用户名: 密码: 验证码:
69111不锈钢铣削机理及工艺参数优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
69111不锈钢(09Crl2Mn5Ni4Mo3Al)是20世纪50年代后期我国自主研发和应用起来的新型不锈钢,是由621所、625所、上钢三厂、上海钢铁研究所等单位协作研制成功的立足国内资源而基本性能优于国外近似钢种的一种不锈钢。69111不锈钢属于典型难加工材料,加之国内应用历史较短,对于其切削加工方面的研究相对较少,本研究在对69111不锈钢研究现状进行分析和总结的基础上,对69111不锈钢切削加工机理和工艺参数优化进行系统研究。
     (1)设计、完成了应用四种刀具铣削加工69111不锈钢正交切削实验和单因素切削实验,采用正交实验分析法对正交实验数据进行分析处理,获得能够减小铣削力的优化的参数组合,并采用幂指数非线性拟合的方法,进行了铣削力建模,建立了铣削力经验公式,实现了铣削力的理论预测;采用正交优化的参数进行了整体硬质合金刀具铣削69111不锈钢磨损寿命实验,获得整体硬质合金刀具磨损寿命曲线。
     (2)从表面粗糙度和残余应力两个方面对铣削加工69111不锈钢的已加工表面进行了表面完整性分析。对整体硬质合金刀具铣削加工表面的粗糙度进行正交实验分析法分析,获得铣削参数对于表面粗糙度影响程度的主次顺序,同时采用二次项拟合的方法进行表面粗糙度经验公式的非线性拟合,精度较高;残余应力分析得出铣削加工的表面残余应力大都为拉应力。对于可转位刀具加工69111不锈钢表面粗糙度对比分析得出伊斯卡可转位刀具结构不适合加工69111不锈钢;残余应力分析得出山特维克可转位刀具与其他两种可转位刀具规律不相同。工艺参数对于表面粗糙度影响规律为:随铣削速度、每齿进给量的增大表面粗糙度线性增大,随轴向切深的增加,表面粗糙度线性降低,随径向切深的增加呈现出曲折变化的趋势,先增大后减小而后又呈现出增大的趋势;工艺参数对于表面残余应力的影响主要通过铣削力和铣削温度间接起作用。
     (3)在理论分析的基础上,通过设计完成69111不锈钢不同应变率、不同温度下的动态压缩实验和准静态拉伸实验,以及不同应力三轴度下的拉伸实验,回归拟合出69111不锈钢本构关系模型和失效模型;并设计球盘摩擦实验,建立摩擦系数与压力、滑动速度之间的关系,从而获得切削加工过程中刀屑摩擦性能。
     (4)在前面研究的基础上,对69111不锈钢的铣削工艺参数进行优化。采用有限元仿真模拟的方法,对铣削加工69111不锈钢用可转位刀具进行刀具几何结构参数优化,获得优化的前角、后角及钝化半径值,为刀具参数结构设计提供理论支持;后对整体硬质合金刀具进行铣削参数优化,综合考虑铣削力、表面粗糙度、以及金属去除率指标,采用正交分析法,获得综合考虑各指标下的铣削参数组合,提高了生产效率;最后对高速精加工工况进行了铣削速度的优化;通过实验分析,以铣削力和铣削温度为优化指标,获得较优的铣削速度,对于实际加工起到指导性作用。
69111-stainless steel (09Cr12Mn5Ni4Mo3Al) was developed by our country in 1950s, which was developed based on the resources of our country by the research center 621, 625 and the third company of Shanghai steel company and Shanghai steel research center and etc. Its performances are better than the same style steel overseas. However, 69111-stainless steel is typically hard-to-cutting material, and its application history is very short, the research about its cutting performances is little. The research status about the 69111-stainless steel is analyzed and summarized; meawhile, the cutting mechanism and process parameters optimization are focused to describe the cutting characters of 69111- stainless steel comprehensively.
     (1) The orthogonal tests and the single factor experiments were designed and conducted with four different kinds of tools. The experiment data was processed by the orthogonal experiment analysis method, to describe the parameters which have less effect on the cutting forces. The cutting force model was built by nonlinear fitting method, which makes the cutting force prediction become reality in theory. Tool life and tool wear experiment of the cutting 69111- stainless steel was conducted with the optimized parameters, so that the tool life and tool wear curve of the solid carbide cutting tool can be derived.
