用户名: 密码: 验证码:
GH4169合金真空扩散连接技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜片类元件作为箭体阀门弹性元件,常因自身的缺陷而限制了其适用范围。本文采用GH4169合金膜盒结构代替膜片结构,研究了GH4169合金直接扩散连接和加中间层Cu或Ni箔的间接扩散连接工艺,包括表面处理状态、扩散连接温度、保温时间、扩散压力的影响。借助SEM、EDS、XRD、纳米压痕等分析测试手段,分析了工艺参数对接头界面组织结构及性能的影响。
     通过对GH4169合金真空直接扩散连接的试验和分析,确定采用HCl+HNO3复合酸化学酸洗处理GH4169合金表面,能有效去除其表面稳定而致密的氧化膜Cr2O3和Al2O3。接头界面没有任何反应层生成,只有扩散孔隙的存在。随着连接温度的升高,保温时间的延长,扩散压力的增大,接头扩散孔隙数量减少,尺寸变小。
     以抗拉强度来评价GH4169合金扩散连接接头力学性能,在T=1100℃,t=90min,P=40MPa条件时,接头扩散孔隙基本消失,接头抗拉强度可达707MPa,接头变形量为9.8%,此时接头在界面处断裂,为脆性断裂。
     采用纯Cu箔中间层间接扩散连接GH4169合金,接头界面处只有固溶体层的生成;随着中间层厚度的减小,接头强度逐渐提高;当Cu箔中间层厚度为20μm时,随着连接温度的升高,保温时间的延长,扩散压力的增大,固溶体层厚度先逐渐变大,后缓慢变化,接头抗拉强度也呈现先快速增长,后平缓变化的趋势。当T=950℃/t=60min/P=10MPa时,接头抗拉强度达到720MPa;接头断裂在Cu中间层。
     采用纯Ni箔中间层间接扩散连接GH4169合金,接头界面与直接扩散连接相似,只有扩散孔隙的存在;随着连接温度的升高,保温时间的延长,扩散压力的增大,扩散孔隙逐渐消失,接头抗拉强度呈现先快速增长后平缓变化的趋势。当T=990℃/t=75min/P=15MPa时,接头抗拉强度达840MPa;接头断裂位置在中间层Ni。
     最后,以Ni箔作为GH4169合金间接扩散连接的中间层材料,采用整体拘束方式间接扩散连接膜盒结构,焊后变形较小。
Diaphragm foil device as rockets elastic element, were often limited by their own shortcomings. In order to use the diaphragm box to instead of diaphragm foil, the teshnics of GH4169 alloy direct vacuum diffusion bonding and indirect diffusion bonding with Cu foil or Ni foil were investigated, including the effects of the surface state, joining temperature, holding time and diffusion pressure. With the help of SEM, EDS, XRD, nanoindentation and other analysis and detection methods, the effects of process parameters on the joint interface structure and properties were analysised.
     Direct vacuum diffusion bonding was adopted to connect GH4169 alloy. According to the test and analysis results, HCl + HNO3 compound acid was used to treat GH4169 alloy which could effectively remove the dense oxide film Cr2O3 and Al2O3 on the surface. The results revealed that interface reaction layer was not formed between the joint where only exited diffusion pore. As the joining temperature, holding time and diffusion pressure growing, the number of joint diffusion pore reduced and its size also becomed smaller.
     In this paper, tensile strength was adopted to evaluate the mechanical properties of GH4169 alloy diffusion bonding joints. On the condition that T = 1100℃, t = 90min, P = 40MPa, the diffusion pore in the joints disappeared during this time while the joint tensile strength was up to 707MPa and joint deformation reached 9.8%. At this time joint fracture at the interface was proved to be brittle fracture.
     Pure Cu foil interlayer was adopted to GH4169 alloy indirect bonding. In this case, only solid solution layer was generated in the joint interface; with the interlayer thickness reduced, the joint strength gradually improved; when the Cu foil interlayer thickness reached 20μm, with the joining temperature increased, holding time prolonged and the pressure enhanced, the solid melts layer gradually thicken and tensile strength of joints had a trend that change in rapidly growing at first and then change gently. When T = 950℃/ t = 60min / P = 10MPa, the joint tensile strength reached 720MPa; joint fractures were in the middle layer of Cu.
     When pure Ni foil interlayer is adopted to GH4169 alloy indirect bonding, the joint interface was similar to the joint of direct diffusion bonding where only diffusion pores presented; with the joining temperature increased, holding time prolonged and the pressure enhanced, diffusion pores gradually disappeared and the joint tensile strength exhibited a trend that rapidly growing at first and then slowly changing. When T = 990℃/ t = 75min / P = 15MPa, the joint tensile strength is up to 840MPa; joint fractures were in the middle layer of Ni foil.
