用户名: 密码: 验证码:
激光照射下生物组织热效应的数值分析与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合数值分析和实验手段,致力于提供激光诱导生物组织热效应全参数预测平台,探索激光医学中的生物传热原理,提高激光应用的安全性和有效性。
    首先从生物组织中的光分布和热传输规律的分析出发,改进了热传导方程中激光热源项的表达式,并给出多层结构模型。全面总结了传热方程的求解条件:组织的光学特性参数、热物性参数、血液灌注率及边界条件和初始条件,激光的特性参数也是可选择、可控制的重要参量。
    其次进行了生物传热方程的数值求解,在轴对称柱坐标下将计算区域合理划分为二维,采用Matlab软件实现有限元方法求解生物热传输的非线性偏微分方程,计算了组织温度场的分布,温度可作三维动态显示。模拟了多种典型热效应激光应用模型中组织的温度响应,如典型散射型Nd:YAG激光凝结肝脏组织的激光间质疗法模型,Nd:YAG激光照射大鼠皮肤组织模型,典型吸收型CO2激光照射离体猪肉组织模型,CO2激光照射大鼠皮肤组织模型,He-Ne激光照射人体皮肤组织的三层结构模型。从模拟结果可以清楚地看到在不同条件下组织温度空间分布及时间行为,分析了光源项、灌注项和多层模型等对计算结果的影响,讨论了活体组织在低功率长时间激光照射下温度的动态平衡现象。
    最后为了验证理论模型及计算的准确性,构建了可用于激光医学中无损/微创温度测量的实验系统,采用微型热电偶与红外辐射测温仪同时监测生物组织内部和表面温度,该系统适合于高精度、大范围、微小点快速响应的温度测量。通过改变激光参数(激光功率、连续/脉冲、照射时间),设计了临床应用范围的多组实验,实时测量了两种典型热效应激光(CO2和Nd:YAG激光)辐照下各种组织(离体猪肝脏、猪脂肪、猪肌肉和活体大鼠皮肤)的温度,首次进行了脉冲CO2和脉冲Nd:YAG照射活体大鼠皮肤的温度实验,得到激光辐照开始、过程及照射后生物组织温度场的变化规律,总结分析了一些主要影响因素。
    结果表明预测和实验具有较好的一致性,修正后的模型更合理,该方法可以用于多种热效应激光应用的预测,并且随组织参数的无损测量技术的发展而获得持久的生命力。
    本文工作得到了天津市自然科学基金(激光-组织热损伤的实时监测和预示技术研究,No. 023602611)支持。
This dissertation is devoted to provide full parameters prediction method of laser induced bio-tissue thermal effect by combining numerical analysis and experimental means. This research is in the interest of exploring bio-heat transfer theory in the laser medicine and enhancing the security and validity of laser application.
    At first laser heat source term expression was modified in the heat conduction equation from analyzing the light distribution and thermal transferring in the bio-tissue, and multilayer model was presented. Solution conditions of heat transfer equation were summarized entirely, which include tissue optical properties, tissue thermal properties, blood perfusion rate, boundary conditions and initial conditions. Laser characteristics are also important parameters adapt to choosing and controlling.
    Then the bio-heat transfer equation was solved numerically. The compute area was divided reasonably to two dimensions in the axial symmetry cylinder coordinate. The Finite Element Method(FEM) realized by Matlab software is used to solve the bio-heat transfer nonlinear Partial Differential Equation(PDE). The tissue temperature distribution was calculated and can display in three dimensions dynamically. The temperature response of several typical thermal laser applications were simulated, such as the typical scatter dominating Nd:YAG laser coagulating the liver in the Laser Interstitial Thermotherapy (LITT), Nd:YAG laser irradiating the in vivo murine skin, typical absorption dominating CO2 laser irradiating in vitro porcine tissue, CO2 laser irradiating in vivo murine skin and the three layers model of HeNe laser irradiating in vivo human skin. The temperature of space distribution and time behavior on different conditions can be shown clearly from the simulation results. The influence of light source, perfusion and multilayer to the calculation results was analysed. And the temperature dynamical balance phenomena of in vivo tissue under low power and long time laser irradiation was discussed.