     (2) The surface integrity of the milled 69111- stainless steel was analyzed by the surface roughness and the residual stress. For the solid carbide cutting tool:the milled surface roughness was investigated by the orthogonal experiment analysis method to get the sequence of the parameters which influence the surface roughness. The surface roughness empirical formula was built by quadratic term nonlinear fitting method with high precision. The tensile stress was found during most of the residual stress analysis processes. For the indexable tool:the surface roughness of the milled surface using the ISCAR tool is larger than the other two tools, so its micro-structure is not fit for milling 69111- stainless steel. The residual stress of the surface milled by the SANDVIK tool took on different characters compared with the other tools. The rules of the surface roughness influenced by the parameters are shown following:the surface roughness increase larger linearly with the increasing cutting speed and the feed, while decrease linearly with the increasing axial depth-of-cut (DoC). However, there is an inflexion with the increasing radial DoC. The characters of the surface residual stress influenced by the parameters are not obvious, because the parameters have an indirect influence on the stress through affecting the milling force and the milling temperature indirectly.
     (3) The constitutive model and the failure model of 69111- stainless steel were built through designing the dynamic compression test and the quasi-static tensile test under different strain rates and temperatures, the tensile test under different stress tri-axiality. The friction test was designed to get the relationship between the friction coefficient, the pressureand speed.
     (4) The optimization of the milling parameters was accomplished based on the former research. Firstly, the geometric structure optimization of the cutting tool was completed by FEM, and the optimized rake angel, flank angel and the radius of the cutting edge give significant support to the micro-structure design of the tool. Then the optimization of the milling parameters based on the solid carbide cutting tool was completed, considering comprehensively on the milling force, the surface roughness, and the removal rate, with the orthogonal experiment analysis method and the optimized parameters increases the production efficiency. On the other hand, the optimization of the cutting speed under the situation of high speed finishing machining was completed considering the milling force and the cutting temperature, which has a guide meaning to the practical manufacturing.
引文
[1]张国礼,徐芳泓.世界不锈钢发展概况[J].山西冶金,2000,3(1):3-4
    [2]69111专题组.Cr12Mn5Ni4Mo3A1半奥氏体沉淀硬化不锈钢的研制[J],中国学术期刊电子杂志社,1994~2009,1(1):1-20[3]郭永良,刘兴秋.固溶处理温度对
    钢拉—拉疲劳寿命的影响0Cr12Mn5Ni4Mo3A1[J].物理测试,2005,23(3):27-29[4]臧鑫士.沉淀硬化不锈钢的组织和性能,中国学术期刊电子杂志社,1994-2009,
    1(1):51-56[5]姜越,尹钟大,朱景川.超高强度马氏体时效不锈钢的发展[J].特殊钢,2004,25(2):5-7
    [6]戴秀梅,何枫.高强度沉淀硬化不锈钢在飞机上的应用[J].航空材料学报.
    2003.23:280-280[7]毕泗庆,熊计,龙新延.车、铣不锈钢的硬质合金涂层刀具研究[J].工具技
    术,2006,40(12):34-37.[8]董丽华,任洪斌,李振加.奥氏体不锈钢切削加工刀片选材的实验研究[J].机械工程
    师,1997,2(1):7-8[9]曲波,周辉,江崇民,王立平,金之垣,段广洪.硬质合金面铣刀铣削0Cr13Ni5Mo不锈钢切
    削性能的实验研究[J].工具技术,2003,37(2):3-4.[10]尹成帅.对马氏体不锈钢车削工艺的改进[J].安徽科技,2002,7(1):43-43
    [11]林宏平.奥氏体不锈钢材料的车削加工[J].机车车辆工艺,2003,6(1):45-45
    [12]樊兆宝.
    钢小型高压容器的焊接工艺[J].电焊机,2008,38(03):48-520Cr12Mn5Ni4Mo3A1[13]69111专题组,
    半奥氏体沉淀硬化不锈钢性能简介[J].中国学Cr12Mn5Ni4Mo3Al术期刊电子杂志社,1994-2009,1(1):21-28
    [14]F.W.Taylor. On the art of cutting metals[J]. Trans. Am. Soc. Mech. Engrs,1907, 28(l):31-350.
    [15]W.F.Hastings, P. L.B.Oxley. Prediction tool life from fundamental work material properties and cutting conditions[J]. Ann. CIRP,1976,:33-38
    [16]H.Takeyama, R.Murata. Basic investigation of tool wear[J]. Trans. ASME, J. Eng. Ind,1963, (85):33-38
    [17]E. Usui, A. Hirota, M. Masuko. Analytical prediction of three dimensional cutting process[J]. Part 3. Cutting temperature and crater wear of carbide tool, Trans.-ASME,1978, (100):222-228.
