用户名: 密码: 验证码:
气体燃料在渐变型多孔介质中的预混燃烧机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为缓解能源结构不合理造成的环境污染问题,我国加快了天然气的使用力度,发展高效、低污染排放的天然气燃烧技术具有非常重要的现实意义。气体燃料在惰性多孔介质中的燃烧技术在很多方面体现出了其优越性,成为近年来燃烧领域的研究重点之一。
     本文以实现高效、稳定燃烧和低污染物排放为目标,研究了多孔介质猝熄直径、孔径、厚度等参数对均匀多孔介质(HPM)中燃烧特性的影响规律;提出了渐变型多孔介质(GVPM)结构优化的设计构想,研究了气体燃料在渐变型多孔介质中的燃烧和流动特性。
     对均匀多孔介质中预混火焰的猝熄效应进行了试验研究,发现多孔介质的猝熄直径是多个参数的复杂函数,与混合气体流速、层流火焰传播速度、燃烧室管流雷诺数、预混气体导温系数、当量比、多孔介质固体温度有关。采用孔径由小到大逐渐变化排列的渐变型多孔介质,可以扩大多孔介质内火焰的猝熄范围,增强燃烧的稳定性。
     对均匀型多孔介质中的燃烧稳定性进行了试验研究,得到了均匀多孔介质中回火、脱火或熄火的当量比极限范围;研究了火焰从多孔介质下游外侧进入多孔介质内部或火焰从多孔介质中脱离或熄灭时的气流速度或当量比极限条件;得出了火焰面位置及燃烧温度随当量比和燃烧强度的变化而在多孔介质中移动的规律;同时,在试验中发现了火焰的偏移、分层或分块燃烧现象,从另一方面说明了多孔介质中温度分布均匀和污染物排放降低的原因所在。
     进行了泡沫陶瓷孔径、厚度及材质对均匀型多孔介质中的稳态燃烧特性的影响试验研究。得到了多孔介质孔径对燃烧室温度分布、污染物排放、火焰速度、燃烧稳定性以及多孔介质燃烧器压降(阻力损失)的影响规律和多孔介质层厚度对燃烧器换热特性及阻力特性的影响规律。均匀多孔介质中燃烧特性的研究为渐变型多孔介质的设计和燃烧特性的研究奠定了基础。
     对天然气—空气预混气体在多种渐变型多孔介质中稳态燃烧特性、启动特性、非稳态特性进行了详细研究。获得了渐变型多孔介质中的温度分布、污染物排放、火焰速度、燃烧稳定性及压降随当量比和燃烧强度的变化特性,并研究了渐变型多孔介质中稳定燃烧的气流速度和当量比极限;通过燃烧室温度分布揭示了渐变型多孔介质中稳态燃烧状况的多样性存在。试验结果表明,采用合适的渐变型多孔介质结构可以改善单一孔径多孔介质中的燃烧特性和流动特性,使燃烧室温度分布更加均匀,同时也可以提高燃烧稳定性,提高火焰速度,拓宽可燃当量比极限范围;在污染物排放方面,也由于对温度分布的改善而使得污染物排放更低。根据GVPM燃烧室中温度分布随燃烧强度的变化特性,给出了多种GVPM燃烧器的推荐燃烧强度范围。发现GVPM燃烧器的启动受到多孔介质结构、燃气流量、当量比、点火位置及多孔介质初始预热条件等因素的影响。通过多孔介质中的非稳态试验发现,对多孔介质预热条件下可以维持恶劣工况较长时间运行,这为采用预热式或循环往复式燃烧极贫燃料的实现提供了一定的试验基础。
    
    浙江大学博士学位论文王思宇,2004.4
     考虑了多孔介质的粘性力、惯性力及形状效应,以多孔介质中燃烧的基本方程为基
    础,推导出了多孔介质中的湍流燃烧模型。通过“用户自定义函数”对Fluent 6.1软件包
    进行了创新性的改进用于模型的求解。对多种均匀型多孔介质和渐变型多孔介质中的燃
    烧过程进行了模拟,得到了温度场、速度场、浓度场以及NO排放和多孔介质燃烧器压
    力损失的数据,分析总结了多孔介质孔径、厚度及孔排列结构对燃烧特性的影响规律,
    并与相关的试验结果进行了对比;对模型的理论预示结果和试验结果的差异进行了分析
    和解释。最后,对本文采用的理论模型进行了分析评价。
    关键词:多孔介质预混燃烧渐变型多孔介质燃烧器天然气气体燃料
    湍流燃烧模型
The natural gas is being exploited and utilized rapidly for solving the serious environmental pollution problem due to the bad energy structure in our country. To develop the technique of natural gas combustion with higher efficiency and lower pollutants emission becomes very significant. The technique of fuel gases combustion in inert porous media has many advantages, and becomes an important topic in combustion research field.In this thesis, with high efficiency, stable combustion and low pollutants emission for goal, a idea of gradually-varied porous media (GVPM) was put forward, and the characteristic of the gaseous fuel/air mixture flow and premixed combustion in the GVPM was studied detailedly, based on the study on the influence of the quenching diameter, pore size and thickness of the porous ceramic foam to the characteristic of the natural gas/air premixed combustion in the homogeneous porous media (HPM).Experimental studies are done for the quenching effect of premixed flames in the HPM. It was found that the quenching diameter of porous media is a multi-parametric complicated function, related to the mixture flow speed, the premixed gaseous laminar flame velocity, the pipe flow Reynolds numbers, the coefficient of temperature conductivity, the equivalence ratio and the solid temperature. To make a GVPM with the pores increasing gradually, the quenching diameter range will be expanded and the stability of the flame in it be enhanced.The stability of premixed combustion in HPM was studied experimentally. The flashback, blow-off or extinction equivalence ratio limits were gained for the HPM burner. Similarly, the gas flow speed or the equivalence ratio conditions were studied, which of the flame into the HPM from outside or of the flame away from the HPM. The laws of the flame position and the temperature in the HPM changing with the equivalence ratio or the firing rate have been gained. During the experiments, the phenomena of the flames were observed to be excursion, separate layers or blocks burning. The existence of these phenomena may be one reason of the uniform temperature distribution and low pollutant emission in the porous media..The influence of the pore size, thickness and materials to the characteristics of stable combustion in the HPM were studied experimentally. The influence of the mean pore diameter of the HPM to the temperature distribution in the combustors, pollutants emission, flame speed, burning stability and the pressure drop (resistance loss) were gained. As the case of the HPM with 30 PPI, the influence