用户名: 密码: 验证码:
城市河流生态环境需水优化配置理论及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市化进程的加快,城市水环境恶化越来越严重。对城市水环境的有效管理是当前水资源与水环境保护工作面临的难题和新的挑战。本文从理论分析、数学模型、计算机模拟以及实际应用等多角度,对河流生态环境需水的基础理论、实现途径、仿真检验等进行了系统研究,以期为实现城市水环境的质量改善提供技术支持。
     本文在国内外河流生态环境需水量大量文献研究的基础上,深入探讨了城市河流生态环境需水量的概念和内涵、理论基础、研究范畴及特征,并界定了其组成部分。将城市河流生态环境需水量定义为维持城市河流生态环境系统功能不再恶化并逐渐得到改善所消耗的水资源量,或生态环境系统发挥期望的生态环境功能所需的水量;指出城市河流生态环境需水是基于城市生态环境学理论、水文循环原理和水环境承载力理论的研究;界定城市河流环境需水量由水生生物栖息需水量、河流输沙需水量、水盐平衡需水量、污染物稀释净化需水量、补充蒸发水量和补给地下水量组成,降雨引起的径流量可以作为河流生态环境水的补给水量计算,并对上述几个子模型进行组合,列出组合公式。将该计算模型应用于大庆市黎明河的研究结果表明,黎明河的理论生态环境需水量随时间和空间变化,各河段平均环境需水量分别为4.50 m~3/s、3.80 m~3/s和4.59 m~3/s。
     在河流生态环境需水理论的基础上,初步建立了河流生态环境需水优化配置体系。剖析了环境需水优化配置改善水环境的概念内涵、机理、主要研究任务、优化配置原则,并对其适用条件以及进行实际调度需要考虑的问题进行了详细探讨。对优化配置的目标辨识和数学模型进行了研究,建立了模糊多目标规划的河流生态环境需水优化配置模型,并采用遗传算法对其进行求解。该数学模型应用于大庆市黎明河的结果表明,为实现水资源的节约、综合效益损失和水环境容量三个目标达到协调,河流的生态环境水优化配置水量为3.07 m~3/s,比单纯的理论生态环境水量减少33.1%。
     为巩固环境需水配置改善河流水环境的效果,还应该重视周边污染源的有效控制,将污水处理厂的规划和环境需水优化配置相结合共同改善河流水环境,建立了灰色非线性规划的河流生态环境需水优化配置数学模型。该模型以规划的污水处理厂中污染物质的去除率以及水库湖泊向河流中的补充水量作为模型的决策变量,总的运行成本最小化为决策目标,保证河流水质达标。采用了遗传算法对该灰色非线性规划模型进行求解。将所建灰色非线性规划模型应用于大庆市黎明河流域的规划中,获得了较满意的污水处理厂和湖泊水库释放水量的规划结果。
     为在更广义的范围内实现河流环境需水优化配置并检验其工程效果,对城市河流生态环境需水优化配置的动态仿真进行了研究。根据实际的水环境抽象出与之近似的物理组件模型和概念组件模型,并研究了其基本属性和方法。其中物理组件模型包括构成和影响水环境的河流、湖泊、水库、以及污水处理厂等实体组件模型;概念组件模型包括与水量有关的降雨径流模型对象、人工调节河流的水动力学仿真对象、与水质相关的水质模型对象和水质仿真对象以及水污染控制的水质控制策略对象和水质级别对象等。基于有向无环图将建立的各物理组件模型构建为流域水环境网络模型图,研究了相应的运行和仿真算法,建立了流域河流环境需水优化配置的仿真运行机制。进行了流域水环境质量改善仿真系统的总体设计,包括三个主要子模块:水量仿真模块、水质仿真模块和水环境质量改善措施仿真和评估模块。并对系统数据库进行了初步设计。
With the acceleration of the urbanism, water environment in the urban is becoming worse and worse. It is a new challenge for the environmental managers to manage and protect the urban water environment effectively. In this paper, the environmental water requirements of the urban rivers have been discussed from multi-dimension of theory analysis, mathematic modelling, computational simulation and the real-world application, which could support sciencitifcly the improvement of water environment.