    Finally, in order to validate the veracity of theory model and calculation an experiment system which can be used in noninvasive or minimally invasive temperature measuring in laser medicine was constructed. This system used miniature thermocouple and infrared radiation thermometer to monitor the inner and surface temperature synchronously. Such a system is suitable to high precision, large range, minute point and rapid response temperature measuring.
     Several group experiments were designed in the clinic application range by changing the laser parameters(laser power, continue/pulse, irradiate time). Temperature of Two typical thermal effect laser, CO2 and Nd:YAG laser, irradiating several tissue, in vitro porcine liver, fat, muscle and in vivo murine skin were measured on line. The temperature experiments of pulse CO2 and Nd:YAG laser irradiating in vivo murine skin were done at the first time. The temperature changing rule before, during and after laser irradiating were recorded, some main influencing factors were summarized and analysed.
    
    The results proved the prediction and experiments have well coherence. The modified model is more reasonable. This method can be applied in several thermal laser application prediction and can obtain permanent life with the development of noninvasive measurement techniques of tissue properties.
    This work has been supported by Tianjin Natural Science Funds(Research on real time monitoring and prediction technique of Laser-Tissue Thermal Damage, No. 023602611).
引文
李峻亨,梁宏,激光医学-激光在生物医学中的应用,北京:科学出版社,1989.
    Michael M. Berns,周世英,激光外科,重庆:科学,10: 38-45, 1991.
    Bernard Choi, B. S., Thermal interactions of pulsed laser radiation and cryogen spray cooling with skin, [Doctor Degree Dissertation], The University of Texas at Austin, 2001.
    朱丹,生物组织热响应与热损伤的光子学研究,[博士学位论文],华中科技大学,2001.
    B C Wilson, G Adam, A Monte Carlo Model for the Absorption and Flux Distribution of Light in Tissue, Med. Phys., 10(6): 824-830, 1983.
    Stephen T Flock, Patterson M S, Wilson B C, et al, Monte Carlo Modeling of Light Propagation in highly Scattering tissue-1: Model predictions and comparison with diffusion theory, IEEE Trans. Biomed., 36: 1162-1168, 1989.
    L H Wang, S L Jacques, L Q Zheng, MCML-Monte Carlo modeling of light transport in multi-layered tissues, Computer Methods and Programs in Biomedicine, 47: 131-146, 1995.
    Steven L Jacques, Time-resolved reflectance spectroscopy in turbid tissue, IEEE Trans. Biomed. Eng., 36: 1155-1161, 1989.
    Andreas H Hielscher, Hanli Liu, Britton Chance, et al, Time-resolved photon emission from layered turbid media, Appl. Opt., 35(4):554-558, 1996.
    Markolf H. Niemz著,张镇西等译,激光与生物组织的相会作用——原理及应用,西安:西安交通大学出版社,1999.
    A. J. Welch, Martin J. C. van Gemert (eds), Optical-thermal Response of Laser-irradiated tissue, New York: Plenum, 1995.
    A. J. Welch, The Thermal Response of Laser Irradiated Tissue[J], IEEE Journal of Quantum Electronics, QE-20(12):1471-1481, 1984.
    A. L. McKenzie, Physics of thermal processes in laser-tissue interaction, Phys. Med. Biol., 35(9): 1175-1209, 1990.
    J Crezee, J Mooibroek, J J W Lagendijk and G M J van Leeuwen, The theoretical and experimental evaluation of the heat balance in perfusion tissue, Phys. Med. Biol., 39: 813-832, 1994.
    Diaz, S.H., Aguilar, G., Lavernia, E.J., et al, Modeling the Thermal Response of Porcine Cartilage to Laser Irradiation, IEEE Journal on Selected Topics in Quantum Electronics, 7(6): 944~951, 2001.
