly methods[J]. Journal of Computing and Information Science in Engineering, 2004, 4(6): 83-90.
    [14] Mok CK, Chin KS, Hongbo, et al. An internet-based intelligent design system for injection moulds [J]. Robotics and Computer-Integrated Manufacturing, 2008, 24: 1-15.
    [15] Li MB, Wang JG, Wong YS, et al. A collaborative application portal for the mould industry[J]. International Journal of Production Economics, 2005, 96: 233-247.
    [16] http://oa.yxx.com.cn/info/detail/5-7813.html.
    [17] Gerth RJ. The US, Japanese automotive die industry[J]. Aachener Werkzeug und Formenbau-Kolloquium, 2002, 10: 1-2.
    [18] http://www.machineryinfo.net/news_info/30438.shtml.
    [19] Shin H, Olling GJ, Chung YC. An integrated CAPP/CAM system for stamping die pattern machining[J]. Computer-Aided Design, 2003, 25(2): 203-213.
    [20]赵毅.快速成型与快速模具技术在制造领域中的应用[J].航空制造技, 2007, 2: 53-55.
    [21]王运赣.快速成形技术[M].武汉:华中科技大学出版社, 1999.
    [22]王学让,杨占尧.快速成型理论与技术[M].北京:航空工业出版社, 2001.
    [23] Huang J. Accessibility-driven spatial partitioning: A step towards automated design of multi-piece molds [D]. University of Maryland, 2002.
    [24] http://www.mbtmag.com.cn/BBS/Default.htm?url=http%3A//www.mbtmag.com.cn/BBS/ReplyReply.aspx%3Fid%3D23574.
    [25]冯培锋,陈扼西,王仲仁.形状沉积制造及其应用[J].制造技术与机床, 2003, 7: 37-40.
    [26] Merz R, Prinz FB, Ramaswami K, et al. Shape deposition manufacturing. In: Proceedings of the Solid Freeform Fabrication Symposium. University of Texas at Austin, 1994: 1-8.
    [27] Merz R. Shape deposition manufacturing [D]. Institut fur Allgemeine Elektrotechnik und Elektronik, Technische Universitat Wien, 1994.
    [28] Paul Kenneth Wright. 21世纪制造[M].北京:清华大学出版社, 2002.
    [29] http://www.cs.cmu.edu/~sdm/.
    [30]管文华,肖爱武.快速原型技术现状发展趋势研究[J].现代机械, 2005, 3: 65-66.
    [31]闫光荣,等.数字化模具制造技术[M].北京:化学工业出版社, 2001.
    [32]王秀峰,等.快速原型制造技术[M].北京:中国轻工业出版社, 2001.
    [33]徐达,宋玉华,张人洁,等.基于快速成形技术的汽车覆盖件金属模具制造[J].清华大学学报, 2000, 40(5): 1-4.
    [34]刘亚雄,季涤尘,卢秉恒.基于快速原型的个体匹配骨骼造型方法[J].西安交通大学学报, 2002, 3: 47-51.
    [35]黄伯云,李笃信.金属注射成形技术研究进展[J].粉末冶金材料科学与工程, 2002, 7(1): 24-30.
    [36]张嘉易,刘伟军,王天然.快速原型分层方案的优化及仿真研究[J].高技术通讯, 2004, 14(6): 55-59.
    [37]周岩,卢清萍,郭戈,等.快速原型技术(RP)中的自适应分层[J].昆明理工大学学报, 2001, 26(4): 51-54.
    [38] Ramaswami K, Yamaguchi Y, Fritz B, et al. Spatial Partitioning of Solids for Solid Freeform Fabrication. In: Symposium on Solid Modeling and Applications, Atlanta, Georgia, United States, 1997, 346-353.
    [39] Allen S, Dutta D. On the computation of part orientation using support structures in layered manufacturing. In: Solid Freeform Fabrication Symposium 1994, University of Texas, Austin, 1994, 259-269.
    [40] Frank D, Fadel G. Preferred direction of build for rapid prototyping processes. In: Proceedings of the Fifth International Conference on Rapid Prototyping, University of Dayton, 1994, 191-200.
    [41] Sreeram PN, Dutta D. Determination of optimal orientation based on variable slicing thickness in layered manufacturing. In: Proceedings of international mechanical engineering congress, SanFrancisco, CA, 1995, 221-226.