     Based on a great deal of the literatures about eco-environmental water requirements of the urban rivers in the domestic and oversea, its theory has been researched comprehensively, which includes the concept, theory foundation, investigative category and features. And then the composition of environmental water requirements has been defined based on the functioning of the rivers. The eco-environmental water requirements of the urban rivers has been defined as the necessary water amount in the river to maintain the well-balanced ecological structures and the basic water environmental functions undestroyed with the setting standards of water functions. The research of eco-environmental water requirements has been performed based on the enviro-ecology theory, water cycle principle and water environment carrying capacity theory. The composing of the eco-environmental water requirements of the urban rivers includes water quantities for aquatic inhabit, sand transportation, water-salt balance, dilution and self-purification, evaporation and seeping supplement. The flow rate from rainfall-runoff might be looked upon the supply to the urban rivers. In this charter, the calculating formulas of the above modeling have been established, and the integrated formula, too. The theorical environmental water requirements for the Liming River-basin in Daqing City have been studied. As a result, the eco-environmental water requirements change spacially and temporally, and the average water amount needed in the three river sections is 4.50 m~3/s, 3.80 m~3/s and 4.59 m~3/s, respectively.
     The optimal allocation system of the eco-environmental water requirements has been established on the basis of its theory research. The connotation, mechanism, principle, dominating tasks and suitable conditions for application of the optimal allocation of the eco-environmental water requirements for improving water environment have analyzed. A fuzzy multi-objective programming modeling for the optimal allocation of environmental water requirements has been developed, and genetic algorithm has been used to sovle it. For the oprimal allocation of environmental water requirements, gerenal benefit loss and assimilative capacity should be considered besides the water quantity objective. Through the operation of the multi-objective programming modeling, the optimal water allocation for Liming River, that is 3.07m~3/s, has been obtained, which is cut down 33.1% from the theory water needed.
     In order to maintain the effect of environmental water allocation to improve the water environment, the pollutants surround should be controlled effectively. Therefore, the further modeling for optimal environmental water allocation has been established based on the grey theory and the planning of wastewater treatment plants in the river basin. In this modeling, the pollutants removel efficency of each plant and the water distribution from each reservoir and lake are looked upon the decision variables, and the minimum of the total cost is regarded as the decision objective, which include the establishment and operation cost of wastewater treatment plants and the water distribution cost from the reservoirs. At the some time, the solution of the modeling using by genetic alghrothm has been studied. The modeling based the grey theory and the planning of wastewater treatment plants has been applied to optimize the water environment management in the Liming River basin, and the satisfied results have been obtained.
     To research eco-environmental water requirements allocation in the wide scope and verify the effect of the project timely, the water environment simulation system based on object-oriented techniques has been established. The physical entities of the river basin and the conceptual entities of its water quality simulation and control have been represented through objects. Their basic attributes and methods have been developed. The physical entities include the correlative rivers, lakes, reservoirs and wastewater treatment plants, and the conceptual entities include the low flow frequency object, hydrodynamics simulation object, water quality object, water quality simulation object, water pollution control strategies object and the water quality estimation object. The network modeling of water environment has been established based on the directed acycling graph theory. The run mechanism and simulation algorithm has been developed. The general design of the simulation system of water environment improvement has been done, which makes up of water quantity simulation, water quality simulation and water pollution control strategies simulation. Preliminary design of the database has been done.