     Finally, Pure Ni foil interlayer was adopted to GH4169 alloy indirect bonding. In order to obtain little deformation, the method of overall binding was used to bond GH4169 alloy.
引文
1张光业,张华,张厚安.航空用高温合金防护涂层的研制及其应用的新进展.材料导报. 2006, 20(5): 59-62
    2邓波,韩光炜,冯涤.低膨胀高温合金的发展及在航空航天业的应用.航空材料学报. 2003, 23(4): 244-248
    3 R. L. Kennedy. Alloy-718 Plus, Superalloy for the Next Forty Years. Sixth International Symposium on Superalloy 718, 626, 706, and Derivatives. 2005: 1-14
    4 D. Zhao, P. K. Chaudhury. Effect of Starting Grain Size on As-deformed Microstructure in High Temperature Deformation of Alloy 718. Third International Symposium on Superalloys 718, 625, 706 and Various Derivatives. 1994: 303-313
    5谢锡善,董建新.γ″和γ′复合析出强化新型镍基高温合金的研究.金属热处理学报. 1997, 18(3): 37-45
    6王钢.“长征”运载火箭箭体低温阀门技术现状分析.低温工程. 2007, 25(4): 444-447
    7中国机械工程学会焊接学会.焊接手册-焊接方法和设备.机械工业出版社. 1992: 43-44
    8田世英. GH4169高温合金氩弧焊头组织和性能研究.大连交通大学硕士学位论文. 2006: 19-53
    9 J. K. Hong, J. H. Park, N. K. Park. Microstructures and mechanical properties of Inconel 718 welds by CO2 laser welding. Journal of materials processing technology. 2008, (201): 515-520
    10 A. Ambrozlak. Welding and brazing ODS Materials. Welding and Cutting. 1992, 26(7): 10-15
    11 C. A. Huang, T. H. Wang, W. C. Han. A study of the galvanic corrosion behavior of Inconel-718 after electron beam welding. Materials Chemistry and Physics. 2007, (104): 293-300
    12 C. A. Huang, T. H. Wang, C. H. Lee. A study of the heat-affected zone (HAZ) of an Inconel 718 sheet welded with electron-beam welding (EBW). Materials Science and Engineering A. 2005, (398): 275-281
    13 X. W. Wu, R. S. Chandel, H. P. Seow. Induction brazing of Inconel 718 to Inconel X-750 using Ni-Cr-Si-B amorphous foil. Journal of Materials Processing Technology. 2000, (104): 34-43
    14 F. D. Duffin, A. S. Bahrani. Frictional Behaviour of Mild Steel in FrictionWelding. Wear. 1973, 36(6): 53-74
    15杨军,楼松年,严隽民. GH4169高温合金惯性摩擦焊接头晶粒分布特征.焊接学报. 2001, 25(6): 34-36
    16杨军,严隽民,时渭清. Inconel718高温合金惯性摩擦焊接头第二相溶解机制的研究.华东冶金学院学报. 2000, 31(7): 181-185
    17陈魁.实验设计与分析.清华大学出版社. 1996: 102-373
    18 A. Thomas, M. E. Wahabi, J. M. Cabrera. High temperature deformation of Inconel 718. Journal of Materials Processing Technology. 2006, (177): 469-472
    19韩文波,张凯峰,王国峰. Inconel718合金扩散连接接头的组织与性能研究.材料科学与工艺. 2005, 13(3): 308-311
    20 O. Torun, R. Curler, B. Baksan. Diffusion bonding of iron-aluminide Fe72Al28 using a pure iron interlayer. Inter metallics. 2005, (13): 801-804
    21 L. I. Duarte, A. S. Ramos, M. F. Vieira. Solid-state diffusion bonding of gamma-TiAl alloys using Ti/Al thin films as interlayers. Inter metallics. 2006, (14): 1151-1156
    22 Jose Lemus. Interface behaviour during the self-joining of Si3N4 using a Nb-foil interlayer. Scripta Materialia. 2006, (54): 1339-1343
    23 Jose Lemus, A. L. Drew. Joining of silicon nitride with a titanium foil interlayer. Materials Science and Engineering A. 2003, (352): 169-178
    24安子良,轩福贞,涂善东. 316L不锈钢扩散焊接头的微观结构和力学性能.中国有色金属学报. 2006, 16(10): 1765-1768