    [18]X. L. Liu, D.H. Wen, Z.J. Li, et al. Experimental study on hard turning hardened GCr15 steel with PCBN tool[J]. Journal of Materials Processing Technology.2002,129(1):217-221.
    [19]刘献礼.聚晶立方氮化确刀具切削性能及制造技术的研究[D].哈尔滨:哈尔滨工业大学,1999,3:100-124.
    [20]H.Paris, G. Peigne, R. Mayer. Surface shape prediction in high speed milling[J]. International Journal of Machine Tools & Manufacture,2004,44 (1):1567-1576.
    [21]龙震海.基于热力耦合效应的表面强化技术及其工艺实验研究[J].航空材料学报,2007,06:48-52.
    [22]文东辉,郑力,刘献礼等.精密硬态切削过程金属软化效应与表面塑性侧流的研究[J].金刚石与磨料磨具工程,2003,136(4):9-12.
    [23]徐进,叶邦彦,郭志敏等.高速切削工件表面微观形貌特征研究[J].五邑大学学报,2005,19(1):55-62.
    [24]王素玉.高速铣削表面质量研究[D].山东大学,2005:61-82.
    [25]H.Sasahara, T. Obikawa, T. Shirakashi. Prediction model of surface residual stress within a machined surface by combining two orthogonal plane models[J]. Inter. J. Mach. Tools. Manuf.,2004, (44):815-822.
    [26]N. Fang, Q. Wu. The effects of chamfered and honed tool edge geometry in machining of three aluminum alloys[J]. International Journal of Machine Tools & Manufacture,2005,45 (1):1178-1187.
    [27]B.R. Sridhar, G. Devananda, K. Ramachandra. Effect of machining parameters and heat treatment on the residual stress distribution in titanium alloy IMI-834[J]. Journal of Materials Processing Technology,2003,139 (1):628-634.
    [28]米古茂[日].残余应力的产生和对策[M].朱荆璞,邵会孟,译.北京:机械工业出版社, 1983:181-190.
    [29]胡华南,周泽华,陈澄州.预应力加工表面残余应力的理论分析[J].华南理工大学学报,1994,22(4):1-10.
    [30]王立涛.关于航空框类结构件铣削加工残余应力和变形机理的研究[D].浙江大学,2003:27-73.
    [31]王秋成.航空铝合金残余应力消除及评估技术研究[D].杭州:浙江大学,2003:22-103.
    [32]Manuich, T. D., Ortiz, M. Modeling and simulation of high speed machining[J]. International Journal of Numerical Methods In Engineering,1995,38 (21):3675-3694.
    [33]Lei, S., Shih, Y.C., Incropera, F.P. Thermo-mechanical modeling of orthogonal machining process by finite element analysis[J]. International Journal of Machine Tools and Manufacture, Design, Research and Application,1999,39 (5):731-770.
    [34]方刚,曾攀.金属正交切削工艺的有限元模拟.机械科学与技术[J],2003,22(4):641-645.
    [35]Zienkiewicz O C. Analysis of the mechanism of orthogonal machining by the finite element method. Journal of the Japan Society for Precision Engineering,1971,37 (7):503-508.
    [36]B. E. Klamechi. Incipient Chip Formation in Metal Cutting-a Three Dimension Finite Analysis[J]. Urbana: University of Illinois at Urbana-Chanpaign,1973 (8):1-10.
    [37]Strenkowski J S, Carrol J T. Finite element model of orthogonal metal cutting[J]. American Society of Mechanical Engineers,1984,12 (1):157-166
    [38]Lin, Z. C, Lin, S Y, A Couple finite element model of thereto-elastic large deformation for orthogonal cutting, Journal of Engineering Material and Technology,1992,114(2):218-222.
    [39]Shih, A. J., Yang, H.T.Y., Experimental and finite element predictions on the residual stresses due to orthogonal metal cutting. International Journal for Numerical Methods in Engineering,1993,36 (8):1487-1507
    [40]Hashemi, J., Tseng, A. A., Chou.R.C. Finite element simulation of segmented chip formation in high speed machining. Journal for mater. Eng. Perform.1994,3 (5):712-721.
    [41]Zhang Liangchi. On the separation criteria in the simulation of orthogonal metal cutting using the finite element method. Journal of Materials Processing Technology,1999, (88): 273-278.
    [42]Huang J M, Black J T. An evaluation of chip separation Criteria for the FEM simulation of machining. ASME Journal of Manufacturing Science and Engineering,1996,(118): 545-554.
    [43]M. R. Lajczok. A Study of Some Aspects of Metal Cutting by the Finite Element Method.[Ph D dissertation]. NC State University 1980:120.