引文
1 R. S. Griphin. Dam Operation for Environmental Water Releases: the Case of Osborne Dam, Save Catchment, Zimbabwe. Physics and Chemistry of the Earth. 2003, (28): 985~993
    2 D. A. Hughes, J. O'Keeffe, V. Smakhtin, et al. Development of An operating Rule Model to Simulate Time Series of Reservoir Releases for Instream Flow Requirements. Water SA.1997, 23(1): 21~30
    3 R. J. Nathan. T. A. McMahon. Evaluation of Automated Techniques for Base Flow and Recession Analysis. Water Research.1990, (26): 1465~1473
    4 P. H. Gleick. Basic Water Requirements for Human Activities: Meeting Basic Needs. Water International. 1996, 21: 83~92
    5 P. H. Gleick. Water in Crisis: Paths to Sustainable Water Use. Ecological Applications. 1998, 8(3): 571~579
    6 B. D. Richter, J. V. Baumgartner, R. Wigington, et al. How Much Water Does a River Need? Freshwater Biology. 1997, 37: 231~249
    7 P. Knights. Environmental Flows: Lessons from an Australian Experience. Proceedings of International Conference: Dialog on Water, Food and Environment. Hanoi, Vietnam. 2002: 18
    8 汤奇成. 绿洲的发展与水资源的合理利用. 干旱区资源与环境. 1995, 9(3): 107~111
    9 刘昌明. 我国西部大开发中有关水资源的若干问题. 中国水利. 2000, 8: 23~25
    10 沈国舫. 生态环境建设与水资源的保护和利用. 中国水利. 2000, 8: 26~30
    11 崔树彬. 关于生态环境需水量若干问题的探讨. 中国水利. 2001, (8): 71~74
    12 李丽娟, 郑红星. 海滦河流域河流系统生态环境需水量计算. 地理学报. 2000, 55(4): 495~500
    13 丰华丽, 王超, 李勇. 流域生态需水量的研究. 环境科学动态. 2001, (1): 27~31
    14 王西琴, 刘昌明, 杨志峰. 河道最小环境需水量确定方法及其应用研究( Ⅰ )——理论. 环境科学学报. 2001, 21(5): 544~547
    15 王西琴, 刘昌明, 杨志峰. 河道最小环境需水量确定方法及其应用研究( Ⅱ )——应用. 环境科学学报. 2001, 21(5): 548~552
    16 杨志峰, 崔保山, 刘静玲, 等. 生态环境需水量理论、方法与实践. 科学出版社. 2003
    17 Z. Yang, B. Cui, J. Liu. Estimation Methods of Eco-environmental Water Requirements: Case Study. Science in China Series: D. 2005, 48(8): 1280~1292
    18 D. A. Hughes. Providing Hydrological Information and Data Analysis Tools for the Determination of Ecological Instream Flow Requirements for South African Rivers. Journal of Hydrology. 2001, 241:140~151
    19 G. J. Gippel, M. J. Stewardson. Use of Wetted Perimeter in Defining Minimum Environmental Flows. Regulated Rivers: Research and Management. 1998, 14(1): 53~67
    20 J. King, R. E. Tharme, M. S. Villiers. Environmental Flow Assessments for Rivers: Manual for the Building Block Methodology. Water Research Commission Report TT 131/00, Pretoria, South Africa. 2000: 339
    21 J. King, D. Louw. Instream Flow Assessments for Regulated Rivers in South Africa Using Building Block Methodology. Aquatic Ecosystems Health and Management. 1998, 1: 109~124
    22 D. L. Tennant. Instream Flow Regimens for Fish, Wildlife, Recreation and Related Environmental Resources. Fisheries. 1976, (4): 6~10