of the HPM thickness to the characteristics of heat exchange and the resistance of the HPM burners were studied. The studies on the combustion characteristics in the HPM are the base for designing the GVPM and studying the combustion characteristics in the GVPM.A systematic research was carried out on the characteristics of natural gas/air mixture steadily combusting in the GVPM burners. The contents included temperature distribution, pollutant emission, flame speed and pressure loss, as the functions of the equivalence ratio and firing rate, moreover, the gas velocity and equivalence ratio limit for steady combustion in the GVPM burners. There is multiplicity for steady combustion available, which can be indicated
    
    by temperature distribution in the burner. The startup and unsteady combustion characteristics of the GVPM burners were also studied. The experimental results show that the combustion and flow characteristics in porous media burners can be improved by using a suitable GVPM structure. More uniform temperature distributions, better combustion stability, faster flame speed and broader limit range of equivalent ratio were achieved for a GVPM than those of HPM. Meanwhile, lower pollutant emission is realized due to amendatory temperature distribution.The temperature distributions of different characteristics in the GVPM burner can be found under various firing rates. After analyzing the experimental results, the recommended ranges of firing rates for the burners with different GV
引文
1 张永武,中国21世纪初期天然气工业发展展望,天然气工业,2000,20(1):1-4.
    2 金晶,世界及中国能源结构,能源研究与信息,2003,19(1):20-26.
    3 国家环境保护总局,1999年中国环境状况公报,环境保护,2000,(7):3-9.(或见http://www.zhb.gov.cn/649368281714524160/20021125/1036005.shtml).
    4 国家环境保护总局,2002年中国环境状况公报,环境保护,2003,(7):3-13.(或见http://www.zhb.gov.cn/649368298894393344/20030606/1038755.shtml).
    5 张位平,天然气发展及中国市场展望,石油企业管理,2002,(8):70-72.
    6 顾恒祥,张青藩,王洪铭,金如山,燃料与燃烧,西北工业大学出版社,1993年6月.
    7 陈树义,张丽玲,燃料燃烧及燃烧装置,冶金工业出版社,1985年5月.
    8 Hall M J, Hiatt J P, Exit flow from highly porous media, Physics of Fluids, 1994, 6(2): 469-479.
    9 林瑞泰,多孔介质传热传质引论,科学出版社,1995年10月.
    10 Bear J 著,Dynamics of Fluids in Porous Media, American Elsevier Publishing Company,INC.1972;李竞生,陈崇希译,多孔介质流体动力学,中国建筑工业出版社,1983年8月.
    11 Dullien F A L著,杨富民,黎用启译,多孔介质—流体渗移与孔隙结构,石油工业出版社,1990年8月.
    12 陈磊,陈达谦,多孔陶瓷及其发展,现代技术陶瓷,2001,(3):7-11.
    13 王慧,曹令可,张海文,罗民华,张明,程小苏,史琳琳,陈永洁,多孔陶瓷—绿色功能材料,中国陶瓷,2002,38(3):6-8,19.
    14 Picken(?)cker O, Pickenacker K, Wawrzinek K, Trimis D, Pritzkow W E C, M(?)ller C, Goedtke P, Papenburg U, Adler J, Standke G, Heymer H, Tauscher W, Jansen F, Innovative ceramic Materials for Porous Medium Burners Ⅰ, Interceram: International Ceramic Review, 1999, 48(5).
    15 Picken(?)cker O, Picken(?)cker K, Wawrzinek K, Trimis D, Pritzkow W E C, M(?)ller C, Goedtke P, Papenburg U, Adler J, Standke G, Heymer H, Tauscher W, Jansen F, Innovative ceramic materials for porous medium burners Ⅱ, Interceram: International Ceramic Review, 1999, 48(6): 424-433
    16 吴庆祝,刘永先,李福功,张辉,泡沫陶瓷及其应用,陶瓷,2002,156:12-14,31.
    17 陈雪梅,Al2O3基泡沫陶瓷的研究,中国陶瓷,2001,37(6):21-23.
    18 吕琴谊,泡沫陶瓷成孔性能对热震性的影响,江苏陶瓷,2000,33(3):13-14,16.
    19 Orenstein R M and Green D J, Thermal shock behavior of open-cell ceramic foams, J. Am. Ceramic Soc., 1992, 75: 1899-1905.
    20 Dobrego K V, Zhdanok S A, Khanevich E I, Analytical and experimental investigation of the transition from low-velocity to high-velocity regime of filtration combustion, Experimental Thermal and Fluid Science, 2000, 21(1-3): 9-16.
    21 Brenner G, Picken(?)cker K, Picken(?)cker O, Trimis D, Wawrzinek K, Weber T, Numerical and Experimental Investigation of Matrix-Stabilized Methane/Air Combustion in Porous Inert Media, Combustion and Flame, 2000, 123(1): 201-213.
    22 Hsu P-F, Evans W D, Howell J R, Experimental and Numerical Study of Premixed Combustion within Northomogeneous Porous Ceramics, Combust Sci Technol, 1993, 90: 149-172.
    23 M(?)βbauer S, Picken(?)cker O, Picken(?)cker K, Trimis D, Application of the Porous Burner Technology in Energy-and Heat-Engineering, Fifth International Conference on Technologies and Combustion for a Clean Environment (Clean Air V), Lisbon, Portugal, 12-15, July 1999, Volume Ⅰ, Lecture 20.2, pp: 519-523.