    Karen M. McNally, Anthony E. Parker, Douglas L. Heintzelman, et al, Dynamic optical-thermal modeling of laser tissue soldering with a scanning source, IEEE Journal on Selected Topics In Quantum Electronics, 5(4):1072~1082, 1999.
    
    Beop-Min Kim, Steven L. Jacques, Sohi Rastegar, et al, Nonlinear Finite-Element Analysis of the Role of Dynamic Changes in Blood Perfusion and Optical Properties in Laser Coagulation of Tissue, IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2(4): 922-933, DECEMBER 1996.
    Ramtin Agah, A. H. Gandjbakhche, Massoud Motamedi, et al, Dynamics of Temperature Dependent Optical Properties of Tissue: Dependence on Thermally Induced Alteration, IEEE TRANSACTIONS ON BIOMEDICAL INGINEERING, 43(8): 839-846, 1996.
    Megumi N Iizuka, I Alex Vitkin, Michael C Kolios, et al, The effects of dynamic optical properties during interstitial laser photocoagulation, Phys. Med. Biol., 45: 1335-1357, 2000.
    Dan Zhu, Qingming Luo, Guangming Zhu, et al, Kinetic Thermal Response and Damage in Laser Coagulation of Tissue, Lasers in Surgery and Medicine, 31: 313–321, 2002.
    WF Cheong, SA Prahl, AJ Welch, A review of the optical properties of biological tissues, IEEE J Quantum Electronics, 26: 2166-2185, 1990.
    Sohi Rastegar, Massound Motamedi, Ashley J. Welch, et al, A Theoretical Study of the Effect of Optical Properties in Laser Ablation of Tissue, IEEE TRANSACTIONS ON BIOMEDICAL INGINEERING, 36(12): 1180-1187, 1989.
    C. Sturesson and S. Andersson-Engels, A mathematical model for predicting the temperature distribution in laser-induced hyperthermia. Experimental evaluation and applications. Phys. Med. Biol., 40: 2037-2052, 1995.
    Bernard Lobel, Ophir Eyal, Noam Kariv, et al, Temperature Controlled CO2 Laser Welding of Soft Tissues: Urinary Bladder Welding in Different Animal Models (Rats, Rabbits, and Cats), Lasers in Surgery and Medicine, 26: 4-12, 2000a.
    O. Eyal and A. Katzir, Thermal feedback control techniques for transistor-transistor logic triggered CO2 laser used for irradiation of biological tissue utilizing infrared fiber-optica radiometry, Applied Optics, 33(9):1751-1754, 1994.
    Jorge H. Torres, Massound Motamedi, John A. Pearce, et al, Experimental evaluation of mathematical models for predicting the thermal response of tissue to laser irradiation, APPLIED OPTICS, 32(4): 597-606, 1993.
    谢树森,郑蔚,黄禄华,激光医学中的组织光学,光电子.激光,5(2):65-71,1994.
    谢树森,李晖,组织光学概要,物理,27(10):599-604,1998.
    唐一峰,杨洪钦,谢树森,生物组织热传递物理基础,福建师范大学学报(自然科学版),17(1): 40-44,2001
    
    杨洪钦,唐一峰,谢树森,生物组织的温度测量,福建师范大学学报(自然科学版),17(1): 116-120, 2001.
    谢树森,杨洪钦,李步洪,激光与皮肤层状组织的光热作用及其传热模型,光电子.激光,12(7),746-750, 2001.
    李和杰,张学学,刘静,激光与生物组织热相互作用的多层结构模型,中国激光,A29(5): 465470, 2002.
    李忠明,激光照射对组织温升分布影响的理论分析,光电子.激光,11(4), 431-433, 2000.
    沈桂平,谢树森,激光辐照下皮肤组织中温度场的理论分析和数值模拟,福建师范大学学报(自然科学版),18(4):26-29, 2002.