    23 J. Giesecke, M. Schneider, K. Jorde. Analysis of Minimum Flow Stretches Based on the Simulation Model CASIMIR. Proc. 28th IAHR Congress. 1999: 22~27
    24 B. Statzner, R. Muller. Standard Hemispheres as Indicators of Flow Characteristics in Groben. Freshwater Biology. 1989, 21: 445~459
    25 M. P. Mosely. The Effect of Changing Discharge on Channel Morphology and Instream Uses and in a Braided River, Ohau River, New Zealand. Water Resource Research. 1982, 18: 800~812
    26 M, Acreman. Linking Science and Decision-making: Features and Experience from Environmental River Flow Setting. Environmental Modelling & Software. 2005: 229~238
    27 M. Acreman, M. J. Dunbar. Defining Environmental River Flow Requirements-a Review. Hydrology and Earth System Sciences. 2004, 8(5): 861~876
    28 张丽. 水资源承载能力与生态需水量理论与应用. 黄河水利出版社. 2005: 33~39
    29 丰华丽. 河流生态环境需水量理论方法及应用研究. 河海大学博士学位论文. 2002: 11, 56~59
    30 日本国土厅. 日本全国水资源综合规划. 中国水利水电出版社. 2002
    31 岩永勉. 東京都にねけゐ水環境改善設画及び凈化事業. 河川. 1994, 5: 31~48
    32 建設省河川局水政課. 水道原水水質保全事業の實施の促進に關すゐ法律. 1994, 5: 15~19
    33 周家馨, 童澄教, 戴流芳, 等. 上海苏州河的环境综合治理——兼与东京隅田川治理之比较研究.日本:日本国际交流基金会亚洲中心.1998
    34 石川浩. 最近の環境施策の動きと河川凈化對策. 河川. 1994, 5: 6~10
    35 汤建中, 宋韬. 城市河流污染治理的国际经验. 世界地理研究. 1998, 7(2): 114~119
    36 A. Ladson, B. Finlayson. Rhetoric and Reality in the Allocation of Water to the Environment: A Case Study of the Goulburn River, Victoria, Australia. River Research and Applications. 2002, 18 (6): 555~568
    37 D. A. Hughes, J. O’ Keeffe, V. Smakhtin, et al. Development of an Operating Rule Model to Simulate Time Series of Reservoir Releases for Instream Flow Requirements. Water S A. 1997, 23 (1): 21~30
    38 G. R. Symphorian, E. Madamombe, P. Zaag. Dam Operation for Environmental Water Releases; the Case of Osborne Dam, Save Catchment, Zimbabwe. Physics and Chemistry of the Earth. 2003, 28: 985~993
    39 D. A. Hughes, P. Hannart. A Desktop Model Used to Provide an Initial Estimate of the Ecological Instream Flow Requirements of Rivers in South Africa. Journal of Hydrology. 2003, 270: 167~181
    40 M. C. Thoms, F. Sheldon. An Ecosystem Approach for Determining Environmental Water Allocations in Australian Dryland River Systems: the Role of Geomorphology. Geomorphology. 2002, 47: 153~168
    41 V. Smakhtin, P. D?ll. A Pilot Global Assessment of Environmental WaterRequirements and Scarcity. International Water Resources Association, Water International. 2004, 29(3): 307~317
    42 V. Smakhtin, C. Revenga, P. D?ll. Taking into Account Environmental Water Requirements in Global-scale Water Resources Assessments Comprehensive Assessment of Water Management in Agriculture. Research Report. 2004