    [42] Thompson DC, Crawford RH. Optimizing part quality with orientation. In: Solid Freeform Fabrication Symposium 1995, University of Texas, Austin, 1995, 362-368.
    [43] Gupta SK, Tian Q and Weiss L. Finding Near-Optimal Build Orientations for Shape Deposition Manufacturing. In: Proceedings of Sculptured Surface Machining Conference, Auburn Hills, MI, 1998, 9-11.
    [44] Chang Y C, Pinilla JM, Kao JH, et al. Automated layer decomposition for additive/subtractive solid freeform fabrication. In: Proceedings of the Solid Freeform Fabrication Symposium, Austin: University of Texas, 1999, 111-120.
    [45]李彦蓉,杜言利,肖作义.镶拼式冲模设计[J].模具技术, 2000, 3: 41-43.
    [46] http://www.lost-foam.com.cn/.
    [47]卢晨,丁文江,翟春泉,等.铸造模样计算机辅助快速制造系统[J].铸造, 1997, 3: 32-35.
    [48]叶升平,管士飞,熊凯,等.消失模铸造DN1200碟阀阀体实践[J].现代铸铁, 2004, 5: 48-50.
    [49]叶升平.消失模铸造图片集[M].武汉:华中科技大学出版社. 2006.
    [50] Krishnan S, Magrab EB. A new approach to mold design using manufactureable entities. In: Proceedings of the design for manufacturability symposium. In: ASME Winter Annual Meeting, Dallas, TX, 1997, 278-288.
    [51] Dhaliwal S, Gupta SK, Huang J, et al. A feature based approach to automated design of multi-piece sacrificial molds[J]. ASME Journal of Computing and Information Science in Engineering, 2001, 1(3):225-234.
    [52] Killander LA. Future direct manufacturing of metal parts with freeform fabrication [J]. CIRP Annals Manufacturing Technology, 1995, 44(1): 451-454.
    [53] Horvath I, Kovacs Z, Vergest JSM, et al. Free-form cutting of plastic foams: a new functionality for thick-layered fabrication of prototypes. In: Proceedings of the Time Compression Technologies Conference, London, 1998, 13-15.
    [54] CAM-LEM, Inc. Computer aided manufacturing of laminated engineering materials. CAM-LEM. http://dora.eeap.cwru.eud/ camlem/camlem.html.
    [55] LaserCAMM, Inc. LaserCAMM. http://www.lasercamm.com.
    [56] Bohlander T. Rapid prototyping report. In: Proceedings of the 6th International Conference on Rapid Prototyping, University of Dayton, 1995, 3-5.
    [57] Hope RL, Jacobs PA, Roth RN. Rapid prototyping with sloping surfaces [J]. Rapid Prototyping, 1997, 3(1): 12-19.
    [58] Chen YH, Song Y. The development of a layer based machining system [J]. Computer-Aided Design,2001, 33(4):331-342.
    [59] http://www.newslettersonline.com/user/user.fas/s=63/fp=3/tp=47?T=open_issue,7168,Y&P=issue.
    [60] Kai CC, Fai LK. Rapid prototyping in Singapore: 1988 to 1997[J]. Rapid Prototyping, 1997, 3(3):116-119.
    [61] Junghoon H, Kunwoo, Lee ZH. Hybrid rapid prototyping system using machining and deposition [J]. Computer-Aided Design, 2001, 34: 741-754.
    [62] Hu Z, Lee K, Hur J. Determination of optimal build orientation for hybrid rapid prototyping[J]. Journal of Materials Processing Technology, 2002, 130-131: 378-383.
    [63] Ki D, Lee K. Part decomposition for die pattern machining[J]. Journal of Materials Processing Technology, 2002, 130-131:599-607.
    [64] Chen Y, Rosen DW. A region based approach to automated design of multi-piece molds with application to rapid tooling[J]. Proceedings of the ASME Design Engineering Technical Conference, 2001, 1: 613-623.
    [65] Chen Y, Rosen DW. A reverse glue approach to automated construction of multi-piece molds[J]. Journal of Computing and Information Science in Engineering, 2003, 3(3): 219-230.
    [66] Chang YC, Pinilla JM, Kao J H, et al. Automated layer decomposition for additive/subtractive solid freeform fabrication. In: Proceedings of the Solid Freeform Fabrication Symposium, Austin, University of Texas, 1999, 111-120.
    [67] Huang J, Gupta SK, Dhaliwal S, et al. Geometric algorithm for automated design of multi-piece sacrificial molds. In: Proceedings of the Symposium on Solid Modeling and Applications, University of Maryland, 2001, 309-320.