    [44]E. Usui, T. Shirakashi. Mechanics of Machining-from Descriptive to Predictive Theory. On the Art of Cutting Metals-75 Years Later a Tribute to F W Taylor, ASME PED.1982, (7): 13-30.
    [45]Iwata K, Osakada K, Terasaka Y. Process modeling of orthogonal cutting by the rigid plastic finite element method. Journal of Engineering Materials and Technology, Transactions of the ASME.1984, (12):132-138.
    [46]Strenkowski J S, Moon K J. Finite element prediction of chip geometry and tool work piece temperature distribution in orthogonal metal cutting. Tran ASME J England,1990,112 (4): 313-318.
    [47]Bouzid.W, Lebrun.J.L. A numerical method to determine temperature distribution in orthogonal machining. Numerical Methods in Industrial Forming Processes, Proceedings of the 4th international conference,1992, (9):895-900.
    [48]Kim, KW, Sin, H. C. Development of a thermao-viscoplastic cutting model using finite element method. Journal of Machine Tool Manufacturing,1996,36 (3):379-397.
    [49]Sasahara H, Obikawa T, Shirakashi T. FEM analysis of cutting sequence effect on mechanical characteristics in machined layer. Journal of Materials Processing,1996,62 (4): 448-453.
    [50]Lin Zone-Ching, Lai Wun-Ling, Lin H Y, Liu C R. The study of ultra-precision machining and residual stress for NiP alloy with different cutting speeds and depth of cut. Journal of Materials Processing Technology,2000,97 (3):200-210.
    [51]McDill, J.M.J., Lindgren, Lars-Erik, Reed, R.C., Oddy, A.S., Continuous improvement in thermal-mechanical finite element analysis. International Conference on Processing and Manufacturing of Advanced Materials, Lasvegas, USA,2000,4-8.
    [52]杨勇,柯映林,董辉跃.金属切削加工中航空铝合金板材的本构模型.中国有色金属学报.2005,15(6):854-859.
    [53]黄志刚,柯映林,王立涛.金属切削加工的热力耦合模型及有限元模拟研究.航空学报.2004,25(6):317-320.
    [54]董辉跃.航空整体结构件加工过程的数值仿真.浙江大学博士学位论文,2004,6.
    [55]董辉跃.铝合金高速加工及整体结构件加工变形的实验与仿真研究.浙江大学博士后学位论文,2006,1.
    [56]孙杰.航空整体结构件数控加工变形校正理论和方法研究.浙江大学博士学位论文,2004,6.
    [57]汤敬计.超精密切削过程的有限元仿真.哈尔滨工业大学博士学位论文,2004,6.
    [58]庄文义.金属微切削过程的有限元仿真及实验研究.哈尔滨大学博士学位论文,2003,7.
    [59]Shirakashi T, Usui E. Simulation analysis of orthogonal metal cutting process. Journal of the Japan Society for Precision Engineering,1974,42 (5):535-540.
    [60]D.A.Lucca, R.L.Rhorer, R.Komanduri. Energy dissipation in the ultra precision machining of copper-Annals of CIRP.1991,40 (1):69-72.
    [61]Shet, C., Deng, X., Finite element analysis of the orthogonal metal cutting process, Journal of Material Processing Technology,2000,105 (1):95-110.
    [62]吴江妙,杨志强.Inconel718合金高速切削加工的工艺参数优化[J].机械制造,2009,47(10): 53-55
    [63]韩金全,万敏,陈雪梅,袁胜.飞机复杂蒙皮拉形工艺参数优化设计[J].塑性工程学报,2009,16(6):96-101
    [64]崔延风.高速切削工艺参数优化技术取得重大突破[J].昌河科技,2007(2):23-24
    [65]于航,王若平,刘大辉,赖利国.高速切削工艺参数优化系统[J].新技术新工艺,2009(8):57-59.
    [66]王援朝.工艺参数优化方法[J].汽车科技,1993(6):47-51
    [67]王芳林,徐国华.机加零件可制造性研究中的工艺参数优化方法[J].西安电子科技大学
    学报,2000,27(4):404-407
    [68]王培利.基于Matlab的工艺参数优化设计方法研究[J].装备制造技术,2009(2):98-99,122
    [69]陈拂晓,李贺军,郭俊卿,杨永顺.基于人工神经网络的轴承保持架超塑性成形工艺参数优化[J].中国机械工程,2007,18(23):2786-2788,2859.