    43 唐礼智, 汤建中. 上海市苏州河段水质污染综合治理研究. 地理学与国土研究. 2001, 17(4): 81~84
    44 黄宣伟.太湖调水工程对水环境改善的战略意义. 水资源保护. 2002, (3): 37~39
    45 熊万永. 福州内河引水冲污工程的实践与认识. 中国给水排水. 2000, 16(7): 26~28
    46 梁斌, 王超, 王沛芳. “引江济太”工程背景下河网稀释净污需水计算及其应用. 河海大学学报. 2004, 32 (1): 32~37
    47 李大勇, 刘凌, 董增川, 等. 改善张家港地区水环境引水方案的对比研究.水利水电科技进展. 2004, 24(6): 17~20
    48 王超, 逄勇, 崔广柏, 等. 张家港水环境调水实验研究及数学模型建立. 环境科学与技术. 2005, 28(5): 3~4
    49 李静, 李适宇. 粤西某市小容量河流水污染综合控制研究. 环境污染治理技术与设备. 2003, 4(12): 49~52
    50 鲁玉龙, 金洽卿. 引水治污工程水质管理模型的应用研究. 环境污染与防治. 1994, 16(6): 11~15
    51 成官文. 桂林市小东江环境污染综合治理研究. 重庆环境科学. 2003, 25(6): 3~5
    52 黎运棻. 桂林中心城市水环境规划. 水利开发研究. 2002, 1(11): 58~60
    53 G. J. Syme, B. E. Nancarrow, J. A. McCreddin. Defining the Components of Fairness in the Allocation of Water to Environmental and Human Uses. Journal of Environmental Management. 1999, 57 (1): 51~70
    54 林于翔, 林政. 以资源环境水利理论解读连江水资源.水利科技. 2003, 1: 21~23
    55 J. Kashaigili, R. M. J. Kadigi, B. A. Lankford, et al. Environmental Flows Allocation in River Basins: Exploring Allocation Challenges and Options in the Great Ruaha River Catchment in Tanzania. Physics and Chemistry of the Earth. 2005, 30 (11~16): 689~697
    56 A. H. Arthington, B. J. Pusey. Flow Restoration and Protection in Australian Rivers. River Research and Applications. 2003, 19 (5~6): 377~395
    57 B. A. Lankford. Environmental Water Requirements: a Demand Management Perspective. Journal of the Chartered Institution of Water and Environmental Management. 2003, 17 (1): 19~22
    58 孙颖, 陈肇和. 河流及水库水质模型与通用软件综述. 水资源保护. 2001, 6: 7~12
    59 李云生, 刘伟江, 吴悦颖, 等. 美国水质模型研究进展综述. 水利水电技术. 2006, 37(2): 68~73
    60 T. A. Wool, R. B. Ambrose, J. L. Martin, et al. Water Quality Analysis Simulation Program (WASP) Version 6.0, DRAFT: User’s Manual
    61 孙学成, 邓晓龙, 张彩香, 等. WASP6 系统在三峡库区水质仿真中的应用. 三峡大学学报(自然科学版). 2003, 25(2): 185~188
    62 A. K. Takyi, B. J. Lence. Surface Water Quality Management Using a Multiple-realization Chance Constrained Method. Water Resources Research. 1999, 35(5): 1657~1669
    63 S. K. Ning, N. B. Chang, L. Yang, et al. Assessing Pollution Prevention Program by QUAL2E Simulation Analysis for the Kao-Ping River Basin, Taiwan. Journal of Environmental Management. 2001, 61(1): 61~76
    64 S. M. Kashefipour, R. A. Falconer, B. Lin, et al. FASTER Model Reference Manual. Environmental Water Management Research Centre Report, Cardiff University. 2000
    65 L. Yang, B. Lin, S. M. Kashefipour, et al. Integration of a 1-D River Model with Object-oriented Methodology. Environmental Modelling & Software. 2002, 17: 693~701