    [68] Dhaliwal S, Gupta SK, Huang J, et al. A feature based approach to automated design of multi-piece sacrificial molds [J]. ASME Journal of Computing and Information Science in Engineering, 2001, 1(3): 225-234.
    [69] Huang J, Gupta SK, Stoppel K. Generating sacrificial multi-piece molds using accessibility driven spatial partitioning [J]. Computer Aided Design, 2003, 35(13):1147-1160.
    [70] Huang, Jun, Gupta, Satyandra K. Accessibility driven spatial partitioning for generating sacrificial multi-piece molds. In: Proceedings of the ASME Design Engineering Technical Conference, 2002, 3: 191-203
    [71] Gouker RM, Gupta SK, Bruck HA, et al. Manufacturing of multi-material compliant mechanisms using multi-material molding [J]. International Journal Advanced Manufacture Technology, 2006, 30: 1049-1075.
    [72] Kumar M, Gupte SK. Automated design of multi-stage molds for manufacturing multi-material objects [J]. ASME Journal of Mechanical Design, 2002, 124(3): 399-407.
    [1]刘极峰.计算机辅助与制造[M].北京:高等教育出版社, 2004.
    [2] Chen LL, Woo TC. Computational geometry on the sphere with applications to automated machining [J]. ASME Journal of Mechanical Design, 1992, 1(14): 288-295.
    [3]苏步青.微分几何学[M].北京:高等教育出版社, 1988.
    [4]陈省身,陈维桓.微分几何讲义[M].北京:北京大学出版社, 1983.
    [5] Singh N. Systems Approach to Computer-Integrated Design and Manufacturing [M]. New York: John Wiley & Sons, 1996.
    [6] Hitomi K. Manufacturing Systems Engineering [M]. London: Taylor & Francis, 1996.
    [7] Back T. Evolutionary Algorithms in Theory and Practice[M]. New York: Oxford University Press, 1996.
    [8] Schwefel H. Evolution and Optimum Seeking[M]. New York: John Wiley & Sons, 1994.
    [9] Fogel D, Ghozeil A. Using fitness distributions to design more efficient evolutionary computations. In: Proceedings of the Third IEEE Conference on Evolutionary Computation. Nagoya, Japan, 1996, 11-19.
    [10] Holland J. Adaptation in Natural and Artificial Systems[M]. Ann Arbor: University of Michigan Press, Cambridge, MA: MIT Press, 1992.
    [11] Rechenberg I. Evolution strategie: Optimierung Technisher Systeme nach Prinzipien des Biologischen Evolution. Stuttgart: Fromman-Hozlboog Verlag, 1973.
    [12] Fogel LJ, Owens AJ, Walsh MJ. Artificial Intelligence through Simulated Evolution [M]. New York: Wiley, 1966.
    [13] Kazo J. R. Genetic Programming [M]. Cambridge, MA: MIT Press, 1992.
    [14]马立肖,王江晴.遗传算法在组合优化问题中的应用[J].计算机工程与科学, 2005, 27(7):72-73.
    [15]樊晓平,徐建闽,毛宗源.受限柔性机器人基于遗传算法的自适应模糊控制[J].自动化学报2000, 26(1):61-67.
    [16] Goldberg DE. Genetic algorithms in search: optimization and machine learning[M]. Reading, MA: Addison-Wesley, 1989.
    [17]王小平.遗传算法——理论、应用与软件实现[M].西安:西安交通大学出版社, 1998.
    [18] Deb K. Optimization for Engineering Design: Algorithms and Examples [M]. New Delhi: Prentice-Hall, 1995.
    [19] Steuer RE. Multiple Criteria Optimization: Theory, Computation, and Application [M]. New York: John Wiley & Sons, 1986.
    [20] Hwang C L, Yoon K. Multiple attribute decision making: methods and applications[M]. New York: Springer-Verlag, 1981.
    [21] Cheng R., Gern M, Tsujimura Y. A tutorial survey of job-shop scheduling problems using genetic algorithms, Part I: representation[J]. International Journal of Computers and Industrial Engineering, 1996, 30:983-987.
    [22] Cheng R, Gen M. An Adaptive Superplane Approach for Multiple Objective Optimization Problems[R]. Ashikaga Institute of Technology, 1998.
    [23] Gen M, Cheng R. Interval programming using genetic algorithms[J]. Intelligent Automation and Control, 1996, 4:243-248.