    24
    
    24 Howell J R, Hall M J and Ellzey J L, Combustion of Hydrocarbon Fuels Within Porous Inert Media, Prog. Energy Combust. Sci., 1996, 22(2): 121-145.
    25 Hanamura K, Echigo R, Zhdanok S A, Superadiabatic combustion in a porous medium, International Journal of Heat and Mass Transfer, 1993, 36(13): 3201-3209.
    26 越后亮三(日),多孔介质内的超绝热燃烧,张唯敏 译(自动车技衍,1996,50(4))国外内燃机,1997,6:55-57.
    27 Ohlemiller T J, Lucca D A, An experimental comparison of forward and reverse smolder propagation in permeable fuel beds, Combustion and Flame, 1983, 54: 131-147.
    28 Yamaguchi A, Nakajima T, Ikeda Y, Numerical simulation of combustion in waste layer of stoker-type incinerator, Computational Technologies for Fluid/Thermal/Structural/Chemical Systems with Industrial Applications American Society of Mechanical Engineers, Fressure Vessels and Piping Division (Fublication) ASME, Fairfield, NJ, USA, 1998, PVP 377(2): 125-130.
    29 McNabb A, Please C P, McElwain D L S, Spontaneous combustion in coal pillars: Buoyancy and oxygen starvation, Mathematical Engineering in Industry, 1999, 7(3): 283-300.
    30 Lozinski D, Buckrnaster J, Quenching of reverse smolder, Combustion and Flame, 1995, 102(1-2): 87-100.
    31 Norbury J, Stuart A M, Travelling combustion waves in a porous medium. Part Ⅰ-Existence, Appl. Math., 1988, 48(1): 155-169.
    32 Norbury J, Stuart A M, Travelling combustion waves in a porous medium. Part Ⅱ-Stability, SLAM Journal on Applied Mathematics, 1988, 48(2): 374-392.
    33 Tam K K, Traveling Waves solutions for combustion in a porous medium, Studies in Applied Mathematics, 1989, 81: 249-263.
    34 Byrne H, Norbury J, Ward J, Travelling combustion waves in porous media, Mathematical Engineering in Industry, 1996, 6(1): 39-62.
    35 Byrne H, Norbury J, The effect of solid conversion on travelling combustion waves in porous media, Journal of Engineering Mathematics, 1997, 32: 321-342.
    36 Prasad R, Kennedy L A, Ruckenstein E, Catalytic combustion, Catal. Rev. Sci. Eng., 1984, 26(1): 1-58.
    37 谭炯,陈峰,万家义,燃气炉低温催化燃烧研究,西南民族学院学报(自然科学版),2002,28(2):236-238.
    38 蔡俊修,催化助热燃烧—一项重要的燃烧新技术,煤炭转化,1993,16(1):45-53.
    39 Prasad R, Kennedy L A, Ruckentein E, Oxidation of fuel bound nitrogen in a transitional metal oxide catalytic combustor, Combustion Science and Technology, 1981, 27: 45-54.
    40 Cerri I, Saracco G, Specchia V, Methane combustion over low-emission catalytic foam burners, Catalysis Today, 2000, 60(1): 21-32.
    41 Marc D R, Richard D H, Robert W D, Numerical analysis of a catalytic radiant burner: effect of catalyst on radiant efficiency and operability, Catalysis Today, 1999, 47: 253-262.
    42 Neomagus H W J P, Saracco G, Wessel H F W, et al, Catalytic combustion of natural gas in a membrane reactor with separate feed of reactants, Chemical Engineering Journal, 2000, 77: 165-177.
    43 Cerri I, Saracco G, Specchia V, et al, Improved-performance knitted fibre mats as supports for pre-mixed natural gas catalytic combustion, Chemical Engineering Journal, 2001, 82: 73-85.
    44 杨乐夫,袁强,史春开,何湘鄂,蔡俊修,高温催化燃烧技术及其核心催化剂的研制,厦门大学学报(自然科学版),2001,40(2):486-494.
    45 吕宏缨,胡瑞生,沈岳年等,稀土型高温燃烧催化剂在天然气发电中的应用,稀土,2001,22(3):63-66,72.
    
    46 Eugene A O, Elizabeth R S, Marc A M, Characterization by indentation of combustion synthesized cermets, Scripta mater, 2001, 44(7): 1139-1146.
    47 Ringuedé A, Bronine D, Frade J R, Assessment of Ni/YSZ anodes prepared by combustion synthesis, Solid State Ionics, 2002, 146: 219-224.
    48 Chen Dianying, Zhang Baolin, Zhuang Hanrui, Li Wenlan, Combustion synthesis of network silicon nitride porous ceramics, 2003, Ceramics International 29: 363-364.
    49 Meyers M A, Olevsky E A, Ma J, Jamet M, Combustion synthesis/densification of an Al2O3-TiB2 composite, Materials Science and Engineering, 2001, A311: 83-99.
    50 Li B Y, Rong L J, Li Y Y, Gjunter V E, Synthesis of porous Ni-Ti shape-memory alloys by self-propagating high-temperature synthesis: reaction mechanism and anisotropy in pore structure, Acta mater, 2000, 48: 3895-3904.
    51 江国健,庄汉锐,李文兰,邬风英,张宝林,自蔓延高温合成材料制备新方法,化学进展,1998,(3):327-332.
    52 Oliveira A A M, Kaviany M, Nonequilibrium in the transport of heat and reactants in combustion in porous media, Progress in Energy and Combustion Science, 2001, 27(5): 523-545.
    53 Lucke C E, Design of surface combustion appliances, The Journal of Industrial and Engineering Chemistry, 1913, 5(10): 801-824.
    54 Hays J W, Water treater and heater. US Patent No. 2066348, 1933.
    55 Korzhavin A A, Bunev V A, Abdullin R K, Babkin V S, Flame zone in gas combustion in an inert porous medium, Combustion Explosion Shock Waves, 1982, 18: 628-631.