    66 L. F. G. Lopes, S. José. A. D. Carmob, et al. Hydrodynamics and Water Quality Modelling in a Regulated River Segment: Application on the Instream Flow Definition. Ecological Modelling. 2004, 173: 197~218
    67 王道增, 林卫青. 苏州河综合调水与水环境治理研究. 力学与实践. 2005, 27(5): 1~12
    68 赖纯洁, 杨方廷. 南水北调工程仿真系统. 系统仿真学报. 2002, 12: 1~4
    69 尧桂龙, 周孝德. 南水北调中线汉江中下游水质仿真研究. 系统仿真学报. 2002, 14(12): 1575~1578
    70 韩军, 石宇, 谭炳卿, 等. 南水北调东线工程水质仿真系统的研制开发. 系统仿真学报. 2002, 14(12): 1579~1583
    71 张萍峰. 滇池流域水环境污染仿真系统的研发与实现. 哈尔滨工程大学硕士学位论文. 2002, 12
    72 袁国林, 陈异晖. 滇池水动力仿真研究. 云南环境科学. 2005, 24(S1): 22~24
    73 王万里. 河流污染治理仿真研究. 哈尔滨工程大学硕士论文. 2004
    74 马飞, 党志良, 阮仕平, 等. 区域水污染控制系统仿真研究——以铜川新区为例. 干旱区资源与环境. 2004, 18(5): 52~55
    75 马飞, 党志良, 胡晓寒, 等. 基于 MATLAB 的河流水质仿真研究——以漆水河为例. 环境科学与技术. 2004, 27(6): 33~34
    76 郭莲英, 景韶光, 王东木. 基于 Matlab/Simulink 的复杂河网水质建模与仿真. 计算机仿真. 2005, 22(7): 163~168
    77 周灵. 成都市中心城区河流 BOD-DO 模拟与仿真——基于 Matlab 可视化建模技术. 四川大学硕士学位论文. 2004, 5
    78 樊立萍, 于海斌, 袁德成. 城市排污系统对河流水质影响的仿真研究.计算机仿真. 2005, 22(5): 251~254
    79 K.Alfredsen, B. S?ther. An Objective-oriented Application Framework for Biulding Water Resource Information and Planning Tolls Applied to the Design of a Flood Analysis System. Environmental Modelling & Software. 2000, 15: 215~224
    80 R. E. Tharme. A Global Perspective on Environmental Flow Assessment Emerging Trends in the Development and Application of Environmental Flow Methodologies for Rivers. River Research and Application. 2003, 19(5): 397~441
    81 赵西宁, 吴普特, 王万忠, 等. 生态环境需水研究进展. 水科学进展. 2005, 16(4): 617~622
    82 魏彦昌, 苗鸿, 欧阳志云, 等. 海河流域生态需水核算. 生态学报. 2004, 24(10): 2100~2107
    83 李长兴. 城市水文的研究现状与发展趋势. 人民珠江. 1998, 4: 9~12
    84 张杰, 熊必永. 创建城市水系统健康循环促进水资源可持续利用. 沈阳建筑工程学院学报(自然科学版). 2004, 20(3): 204~206
    85 周建康. 城市化对城市水循环要素的影响. 西南给排水. 2004, 26(6): 4~7
    86 左其亭. 水资源承载能力——理论、方法与应用. 化学工业出版社. 2005: 52~55
    87 龙腾锐, 姜文超. 水资源(环境)承载力的研究进展. 水科学进展. 2003, 14(2): 249~253
    88 崔凤军. 城市水环境承载力及实证研究.自然资源学报. 1998, 13(1): 58~62
    89 李清龙, 王路光, 张焕祯, 等. 水环境承载力理论研究与展望. 地理与地理信息科学. 2004, 20(1): 87~89
    90 王西琴, 张远, 刘昌明. 河道生态环境需水量研究. 自然资源学报. 2003, 18(2): 242~244
    91 曾维华, 宋其龙, 陈荣昌. 城市河道生态环境需水研究——以湖南省常德市穿紫河为例. 生态环境. 2004, 13(4): 528~531
    92 王珊琳, 丛沛桐, 王瑞兰, 等. 生态环境需水量研究进展与理论探析. 生态学杂志. 2004, 23(6 ): 111~115
    93 杨志峰, 崔保山, 刘静玲. 生态环境需水量评估方法与例证.中国科学: D辑. 2004, 34(11): 1072~1082
    94 崔保山, 杨志峰. 湿地生态环境需水量研究. 环境科学学报. 2002, 22 (2): 219~224
    95 郭跃东, 何岩, 邓伟, 等. 扎龙国家自然湿地生态环境需水量研究. 水土保持学报. 2004, 18(6) :163~166
    96 黄永基, 马滇珍. 区域水资源供需分析方法. 南京: 河海大学出版社. 1990: 119 ~145
    97 刘凌, 董增川. 内陆河流生态环境需水量定量研究. 湖泊科学. 2002, 14(1): 25~31
    98 倪晋仁, 赵业安. 黄河下游河流最小生态环境需水量初步研究. 水利学报. 2002, 10: 1~7
    99 胡习英, 陈南祥. 城市生态环境需水量计算方法与应用. 人民黄河. 2006, 28(2): 48~50