    25 M. S. Yeh, T. H. Chuang. Low-pressure diffusion bonding of SAE316 stainless steel by inserting a superplastic interlayer. Scripta Metallurgica at Materialia. 1995, 33(8): 1277-1281
    26彭成章,陈安华.采用Cu-Sn合金镀层扩散焊焊接Q235钢.焊接. 2006, 19(4): 25-28
    27 O. Torun, A. Karabulut, B. Baksan. Diffusion bonding of AZ91 using a silver interlayer. Materials and Design. 2008, (29): 2043-2046
    28 O. Torun, I. Celikyurek, R. Curler. Diffusion bonding of iron-aluminide Fe72Al28 using a copper interlayer. Materials Characterization. 2008, (59): 852-856
    29 O. Torun, I. Celikyurek. Diffusion bonding of nickel-aluminide Ni75Al25 using a pure nickel interlayer. Inter metallics. 2008, (16): 406-409
    30ф.卡扎柯夫著,何康生等译.材料中的扩散焊接(第一版).国防工业出版社. 1982, (2): 7-11
    31李志远,钱乙余,张九海.先进连接方法.机械工业出版社. 2000, (6): 130-150
    32 M. M.舍瓦尔兹著,袁文钊等译.金属焊接手册(第二版).国防工业出版社. 1988, (1): 323-329
    33何康生.异种金属焊接(第一版).机械工业出版社. 1986, (10): 308-400
    34 A. C. Fischer, Cripps. Nanoindentation. Springer. 2002, (15): 23-25
    35蔡玉林,郑运荣.高温合金金相研究.国防工业出版社. 1986, (5): 236-256
    36陈宗霖.冷变形和热处理对GH4169合金性能和组织的影响.论文集. 2007: 107-111
    37中国航空材料手册.中国航空材料手册,第二版(第二卷).中国标准出版社. 2002: 1152-1196
    38 G. E. Wasielewshi, R. A. Rapp. Superalloys. Wiley Sims C T and Hagel W C. 1972, (19): 235-237
    39李美栓.金属的高温腐蚀.冶金工业出版社. 2001: 34-36
    40 N. Hussain, K. A. Shahid, I. H. Khan. Oxidation of High-Temperature Alloys (Superalloys) at Elevated Temperatures in Air. Oxid Metal. 1995, 43(34): 363-378
    41林琳. GH4169合金高温压缩变形行为研究.哈尔滨工业大学硕士学位论文. 2006: 21-30
    42 Y. Desvallees, M. Bouzidi, F. Bois. Delta Phase in Inconel 718: Mechanical Properties and Forging Process Requirements. Third International Symposium on Superalloys 718, 625, 706 and Various Derivatives. 1994: 281-291
    43胡发恩. GH4698合金的高温氧化、热腐蚀及热疲劳性能的研究.南京航空航天大学硕士学位论文. 2006: 20-45
    44李铁藩.金属晶界在高温氧化中的作用.中国腐蚀与防护学报. 2002, 22(3): 180-183
    45王岩.δ相对GH4169合金高温变形及再结晶行为的影响.哈尔滨工业大学博士学位论文. 2008: 46-66
    46 S. C. Medeiros, Y. V. R. K. Prasad, W. G. Frazier. Modeling Grain Size during Hot Deformation of IN-718. Scripta Mater. 2000, 42(1): 17-23
    47 R. Srinivasan, V. Ramnarayan, U. Deshpande. Hot Deformation Behavior of Fine-grained IN-718. Metallurgical Transaction A. 1993, (24): 2061-2069
    48 J. P. Thomas, E. Bauchet, C. Dumont. EBSD Investigation and Modeling of the Microstructure Evolutions of Superalloy 718 during Hot Deformation. Tenth International Symposium on Superalloys. 2004, 19(5): 959-968
    49 Y. S. Na, J. T. Yeom, N. K. Park. Electron Backscatter Diffraction Analysis of Dynamically Recrystallized Grain Structures in a Ni-Cr-Fe Base Alloy. Metallurgical and Materials Transactions A. 2006, 15(37): 41-47
    50孙荣禄,李慕勤,张九海.中间过渡金属对钛合金与不锈钢扩散焊接头强度的影响.焊接学报. 1996, 17(4): 212-218
    51 T. Banik, S. O. Mancuso, G. E. Maurer. An Evaluation of the Forgeability of Delta Processed Udimet Alloy 718DP. Third International Symposium on Superalloys 718, 625, 706 and Various Derivatives. 1994: 273-280
    52 H. Yuan, W. C. Liu. Effect of the Delta Phase on the Hot Deformation Behavior of Inconel 718. Materials Science and Engineering A. 2005, 408(5): 281-289
    53焦馥杰.低组配焊接接头的强度.焊接学报. 1984, 5(4): 207-214

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700