    56 De Soete G, Stability and propagation of combustion waves in inert porous media, The Eleventh Symposium (international) on Combustion, 1966, The Combustion Institute, 959-966.
    57 Weinberg F J, Combustion temperatures: the future? Nature, 1971, 233: 239-241.
    58 Hardesty D R, Weinberg F J, Burners producing large excess enthalpies, Combustion Science and Technology, 1974, 8: 201-214.
    59 Fox J S, Comment on 'Burners producing large excess enthalpies', Combustion Science and Technology, 1976, 12: 147-151.
    60 Hardesty D R, Weinberg F J, Converter efficiency in burner systems producing large excess enthalpies (reply by author to comment), Combustion Science and Technology, 1976, 12: 153-157.
    61 Takeno T, Sate K, An excess enthalpy flame theory, Combustion Science and Technology, 1979, 20: 73-84.
    62 Takeno T, Sate K, Hase K, A theoretical study on an excess enthalpy flame, The Eighteenth Symposium (Int.) on Combustion, 1981, The Combustion Institute: 465-472.
    63 Kotani Y, Takeno T, An experimental study on stability and combustion characteristics of an excess entralpy flame, Nineteenth Symposium (International) on Combustion, 1982, The Combustion Institute: 1503-1509.
    64 Kotani Y, Behabahani F, Takeno T, An excess enthalpy flame eombustor for extended flow ranges, Twentieth Symposium (Int.) on Combustion, 1984, The Combustion Institute: 2025-2033.
    65 Takeno T, Hase K, Effects of solid length and heat loss on an excess enthalpy flame, Combustion Science and Technology, 1983, 31: 207-215.
    66 Yoshizawa Y, Sasaki K, Echigo R, Analytical study of the structure of radiation controlled flame, International Journal of Heat and Mass Transfer, 1988, 31 (2): 311-319.
    67 Echigo R, Yoshizawa Y, Hanamura K, Tomimura T, Analytical and experimental studies on radiative propagation in porous media with internal heat generation, Proceedings of the Eighth International Heat Transfer Conference, San Francisco, CA, 1986, Vet. Ⅱ: 827-832.
    68 Echigo P,, Radiation enhanced/controlled phenomena of heat and mass tnmsfer in porous media, Proceedings of ASME/JSME Thermal Engineering Joint Conference, 1991, 4: xxi-xxxii.
    
    69 Hsu P-F, Howell J R, Matthews R D, A numerical investigation of premixed combustion within porous inert media, ASME Journal of Heat Transfer, 1993, 115: 744-750.
    70 Hsu P-F, Matthews R D, The necessity of using detailed kinetics in models for premixed combustion within porous media, Combustion and Flame, 1993,93:457-466.
    71 Hsu P-F, Analytical and experimental study of combustion in porous inert media, Ph.D. Thesis, The University of Texas at Austin, Austin, TX, USA, 1991.
    72 Howell J R, Hall M J, Ellzey J L, Combustion within porous inert media, Heat Transfer in Porous Media and Two-Phase Flow, 1995, Bayazitoglu Y, Sathuvalli U B, Ed., ASME HTD-302: 1-28.
    73 Hackert C L, Ellzey J L, Ezekoye O A, Combustion and heat transfer in model two-dimensional porous burners, Combustion and Flame, 1999,116: 177-191.
    74 Hackert C L, Two-dimensional simulation of flames in porous media, Ph.D. Thesis, University of Texas, Austin, USA, 1997.
    75 Henneke M R, Simulation of transient combustion within porous inert media, Ph.D. Thesis, University of Texas, Austin, USA, 1998.
    76 Fu X, Viskanta R, Gore J P, A model for the volumetric radiation characteristics of cellular ceramics, International Communications in Heat and Mass Transfer, 1997, 24(8): 1069-1082.
    77 Fu X, Viskanta R, Gore J P, Prediction of effective thermal conductivity of cellular ceramics, International Communications in Heat and Mass Transfer, 1998,25(2): 151-160.
    78 Fu X, Viskanta R, Gore J P, Modeling of thermal performance of a porous radiant burner, ASME HTD, Proceedings of the ASME Heat Transfer Division 1998,361(2): 11-19.
    79 Mital R, Gore J P, Viskanta R, A Study of the Structure of Submerged Reaction Zone in Porous Ceramic Radiant Burners, Combustion and Flame, 1997, 111: 175-184.
    80 Fu Xiaoyong, Modeling of a submerged flame porous burner/radiant heater, Ph.D. Thesis, Purdue University, West Lafayette, IN, USA, 1997.
    81 Trimis D, Durst F, Combustion in a porous medium - advances and applications, 3rd International Conference on Technologies and Combustion for a Clean Environment (Clean Air III), Paper 8.2, Lisbon, Portugal 1995, pp. 1-8.
    82 Trimis D, Durst F, Compact low Emission Combustion Reactors with Integrated Heat Exchangers Using Porous Medium Combustion, Proceedings of First European Conference on Small Burner Technology and Heating Equipment, Zurich, Switzerland, 1996, Volume I.
    83 Kesting A, Trimis D, Adiabatic combustion processes in porous inert media at the lean flammability limit, 2nd International School Seminar on Modern Problems of Combustion and its Applications, Minsk, Byelorussia, 30 August - 4 September, 1997.
    84 Pan H L, PickenScker O, Pickenacker K, Trimis D, MOflbauer S, Wawrzinek K, Weber T, Experimental determination of effective heat conductivities of highly porous media, 5th European Conference on Industrial Furnaces and Boilers(INFUB5), Porto, Portugal, 11-14, April 2000, Burners, Combustion and Basic Heat Transfer, Vol. 1.
    85 Trimis D, Durst F, Pickenftcker O, Pickenacker K, Porous medium combustion versus combustion systems with free flames, 2nd International Symposium on Heat Transfer Enhancement and Energy Conservation, ISHHEEC97, 16-19 June 1997, Guangzhou, China. In: Wang Shi-ping, Tan Ying-ke, Advances in Heat Transfer Enhancement and Energy Conservation, South China University of Technology Press, pp.339-345.