    100 姜健俊, 周明耀, 陶晓东, 等. 基于水盐平衡的南通地区河流系统生态需水量研究. 水利与建筑工程学报. 2004, 2(4): 27~29
    101 邢华, 王春华, 孙远扩. 黄河河口生态需水探讨. http://www.sdhh.gov.cn
    102 总量控制技术手册. 国家环境保护局中国环境科学研究院编著. 中国环境科学出版社, 1990
    103 I. Gupta. Numerical Modeling for Thane Creek. Environmental Modeling &Software. 2004, 19(6): 571~579
    104 严登华, 何岩, 邓伟, 等. 东辽河流域河流生态系统生态需水研究. 水土保持通报. 2001, 15(1): 46~49
    105 P. K. Bhunya, S. K. Mishra, R. Berndtsson. Approach to Confidence Interval Estimation for Curve Numbers. Journal of Hydrologic Engineering. 2003, 8(4): 232~233
    106 阮仁良. 平原河网地区水资源调度改善水质的机理和时间研究——以上海水资源引清调度为例. 华东师范大学博士学位论文. 2003, 6: 36~37
    107 杜晓舜, 王春树. 上海市引清调水工作研究. 水资源保护. 2006, 22(3): 92~94
    108 阮仁良. 上海市引清调度的形成机制研究. 上海水务. 2005, 21(1): 1~5
    109 陆勤. 崇明岛河道水质引清调水方案探讨. 水资源研究. 2003. 24(1): 4~6
    110 应荣弟, 徐华, 陈史华. 改善崇明岛河网水质引清调水量计算. 水资源研究. 2006, 27(1): 8
    111 张锡辉. 水环境修复工程学原理与应用. 化学工业出版社. 2002.
    112 Indrani Gupta. Numerical Modeling for Thane Creek. Environmental Modeling & Software. 2004, 19: 571~579
    113 张维昊, 张锡辉, 肖邦定. 内陆水环境修复技术进展. 上海环境科学. 2003, 22(11): 811~816
    114 熊德琪. 环境系统模糊集分析理论与应用. 大连海事出版社. 2001
    115 武鹏林, 霍德敏, 马存信. 水利计算与水库调度. 地震出版社. 2000
    116 张维昊, 张锡辉, 肖邦定. 内陆水环境修复技术进展. 上海环境科学. 2003, 22(11): 811~816
    117 M. Sakawa, K. Kato, H. Katagiri. An Interactive Fuzzy Satisficing Method for Multiobjective Linear Programming Problems with Random Variable Coefficients through a Probability Maximization Model. Fuzzy Sets and Systems. 2004, 146(2): 205~220
    118 傅国伟, 程声通. 水污染控制系统规划. 北京清华大学出版社. 1985.
    119 李建萍, 李绪谦, 王存政. 伊通河水环境容量与污染防治对策的研究. 世界地质. 2001, 20(2) : 183~187
    120 L. Schrange. User’s Manual for Linear, Integer, and Quadratic Programming with LINDO, Release 5.0. The Scientific Press, South San Francisco, 1991
    121 J. H. Cho, K. S. Sung, R. H. Sung. A River Water Quality Model forOptimizing Regional Wastewater Treatment Using a Genetic Algorithm. Journal of Environmental Management. 2004, 73: 229~242
    122 翁文斌, 王忠静, 赵建世. 现代水资源规划理论、方法与技术. 清华大学出版社. 2004: 152~163
    123 徐丽娜, 李琳琳. 遗传算法在系统非线性识别中的应用. 哈尔滨工业大学学报. 1999, 31(2):39~42
    124 S. Muhar, S. Schmutz. M. Jungwirth. River Restoration Concepts-goals and Perspectives. Hydrobiologia. 1995, 303: 183~184
    125 给水排水设计手册(第 10 册)技术经济(第二版). 中国建筑工业出版社. 2000: 475~483
    126 曾光明, 张国强, 曾北危. 河流水质系统的灰色规划和应用. 中国环境科学. 1994, 14(4): 46~53
    127 夏军. 灰色系统理论在水科学领域的应用与展望. 成都科技大学出版社. 1995, 10: 14~19
    128 J. L. Deng. Introduction to Grey System Theory. Journal of Grey System. 1989, 1(1): 1~24
    129 J. L. Deng. Grey System Theory and Applications. Gao-Li Publish Cooperation. Taipei. 2000