    [70]朱红雨,李迎.基于神经网络和遗传算法的高速铣削工艺参数优化的研究[J].工具技术,2007,41(12):29-32
    [71]张磊.基于神经网络注塑成型工艺参数优化[J].制造技术与机床,2007(5):77-80
    [72]舒服华,王志辉.基于蚁群神经网络的电阻点焊工艺参数优化[J].焊接,2007(2):39-42
    [73]刘玉波,赵灿,冯明军.基于正交实验法的高速铣削工艺参数优化设计[J].组合机床与自动化加工技术,2008(9):68-71
    [74]俞学节.一种新高强度不锈钢(0Cr12Mn5Ni4Mo3A1)的组织特征,金属热处理学报,第3卷,第1期,1982.6,49-61
    [75]文斯雄.69111不锈钢制品化学铣切及抛光的应用,Plating and Finishing, Vol.12 No. 6,1990.11,34-35
    [76]曹生利.0Cr12Mn5Ni4Mo3A1不锈钢热处理工艺研究,哈尔滨理工大学工程硕士学位论文,2005.3
    [77]孙永庆,梁剑雄,杨志勇,宋为顺.冶炼方法和热处理工艺对0Cr12Mn5Ni4Mo3Al高强不锈钢带力学性能和组织的影响,钢铁,2009,1,第44卷,第1期,76-78
    [78]陈洪彬,曹生利,付原科,李双.固溶处理温度对0Cr12Mn5Ni4Mo3A1钢的相和组织的影响,哈尔滨理工大学学报,第14卷,第3期,2009.6,111-116
    [79]陈森.低温对弹簧钢丝性能的影响,中国学术期刊电子杂志社China Academic Journal Electronic Publishing House),1994~2009,40-41
    [80]樊琳,程东霁,于江海,张振.3Cr13马氏体不锈钢的加工[J].苏州大学学报(工科版),2006,(06)
    [81]张文周,谭承峰.不锈钢加工对刀具材质和几何参数的要求[J].机械制造,2003,(09):39-40
    [82]李艳聪,牛文铁,张伟玉.不锈钢铣削力的实验研究.汽车技术,2004,(05):26-29
    [83]陈小润,方沂,田美丽,贺琼义.高速铣削1Cr18Ni9不锈钢切削力建模及实验分析[J].制造技术与机床,2007,(8).41-44
    [84]龙震海,王西彬,刘志兵.高速铣削难加工材料时硬质合金刀具前刀面磨损机理及切削性能研究[J].摩擦学学报,2005,(1).83-87
    [85]刘俊成.铬镍不锈钢的切削加工[J].制造技术与机床,2002,(2).36-37
    [86]刘安虎,李文贵,章海涛,张吕义.干式冷风车削不锈钢的高速钢刀具磨损实验研究[J].制造技术与机床,2007,(9).72-74
    [87]王钰.加工不锈钢对刀具、磨具材料及儿何参数的选择[J].山西冶金,2002,(2).50~54
    [88]边梅彦.难加工材料的切削加工及刀具材料的选用[J].石家庄铁路职业技术学院学报,2007,(3).59-62
    [89]高永明,山本勉.硬质合金材料及其涂层对不锈钢加工中刀具边界磨损的影响[J].工具技术,1999,(12).6-10
    [90]杜伟,苏光.0Cr17Ni7AI钢热处理硬度不均的工艺分析与改进.热加工工艺,2006(2),56-57
    [91]吴瑞豪.FC一1机主要受力构件选材分析.成飞科技,2003,(3),1-3
    [92]赵德忠.φ160 mm 0Cr17Ni4Cu4Nb沉淀硬化不锈钢半连续轧制工艺实践[J].特殊钢,2007,(3).64-65
    [93]李松涛,徐春.半奥氏体沉淀硬化不锈钢PH15-7Mo的合金成分与热处理工艺研究[J].机械管理开发,2002,(S1).5-7
    [94]张德元.沉淀硬化型不锈钢的性能[J].国外金属热处理,1997,(1).36-37
    [95]李志,赵振业,刘天琦.高强度沉淀硬化不锈钢与K_(IC)和K_(ISCC)[J].航空材料学报,2003,(S1).83-87.
    [96]陶俊林.SHPB实验技术若干问题研究(PHD).中国工程院物理研究所,绵阳,2005.
    [97]黄志刚,柯映林,王立涛.金属切削加工的热力耦合模型及有限元模拟研究.航空学报.2004,25(6):317-320.
    [98]丁遂栋.断裂力学[M].机械工业出版社,1997.
    [99]黄西成,陈裕泽,朱建士.缺口试件拉伸实验中的材料失效函数确定方法[J].固体力学学报.2008,29(4):385-388.
    [100]Third Wave Systems I. AdvantEdge User's Manual [M].5.3 Edition. Third Wave Systems, Inc..2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700