    86 Kesting A, Pickenacker O, Trimis D, Durst F, Development of a radiation burner for methane and pure oxygen using the porous burner technology, Fifth International Conference on Technologies and Combustion for a Clean Environment (Clean Air V), Lisbon (Portugal), 12-15 July 1999.
    87 Picken&cker O, Trimis D, Durst F, Low emission burner based on staged combustion in an inert porous medium—experimental and numerical investigations, Second European Conference on Small Burner and Heating Technology ECSBT2, University of Stuttgart,16-17 March 2000, lecture 2 of Session A (Surface, Porous and Catalytic Burners), Vol. 1:11-20.
    88
    
    88 Hoffmann J G, Echigo R, Yoshida H, Tada S, Experimental study on combustion in porous media with a reciprocating flow system, Combustion and Flame, 1997, 111: 32-46.
    89 Babkin V S, Filtration combustion of gases, present state of affairs and prospects, Pure and Applied Chemistry, 1993, 65(2): 335-344.
    90 Babkin V S, Korzhavin A A, Bunev V A, Propagation of premixed gaseous explosion flames in porous media, Combustion and Flame, 1991, 87: 182-190.
    91 Korzhavin A A, Bunev V A, Babkin V S, Dynamics of gas combustion in closed systems with an inert porous medium, Combustion and Flame, 1997, 109: 507-520.
    92 Korzhavin A A, Bunev V A, Babkin V S, Flame propagation in porous media wetted with fuel, Combustion, 1997, Explosion and Shock Waves, 33(3): 306-314.
    93 Malico, I, Pereira J C F, Numerical predictions of two-dimensional radiative heat transfer in porous media, 4th International Conference on Technologies and Combustion for a Clean Environment, Lisbon, Portugal, 7-10 July, 1997, pp.27-41.
    94 Malico I, Zhou X-Y, Pereira J C F, Validation of ID and 2D modelling assumptions to predict compact porous medium burners, 11th Intemational Heat Transfer Conference, Kyongju, South Korea, 23-28 August, 1998, Volume 4: 471-477.
    95 Pereira J C F, Costa M, Malico I, Experimental and numerical investigation of a porous counterflow heat exchanger model, International Conference and Exhibit on Heat Exchangers for Sustainable Development, Lisbon, Portugal, 15-18 July, 1998, pp.701-714.
    96 Zhou X Y, Pereira J C F, Comparison of four combustion models for simulating the premixed combustion in inert porous media, Fire and Materials, 1998, 22(5): 187-197.
    97 Malico I, Pereira J C F, Sensitivity study on the influence of radiative properties in porouS media combustion, 5th International Conference on Technologies and Combustion for a Clean Environment, Lisbon, Portugal, 12-15 July, 1999, pp.555-562.
    98 Malico I, Pereira J C F, Porous burner combustors for household applications: modeling and simulation, 2nd European Conference on Small Burner and Heating Technology, Stuttgart, Germany, 16-17 March, 2000, 333-342.
    99 Malico I, Pereira J C F, Numerical predictions of porous burners with integrated heat exchanger for household applications, Journal of Porous Media, 1999, 2: 153-162.
    100 Malico I, Zhou X-Y, Pereira J C F, Two-dimensional numerical study of combustion and pollutants formation in porous burners, Combustion Science and Technology, 2000, 152:57-79.
    101 Malico I, Pereira J C F, Numerical study On the influence of radiative properties in porous media combustion, Journal of Heat Transfer, 2001, 123(5): 951'957.
    102 吕兆华,R.Matthews,J.Howell,多孔陶瓷材料中的预混火焰,华东工学院学报,1989,3∶25-29。
    103 吕兆华,王志武,孙思诚,苏补贵,多孔陶瓷燃烧器火焰温度的测定,发电设备,1997,8-9∶35-38。
    104 吕兆华,Matt.,R D,多孔泡沫陶瓷中预混火焰燃烧速率的试验研究,燃烧科学与技术,1995,1(2)∶129-134。
    105 吕兆华,孙思诚,多孔介质中预混火焰燃烧速率的预示,燃烧与科学技术,1998,4(3)∶242-246。
    106 吕兆华,Matthews R D,分段多孔介质燃烧器二次进气燃烧捧放研究,燃烧科学与技术,2000,6(2)∶124-128。
    107 刘宪秋,卢国楷,马志伟,朱建红,多孔介质对贫燃料燃烧极限的影响,北京化工学院学报(自然科学版),1994,21(2)∶54-57。
    
    108 李艳红,徐吉浣,张鹤声,多孔陶瓷板中城市燃气预混燃烧的试验研究与数值计算,工程热物理学报,1997,18(3):385-388。
    109 李艳红,胡国新,徐吉浣,张鹤声,多孔陶瓷板燃气燃烧器氮氧化物的排放特性,上海交通大学学报,1999,33(8):997-1000。
    110 李艳红,程惠尔,徐吉浣,张鹤声,多孔陶瓷板城市燃气预混燃烧的数学模拟,上海交通大学学报,1999,33(8):1001-1003。
    111 张帆,徐吉浣,葛志祥,燃气红外辐射器在干燥工艺中的应用,煤气与热力,2000,(5):184-186。
    112 李艳红,徐吉浣,简瑞民,潘军松,引射式大负荷陶红外辐射燃烧器的研究,煤气与热力,1997,(5):34-38。
    113 李艳红,徐吉浣,燃气红外灶的燃性能及其开发,公用科技,1996,12(1):8-12。
    114 段常贵,贾敬秋,多孔陶瓷板式辐射器作为家用燃气灶问题的探讨,哈尔滨建筑工程学院学报,1993,26(3):125-128。
    115 Krupiczka R, Analysis of thermal conductivity in granular materials, International Chemical Engineering, 1967, 7: 122-144.
    116 Zumbrunnen D A, Viskanta R, Incropera F P, Heat transfer through porous solids with complex integral geometries, International Journal of Heat and Mass Transfer, 1986, 29(2): 275-284.