    130 M. Liu, H. Yu. Feasibility Research on the Pollution Forecast with the Grey Simulation Theory in the Pearl River Estuary. Marine Environmental Science. 2005, 24(2): 36~38
    131 J. Xia. A Grey System Approach Applied to Catchment Hydrology. Proceedings. First International Symposium on Uncertainty Modeling and Analysis. 1990: 7~12
    132 Xia, Hu, Q. Bao. A Grey System Model for Predicting Trend Change of Urban Waste Water Load. Journal of Environmental Hydrology. 1997, 5: 1~10
    133 夏军. 灰色系统水文学——理论、方法及应用. 华中理工大学出版社. 1998: 346~348
    134 秦肖生, 曾光明. 遗传算法在水环境灰色非线性规划中的应用. 水科学进展. 2002, 13(1): 31~36
    135 D. Orvosh, L. Davis. Using Algorithm to Optimize Problems with FeasibilityConstraints. Proceedings of the 1st IEEE Congress on Evolutionary Computation. Piscataway: IEEE Service Center. 1994: 548~553
    136 康凤举. 现代仿真技术与应用. 国防工业出版社. 2001
    137 冯惠军, 冯允成. 面向对象的仿真综述. 系统仿真学报. 1995, 7(3): 58~64
    138 马斌, 解建仓, 杨晓东, 等. 西安地区水资源调度管理模式研究. 西安理工大学学报. 2000, 16(3): 238~243
    139 刘磊, 王忠静. 基于模拟器技术的流域仿真系统研究. 水文. 2005, 25(3): 1~4
    140 周铁柱, 王福成. Visual Basic 6.0 数据库开发指南. 清华大学出版社. 2000
    141 M. Spanou, D. Chen. An Objected-oriented Tool for the Control of Point-source Pollution in River Systems. Environmental Modelling & Software. 2000, 15: 35~54
    142 王义民, 黄强, 畅建霞, 等. 基于面向对象技术的水库供水调度仿真模型研究. 水力发电学报. 2003, 4: 8~14
    143 王万里. 河流污染治理仿真研究. 哈尔滨工程大学硕士论文. 2004:19~25
    144 刘磊, 李仁旺, 朱泽飞, 等. 基于工作流的企业过程仿真技术研究. 计算机集成制造系统. 2005, 11(11): 1511~1515
    145 周霭如, 官士鸿, 林伟健. Visual Basic 程序设计. 电子工业出版社. 2005
    146 邹翔, 孙肖子. 基于图形化编程语言 Labview 设计虚拟仪器的方法. 现代电子技术. 2003, 1: 36~38
    147 C. Azedine, G. Antoine, B. Patrick, et al. Water Quality Monitoring Using a Smart Sensing System. Measurement. 2000, 28(3): 219~224
    148 H. B. Glasgow, J. A. M. Burkholder, R. E. Reed, et al. Real-time Remote Monitoring of Water Quality: a Review of Current Applications, and Advancements in Sensor, Telemetry, and Computing Technologies. Journal of Experimental Marine Biology and Ecology. 2004, 300 (1-2): 409~448
    149 李欣, 齐晶瑶. 多参量水质检测虚拟仪器系统的构建与应用. 工业水处理. 2002, 22(11): 5~7
    150 王海宝, 吴光杰. 多通道虚拟式水质污染离子在线监测技术研究. 科技通讯. 2005, 21(6): 756~758
    151 V. K. Gurbani, X. H Sun, Accessing Telephony Services from the Internet. Proceedings. The 12th International Conference on Computer Communications and Networks. 2003: 517~523
    152 许扬生, 李少平. 广东省水情信息采集系统通信方式. 人民珠江. 2003, 6: 54~56
    153 韩德庆, 王连华, 徐娟. 大庆市建设环境水库的必要性和可行性. 黑龙江水利科技. 2001, 1: 14~15
    154 王连华. 环境水库建设可行性综述. 黑龙江水利科技. 2003, 3: 143
    155 孙宗凤, 董增川. 水利工程的生态效应分析. 水利水电技术. 2004, 35(4): 5~8
    156 戴晓晖, 李敏强. 遗传算法理论研究综述. 控制与决策. 2000, 15(3): 263~268

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700