    李希靖,胡桂林,刘天夫,激光对生物组织热损伤的数学模拟研究,中国生物医学工程学报,19(4): 449-454, 2000.
    杨洪钦,激光与皮肤组织的热作用,[硕士学位论文],福建师范大学,2001.
    赵友全,激光-生物组织光热效应的理论和实验研究,[博士学位论文],天津大学,2002.
    刘静,王存诚,生物传热学,北京:科学出版社,1997.
    A. J. Welch, Martin J. C. van Gemert, Overview of Optical and Thermal Laser-Tissue Interaction and Nomenclature. In: A. J. Welch, Martin J. C. van Gemert (eds), Optical-thermal response of laser-irradiated tissue 1, New York: Plenum, 1995.
    Pennes H. H, Analysis of Tissue and arterial blood temperatures in the resting human forearm, J. Appli. Physiol., 1(2): 93-122, 1948.
    Sergio H. Díaz, Guillermo Aguilar, Enrique J. Lavernia, et al, Modeling the Thermal Response of Porcine Cartilage to Laser Irradiation, IEEE JOURNAL ON SELECTED TOPICS IN QUANTUM ELECTRONICS, , NOVEMBER/DECEMBER, 7(6): 944-951,2001.
    John A. Pearce, Thermodynamic Principles of laser-tissue Interaction, Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 12(3): 1108-1110, 1990.
    S. Weinbaum L., M. Jiji, on the generation of the Weinbaum-Jiji bioheat to microvessels of unique size, ASME Journal of Biomech. Eng., 110: 74-81, 1987.
    S. Weinbaum L., M. Jiji, ASME Jourmal of Biomechanics Engineering, 106: 331, 1985.
    Henriques Jr FC. Studies of thermal injuries. V. The predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury. Arch. Pathol., 43: 489-502, 1947.
    Henriqures F. C., Moritz A. R., Studies of thermal injury I, The conduction of heat to and through skin and the temperature attained therein, a theoretical and
    
    
    an experimental investigation, Am. J. Pathol., 23: 531-549, 1947.
    Moritz A. R., Henriqures F. C., Studies of thermal injuryⅡ, the ralative importance of time and source temperature in causation of cutaneous burns, Am. J. Pathol., 23: 695-720, 1947.
    Stoll, A.M. and Greene, L.C., Relationship between pain and tissue damage due to thermal radiation, J. Appl. Physiol., 14: 373-382, 1959.
    Johann Roider and Reginald Birngruber, Solution of the heat conduction equation. In: A. J. Welch, Martin J. C. van Gemert (eds), Optical-thermal response of laser-irradiated tissue 12 , New York: Plenum, 1995.
    王补宣,直角坐标系中第二类边界条件下一维生物组织温度场的稳态分析解及实验研究,工程热物理学报,16(1):65-69, 1995.
    Jacques, S. L., Prahl, S. A., Modeling optical and thermal distribution in tissue during laser irradiation. Lasers Surg. Med., 6: 494-503, 1987a.
    Peaceman D W, Rachford H H Jr., The numerical solution of parabolic and elliptic differential equations, J. Soc. Ind. Appl. Math., 3: 28-41, 1955.
    ADINAT Users Manual, A finite Element Program for Automatic Dynamic Nonlinear Analysis of Temperatures, Adina Engineering Inc., Watertown, MA, Report AE-81-2, 1981.
    MSC/Nastran, The MacNeal-Schwendler Corperation, 815 Colorado Boulevard, Los Angeles, USA, California 900041.
    游伯坤等,温度测量与仪表-热电偶和热电阻,科学技术文献出版社,1990.
    A. Zur and Abraham Katzir, Fibers for low-temperature radiometric measurements, Appl. Opt., 26(7):1201-1206, 1987.
    F. Moser, D. Bunimovich, A. DeRowe, et al, Medical applications of infrared transmitting silver halide fibers, IEEE Quant. Electr., 2(4): 872-879, 1996.