    117 Fletcher L, Sparks T, Thermal contact conductance of porous ceramic materials, Proceeding of NSF/DITAC Workshop on Thermal Contact Conductance in Microelectronics, edited by Williams A, 1992, Monash University, Melboume, Australia.
    118 Hsu P-F, Howell J, Measurements of thermal conductivity and optical properties of porous partially stabilized zireonia, Experimental Heat Transfer, 1993, 5:293-313.
    119 Tseng C-J, Liquid fuel combustion in porous ceramic burners, PhD thesis, The University of Texas at Austin, Austin, TX, USA, 1995.
    120 Lapwood E R, Convection of a fluid in a porous medium, Proc. Comb. Phil. Soc. 1948, 44:508-520.
    121 Anderson P, Glasser D, Thermal convection and surface temperatures in porous media, Int. J. Heat Mass Transfer, 1990, 33(6): 1321-1330.
    122 Youngis L B, Viskanta R, Experimental determination of the volumetric heat transfer coefficient between stream of air and ceramic foam, International Journal of Heat and Mass Transfer, 1993, 36(6): 1425-1434.
    123 Ishibashi M, Personal communication, Bridgestone Corporation, April 13, 1992.
    124 Hale M J, Bohn M S, Measurement of the radiative transport properties of reticulated alumina foams, ASME/ASES Joint Solar Energy Conf., Washington D. C., April 4-8, 1992.
    125 Hendricks T J, Howell J R, Absorption/scattering coefficients and scattering phase functions in reticulated porous ceramics, J. Heat Trans., 1996, 118,(1).
    126 Mital R, Gore J P, Viskanta R, Meansurements of radiative properties of cellular ceramics at high temperature, J. Thermophysics and Heat Trans., 1996, 10(1): 33-38.
    127 Maiorov V, Flow and heat transfer of single-phase coolant in porous ceramic materials, Thermal Engineering, 1978, 25: 64-70.
    128 Achenbach E, Heat and flow characteristics in packed beds, Experimental Thermal and Fluid Science, 1995, 10:17-21.
    129 Mikulin E, Shevich Y A, Experimental study of heat transfer in meshed matrices, Joumal of Engineering Physics, 1972, 22(6):1116-1117.
    130 Galitseysky B, Mozhaev A, Heat transfer and hydraulic resistance in porous systems, Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, edited by Kelleher M D, et al, Elsevier Science Publishers, New York, 1993, 1569-1576.
    131 Kaviany M, Principles of Heat Transfer in Porous Media, Springer, New York, 1991.
    
    132 吕兆华,泡沫型多孔介质中非达西流动特性的研究,工程力学,1998,15(2):57-64。
    133 Philipse A P, Schram H L, Non-Darcian airflow through ceramic foam, J. Am. Ceramic Soc., 1991, 74: 728-732.
    134 Galambos P C, Experimental determination of heat and mass transfer coefficients through highly porous steps, Master of Science Thesis, The University of Texas at Austin, Austin, TX, USA, 1987.
    135 Baines W D, Peterson E G, An investigation of flow through screens, Transactions of the ASME, July 1951, 467-468.
    136 Hiatt J P, Hall M J, Pore scale turbulence in porous ceramic burners, Proceedings of the Central States Section Meeting of the Combustion Institute, Madison, WI, 6-7 June, 1994, 49-54.
    137 Wang E-Y, Cheng L-M, Luo Z-Y, Xing S-X, Cen K-F, Stability of flames in the gradually-varied porous media, Proceedings of the International Conference on Energy and the Environment, 11-13 Dec., 2003, Shanghai, China, pp.977-982.
    138 Tseng C-J, Li C-H, Thermally-enhanced combustion in a porous medium burner, Journal of the Chinese Society of Mechanical Engineers, Transactions of the Chinese Institute of Engineers, Series C, 2001, 22(3):217-224.
    139 Commercial report, A new method of destroying organic pollutants in exhaust air, ADTEC Co., Ltd., 1990.
    140 Jugjai S, Somjetlertcharoen A, Multimode heat transfer in cyclic flow reversal combustion in a porous medium, International Joumal of Energy Research, 1999, 23(3):183-206.
    141 Jugjai S, Experimental study on cyclic flow reversal combustion in a porous medium, Combustion Science and Technology, 2001, 163(1-6): 245-260.
    142 李昊,程乐鸣,王恩宇,褚金华,骆仲泱,岑可法,往复式多孔介质燃烧器流动特性的试验研究,能源工程(录用)。
    143 李昊,程乐鸣,王恩宇,褚金华,骆仲泱,岑可法,往复式多孔介质燃烧器温度分布的试验研究,浙江大学学报(工学版)(录用)。
    144 解茂昭,杜礼明,孙文策,多孔介质中往复流动下超绝热燃烧技术的进展与前景,燃烧科学与技术,2002,8(6):520-524。
    145 Min D K, Shin H, D, Laminar premixed flame stabilized inside a honeycomb ceramic, International Journal of Heat and Mass Transfer, 1991, 34(2):341-356.
    146 Sathe S B, Peck R E, Tong T W, A numerical analysis of heat transfer and combustion in porous radiant burners, International Journal of Heat and Mass Transfer, 1990, 33(6): 1331-1338.
    147 Tong T W, Sathe S B, Heat transfer characteristics of porous radiant burners, Journal of Heat Transfer, 1991, 113∶423-428.
    148 Kulkami M R, Chavali K P, Peck R E, Emission Characteristics of Radiant SurfaCe Burners, 1992 Fall Meeting of the Western States Section of the Combustion Institute, 12-13 October, 1992, Berkeley, CA.
    149 Kulkami M R, Peck R E, Analysis of a bilayered porous radiant burner, 1992 Fall Meeting of the Western States Section of the Combustion Institute, 12-13 October, 1992, Berkeley, CA.
    150 Peter N, Numerical simulation of combustion phenomena, Lecture Notes in Physics, 1985, 241: 90-109, Spring-Verlag, Berlin.