    [24] Gen M, Cheng R. Optimal design of system reliability under uncertainty using interval programming and genetic algorithm[R]. Technical report, ISE94-6, Ashikaga Institute of Technology, Ashikaga, Japan, 1994.
    [25] Yang X, Gen M. Evolution program for bicriteria transportation problem. In: Proceedings of the 16 th International Conference on Computers and Industrial Engineering, 1994, 451-454.
    [26] Zheng D, Gen M, Cheng R. Multi-objective optimization using genetic algorithms[J]. Engineering Valuation and Cost Analysis, 1999, 2: 303-310.
    [27]孙家广,陈玉健,辜凯宁.计算机辅助几何造型技术[M].北京:清华大学出版社, 1994.
    [28]蔡瑞英,李长河.人工智能[M].武汉:武汉理工大学出版社, 2003.
    [29]邢传鼎,杨家明,任庆生,等.人工智能原理及应用[M].上海:东华大学出版社, 2005.
    [1] Seltes JW. A Feature-based representation of parts for CAD[D]. ME Department, MIT, 1978.
    [2] Pratt MJ and Wilson PR. Requirements for support of from features in a solid modeling systems [R]. R-85-ASPP-OI CAM-I Inc, Arlington. Texas USA, 1985.
    [3] CAM-I’s illustrated glossary of workpiece form features[R]. No.R-80-ppp-02.1, CAM-I Inc., Arlington, Texas USA, 1980.
    [4] Shah JJ, Rogers MT. Feature based modeling shell: design and implementation. In: Proceedings of 1988 ASME international, computers in engineering.1988, 1: 255-261.
    [5] Shah JJ, Rogers M T. Functional requirements and conceptual design of the feature-based modeling system [J]. Computer-Aided Engineering Journal, 1988, 2:9-15.
    [6] Batanov DN, Lekova AK. Data and knowledge integration through the feature-based approach[J]. Artificial Intelligence in Engineering, 1993, 3: 77-83.
    [7] Kang TS, Nnaji BO. Feature representation for automatic process planning systems[J]. Journal of Manufacturing Systems, 1993, 12(2): 133-144.
    [8] Cunningham J, Dixon JR. Designing with features: the origin of features. In: Proceedings of 1988 ASME international, computers in engineering. 1988, 1: 237-243.
    [9]周雄辉.模具计算机集成制造及其关键技术的研究[学位论文].上海交通大学博士学位论文, 1994.
    [10]许国玉,单忠臣,刘志强.回转体零件特征建模及信息提取[J].哈尔滨工程大学学报, 2002, 23: 106-109.
    [11] Bidarra R, Bronsvoort WF. Semantic feature modeling[J].Computer-Aided Design, 2001, 32(3): 201-205.
    [12]程凯,李任江,李静.计算机辅助设计技术基础[M].北京:化学工业出版社, 2005.
    [13]刘子建,叶南海.现代CAD基础与应用技术[M].湖南:湖南大学出版社, 2004.
    [14] Kailash J, Gurumoorthy B. Multiple feature interpretation across domains[J]. Computers in industry, 2000, 42: 13-32.
    [15] Han JH. On multiple interpretations. In: Symposium on Solid Modeling and Applications, Atlanta GA USA, 1997, 311-321.
    [16] Choi BK, Barash MN, Anderson DC. Antomatic recogonition of machined surfaces from a 3D solid model[J]. Computer-Aided Design, 1984, 16: 82-86.
    [17] Pande SS, Prabhu BS. An expert system for automatic extraction of machining features and tooling selection for automats[J]. Computer-Aided Engineering Journal, 1990, 8: 99-103.
    [18] Madurai S, Lin L. Rule-based automatic part feature extraction and recognition from CAD data[J]. Computers Industrial. Engineering, 1992, 22(1): 49-62
    [19] Prabhakar S, Henderson MR. Automatic form-feature recognition using neural-network-based techniques on boundary representations of solid models[J]. Computer-Aided Design, 1992, 24(7): 381-392.
    [20] Wang MT. Manufacturing feature extraction and machined volume decomposition in a computer-integrated feature-based design and manufacturing planning environment[J]. Computers inIndustry, 1993, 23: 75-86.
    [21]顾小锋. 2.5维零件特征识别及其应用研究[学位论文].西北工业大学硕士学位论文, 2006.