    151 Durst F, Trimis D, Combustion by flee flames versus combustion reactors, Fourth International Conference on Technologies and Combustion for a Clean Environment (Clean Air IV), 7-10 July, 1997, Vol. Ⅱ, Invited Lecture 7.
    152 Glarborg P, Lileheie N I, Byggstoyl S, Magnussen B F, Kilpinen P, Hupa M, A reduced mechanism for nitrogen chemistry in methane combustion, The Twenty-fourth Symposium (International) on Combustion, 1992, The Combustion Institute, 889-898.
    153 Martin R J, Stilger D, Hoist M R, Method and apparatus for controlled reaction in a reaction matrix, US Patent No. 5165884,1991.
    
    154 Chaffin C, Reduction of NOx emissions using the technique of two-stage combustion within porous inert media, MS Thesis, University of Texas at Austin, TX, US, 1991.
    155 Bell R D, Chaffin C, Koeroghlian M, Experimental investigation of a staged porous ceramic burner, Fossil Fuels Combustion, ASME, 1992, PD-Vol. 39:41-46.
    156 Durst F, Trimis D, Dimaczek G, German Patent No. 4322109A1,1993.
    157 Goel R, Ellzey J L, Comparison of radiant thermal efficiency and emissions for a single stage and two stage porous radiant burner, Western States Section of the Combustion Institute, Oct. 18-19, 1993, Menlo Park, CA, Paper 93-105.
    158 Ellzey J L, Goel R, Emission of CO and NO from a two stage porous media burner, Combustion Science and Technology, 1995,107: 81-91.
    159 Haack D P, Mathematical analysis of radiatively enhanced liquid droplet vaporization and liquid fuel combustion within a porous inert media, MS Thesis, University of Texas at Austin, TX, US, 1993.
    160 Kaplan M, Hall M J, The combustion of liquid fuels within a porous media radiant burner,Experimental Thermal and Fluid Science, 1995 11(1): 13-20.
    161 Takami H, Suzuki T, Itaya Y, Hasatani M, Performance of flammability of kerosene and NOx emission in the porous burner, Fuel, 1998, 77(3): 165-171.
    162 Itaya Y, Suzuki T, Hasatani M, Saotome M, Combustion characteristics of a liquid fuel in a porous burner, Proceedings of ASME/JSME Thermal Engineering Joint Conference, Maui, 1995, 3: 99-104.
    163 Tseng C-J, Howell J R, Experimental stability limits and CO/NOx emissions of pentane combustion within porous ceramic burners, 1995 ASME/AIChE National Heat Transfer Conf., Portland, Aug. 1995.
    164 Tseng C-J, Howell J R, Combustion of liquid fuels in a porous ceramic burner, Combustion Science and Technology, 1996,112: 141-161.
    165 Hall M J, Peroutka X N, A porous media burner for reforming methanol for fuel cell powered electric vehicles, Society of Automotive Engineers, 1995, Paper No.: 950095.
    166 Jugjai S, Wongpanit N, Laoketkan T, Nokkaew S, The combustion of liquid fuels using a porous medium, Experimental Thermal and Fluid Science, 2002,26: 15-23.
    167 Jugjai S, Polmart N, Enhancement of evaporation and combustion of liquid fuels throuth porous media, Experimental Thermal and Fluid Science, 2003,27: 901-909.
    168 Fuse T, Araki Y, Kobayashi N, Hasatani M, Combustion characteristics in oil-vaporizing sustained by radiant heat reflux enhanced with higher porous ceramics, Fuel, 2003, 82: 1411-1417.
    169 Kilham J K, Lanigan E P, A study of the mechanism of radiant burners, I.G.E. Journal, October, 1970, 700-719.
    170 Beak S W, The premixed flame in a radiatively active porous medium, Combustion Science and Technology, 1989, 64: 277-287.
    171 Tseng C-J, Effects of hydrogen addition on methane combustion in a porous medium burner, International Journal of Hydrogen Energy, 2002,27:699-707.
    172 Miller J A, Bowman C T, Mechanism and modeling of nitrogen chemistry in combustion, Progress in Energy and Combust Science, 1989,15:287-338.
    173 Mohamad A A, Ramadhyani S, Viskanta R, Modeling of combustion and heat transfer in a packed bed with embedded coolant tubes, International Journal of Heat and Mass Transfer, 1994, 37(8): 1181-1191.
    174 Sahraoui M, Kaviany M, Direct simulation vs volume-averaged treatment of adiabatic, premixed flame in a porous medium, International Journal of Heat and Mass Transfer, 1994,37(18): 2817-2834.
    175 Kee R J, Grcar J F, Smooke M D, Miller J A, A Fortran computer program for modeling steady laminar one-dimensional premixed flames, Report SAND85-8240, 1985, Sandia National Laboratories, CA.
    
    176 Bouma P H, De Goey L P H, Premixed combustion on ceramic foam burners, Combustion and Flame, 1999, 119: 133-143.
    177 Bowman C T, Hanson R K, Davidson D F, Gardiner W C, Jr, Lissianski V, Smith G P, Golden D M, Frenklach M, Goldenberg M, URL:http://www. me. berkeley. edu/gri_mech/.
    178 Kee R J, Rupley F M, Miller J A, CHEMKIN Ⅱ: A Fortran chemical kinetics package for the analysis of gas phase chemical kinetics, Report SAND89-8009, 1989, Sandia National Laboratories, CA.
    179 Kazakov A, Frenkiach M, Reduced reaction sets based on GRI-Mech 1.2, University of California at Berkeley, 1994, http://euler.me.berkeley.edu/drm/.
    180 Hanamura K, Bohda K, Miyairi Y, Study of super-adiabatic combustion engine, Energy Conversion and Management, 1997, 38(10-13): 1259-1266.
    181 Durst F, Weclas M, A new type of internal combustion engine based on the porous-medium combustion technique, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2001.215(1): 63-81.
    182 岑可法,程乐鸣,骆仲泱,方梦祥,倪明江,施正伦,王勤辉,高翔,周劲松,王树荣,余春江,渐变型多孔介质燃烧器,实用新型专利ZL01226080.0。
    183 吴永生,方可人,热工测量及仪表(第二版),北京,中国电力出版社,1995,48-49。
    184 Glassman I, Combustion, second edition, 1987, Academic Press, San Diego.
    185 刘麟贞,田智刚,刘宗嵛,钱申贤,王民生,王允士译,燃气应用技术,中国建筑工业出版社。1983年7月;Pritchard R,Guy J J,Connor N E著,Industrial Gas Utilization,Enginocring Primiples and Practice,1978。
    186 Mare L di,Mihalik T A,Continillo G,Lee J H S,Experimental and numerical study 0f flammability limits 0f glseous mixtures in porous media, Experimental Thermal and Fluid Science, 2000,21:117-123.
    187 赵惠富,污染气体NOx的形成和控制,科学出版社,北京,1993年11月。
    188 傅维标,卫景彬,燃烧物理学基础,机械工业出版杜,北京,1984年3月。
    189 陈义良,张孝春,孙慈,季鹤鸣编译,燃烧原理(Kuo K K,Principles of Combustion),航空工业出版社,北京,1992.3。
    190 庄永茂,施惠邦编著,燃烧与污染控制,同济大学出版社,上海,1998年2月。
    191 华虹,住宅内燃气具燃烧NOx的污染与控制,武汉城市建设学院学报,1998,15(2):57-64。
    192 Chen J L-P, Churchill S W, a theoretical model for stable combustion inside a refractive tube, Combustion and Flame, 1972, 18: 27-36.
    193 Berustein M H, Churchill S W, multiple stationary states and NOx production for turbulent flames in refractive tubes, The Sixteenth Symposium (Int.) on Combustion, 1976, 1737-1745.
    194 Sathe S B, Kulkami M R, Peck R E, et al, an experimental analysis of combustion and heat transfer in porous radiant burner, 1989 Fall meeting of the Western States Section of the Combustion Institute.
    195 Sathe S B, Peck R E, Tong T W, Flame stabilization and multmnode heat transfer in inert porous media: a numerical study, Combustion Science and Technology, 1990, 70: 93-109.
    196 Lim I G, Mathews R D, Development of a model for turbulent combustion within porous media, Transport Phenomena in Thermal Engineering, ed. Lee J S, Chung S H and Kim K Y, Vol 1, Begell House Inc., New York, 1993, 631-636. Cited in: Antohe B V, Lage J L, A general two-equation macroscopic turbulence model for incompressible flow in porous media, International Journal of Heat and Mass Transfer, 1997, 40(13): 3013-3024.
    197 Antohe B V, Lage J L, A general two-equation macroscopic turbulence model for incompressible flow in porous media, International Journal of Heat and Mass Transfer, 1997. 40(13): 3013-3024.
    198 范维澄,万跃鹏,流动及燃烧的模型与计算,中国科学技术大学出版社,合肥,1992。
    
    199 Christo F C, A parametric analysis if a coupled chemistry-radiation model in porous media, DSTO-RR-0188, DSTO Aeronautical and Maritime Research Laboratory, Melbourne Victoria, Australia, Oct. 2000.
    200 Merk H J, The macroscopic equations for simultaneous heat and mass transfer in isotropic, Continuous and Closed Systems, Appl. Sci. Res., 1958, 8: 73-99. Cited in Fluent 6.1 documentation: user's guide.
    201 Getachew D, Minkowycz W J, Lage J L, A modified form of the k-ε model for turbulent flows of an incompressible fluid in porous media, International Journal of Heat and Mass Transfer. 2000. 43: 2909-2915.
    202 吴晋湘,苟湘,刘联胜,韩振兴,闫运忠,贾云飞,天然气燃烧的低NO_x排放研究现状和发展动向,城市燃气,2003,(10):17-22。
    203 Warnatz J, NOx formation in high temperature processes, University of Stuttgart, Germany; Cited in Fluent 6.1 documentation: user's guide.
    204 Westbrook C and Dryer F, Chemical kinetic modelling of hydrocarbon combustion, Prog Energy Comb Sci, 1984; Cited in Fluent 6.1 documentation: user's guide.
    205 Baulch D L, et al., Evaluated kinetic data for combustion modelling, J. Physical and Chemical Reference Data, 1992, 21 (3); Cited in Fluent 6.1 documentation: user's guide.
    206 Verein Deutscher Ingenieure, VDI-W(?)rmeatlas (8th edition), Düsseldorf: VDI-Verlag, 1997(德). Cited in: 潘洪亮, Picken(?)cker O, Trimis D, Durst F, 孔隙率对 AL203 高孔隙率多孔介质EHC对影响, 西北工业大学学报, 2002, 20(3): 479-485.
    207 Magnussen B F and Hjertage r B H, Mathematical Models of Turbulent Combustion with Special Emphasis on Soot Formation and Combustion, The Sixteenth Symposium (international) on Combustion, 1976, The Combustion Institute.
    208 Magnussen B F, the Structure of Turbulence and a Generalized Eddy Dissipation Concept for Chemical ReactiOn in Turbulent Flow, Nineteenth AIAA Meeting, St. Louis, 1981
    209 Smith G P, Golden D M, Frenklach M, Moriarty N W, Eiteneer B, Goldenberg M, Bowman C T, Hanson R K, Song S, Gardiner W C, Jr, Lissianski V V, Qin Zhiwei, URL: http://www. me. berkeley. edu/gri mech/version30/text30. html#the files.
    210 华绍曾,杨学宁等编译,实用流体阻力手册,北京国防工业出版社,北京,1985年3月,pp.437。
    211 Sparraw E M,Cess R D,Radiation Heat Transfer, McGraw-Hill,1978.
    212 葛绍岩,那鸿悦编著,热辐射性质及其测量,科学出版社,北京,1989年6月。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700