    [22]张凤军.具有健壮性的加工特征识别系统研究及其应用.浙江大学博士后研究工作报告, 2002.
    [23]郑德涛.集成制造中的特征映射技术[M].北京:机械工业出版社, 1999.
    [24] Joshi S, Chang TC. Graph-Based Heuristics for Recognition of Machined Features from a 3D Solid Model[J]. Computer-Aided Design, 1988, 20(2): 58-66.
    [25] Gao S, Shah JJ. Automatic recognition of interacting machining features based on minimal condition subgraph[J]. Computer-Aided Design, 1998, 30(9): 727-739.
    [1] Lozano PT. Spatial planning: A configuration space approach [J]. IEEE Transactions on Computers, 1983, 32(2): 108-118.
    [2]尹周平,丁汉,熊有伦.基于可视锥的可接近性分析方法及其应用[J].中国科学, 2003, 11: 979-988.
    [3] Chen LL, Woo TC. Separating and intersecting spherical polygons: Computing machinability on three-, four-, and five-axis numerically controlled machines[J]. ACM Transaction on Graphics, 1993, 12(4): 305-326.
    [4] Kwcon S, Medciros DJ. Part orientations for CMM inspection using dimensioned visibility maps[J].Computer-Aided Design, 1998, 30(9): 741-749.
    [5] Lim CP, Menq CH. CMM feature accessibility and path generation[J]. International Journal of Production Research, 1994, 32(3):597-618.
    [6] Chen LL, Chou SY, Woo TC. Parting directions for mould and die design[J]. Computer Aided Design, 1993, 25(12): 762-768.
    [7] Yin ZP, Ding H, Xiong YL. Mouldability analysis for near-net-shape manufactured parts using freedom cones[J]. International Journal of Advanced Manufacturing Technology, 2000, 16(3): 169-175.
    [8]朱喜林,何凤江,高春甫.模具分模面的计算机辅助设计[J].吉林工业大学自然科学学版, 1999, 29: 30-34.
    [9]尹周平.面向虚拟原型的产品特征建模和可接近性分析[学位论文].华中理工大学博士学位论文, 2000.
    [10] Woo TC. Visibility maps and spherical algorithms[J]. Computer-Aided Design, 1994, 26(1): 6-16.
    [11]熊有伦.点接触约束理论与机器人抓取的定性分析[J].中国科学(A辑), 1994, 24(8): 874-883.
    [12] Spyridi AJ, Requicha AG. Accessibility analysis for the automatic inspection of mechanical parts by coordinate measuring machines. In: Proc. of IEEE Int. Conf. on Robotics and Automation, Cincinnati, USA, 1990, 1284-1289.
    [13] Gan, J Gah K, Spherical maps: their construction, properties and approximation http://deepblue.lib.umich.edu/handle/2027.42/4988.
    [1]康鹏工作室编著. UG NX3三维建模精彩实例导航[M].北京:机械工业出版社, 2005.
    [2]林锉云.多目标优化的方法和理论[M].长春:吉林教育出版社, 1992.
    [3]玄光男.遗传算法与工程优化[M].北京:清华大学出版社, 2004.
    [4]周明.遗传算法原理及应用[M].北京:国防工业出版社, 1999.
    [5]王会凤,周雄辉.一种模具脱模方向自动判定及优选算法[J].中国机械工程, 2008, 19(1): 103-107.
    [1]黄翔,李迎光. UG应用开发教程与实例精解[M].北京:清华大学出版社, 2005.
    [2]董正卫,田立中,付宜利. UG/OPEN API编程基础[M].北京:清华大学出版社, 2002.
    [3]夏天,吴立军. UG二次开发技术基础[M].北京:电子工业出版社, 2005.
    [4]李俊,于良耀,班学刚,等. Visual C++6.0实用教程[M].北京:人民邮电出版社, 2000.
    [5]陈浩杰,董晓华. Visual C++6.0程序设计[M].北京:科学技术出版社, 2005.
    [6]王会凤,陈巍,周雄辉.模具自动设计与分割制造[C].第十届全国塑性工程学术年会、第三届国际塑性加工先进技术研讨会论文, 2007.
    [7] Priyadarshi AK, Gupta SK. Geometric algorithms for automated design of multi-piece permanent molds[J]. Computer-Aided Design, 2004, 36(3): 241-260.
    [8] Huang J. Accessibility-driven spatial partitioning: A step towards automated design of multi-piece molds [D]. University of Maryland, 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700