    赵友权,范世福,李小霞,激光外科中组织的热损伤及其测量技术探讨,医疗卫生装备,22(5):8-10, 2001.
    由富恩,辐射测温仪原理及其检定,北京:中国计量出版社,1990.
    [美]M. 沃尔巴什著,张学学译,辐射传热,北京:高等教育出版社,1983.
    Robert B. Stewart. Laser Assisted Vascular Welding With Real Time Temperature Control. Laser in surgery and Medicine, 19: 9-16, 1996.
    http://www.raytek.com.cn.
    王补宣,蔡伟明,吴郁龙,组织间激光血卟啉治疗肿瘤时瞬态温度场的理论和动物实验研究,工程热物理学报,9(2):147-152, 1988.
    李步洪,鼻咽癌的光热特性及其光活检技术研究,[博士学位论文],浙江大学,2003.
    F.P.Bolin, Refractive index of some mammalian tissue using a fiber optic cladding method, Appl. Opt., 28: 2297-2303, 1989.
    http://omlc.ogi.edu/classroom/ece532/class3/muaspectra.html.
    
    http://omlc.ogi.edu/spectra/index.html.
    Hale G. M, Optical constants of water in the 200nm to 200um wavelength region, Appl. Opt., 12:555-563, 1973.
    http://omlc.ogi.edu.
    Wilson, B. C., Adam, G., A Monte Carlo model for the absorption and flux distributions of light in tissue. Med. Phys., 10: 824-830, 1983.
    Jacques, S. L., Alter, C. A., Prahl, S. A., Angular dependence of He-Ne laser light scattering by human dermis. Lasers Life Sci., 1: 309-333, 1987b.
    Parsa, P., Jacques, S. L., Nishioka, N. S., Optical properties of rat liver between 350 and 2200nm. Appl. Opt., 28: 2325-2330, 1989.
    Henyey L., Greenstein J., Diffuse radiation in the galaxy, Astrophysical Journal, 93:70-83, 1941.
    A. Roggan, H. Albrecht, K. Dorschel, et al, Experimental set up and Monte Carlo model for the determination of optical tissue properties in the wavelength range 330-1100nm, Proc. SPIE, 2323:21-36, 1995a.
    R. Splinter, R. H. Svensson, L. Littman, et al, Computer simulated light distribution in myocardial tissues, Lasers Med. Sci., 8: 15-21, 1993.
    A. Roggan, K. Dorschel, O. Wolff, G. Muller, The optical properties of biological tissue in the near infrared wavelength range——review and measurement, In: Laser-induced interstitial thermotherapy, edited by Gerhard Muller and Andre Roggan, SPIE: 10-44, 1995b.
    A. Roggan, G. Muller, Dosimetry and computer based irradiation planning for laser-induced interstitial thermotherapy(LITT), In: Laser-induced interstitial thermaotherapy, edited by Gerhard Muller, Gerhard Muller and Andre Roggan, Washington: Washton, SPIE, Bellingham, 114-156, 1995c.
    Inci F. Cilesiz and Ashley J. welch, light dosimetry: effects of dehydration and thermal damage on the optical properties of the human aorta, Applied Optics, 32(4): 477-487, 1993.
    John W. Pickering, Saskia Bosman, Paul Posthumus, et al, Changes in the optical properties (at 632.8nm) of slowly heated myocardium, Applied Optics, 32(4):367-371, 1993.
    Derbyshire G J, Bogen D K, Unger M., Thermally induced optical property changes in myocardium at 1.06 microns, Lasers Surg. Med., 10:28-34, 1990.
    Rastegar S, Anvari B., Dynamics of isotherm propagation in laser irradiation of tissue. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 12(3): 1111-1112, 1990.
    龚辉,骆清铭,曾绍群等人,生物组织光学特性的测量方法及医学应用,激光生物学报,8(1): 12-15, 1999.
    W. M. Star, J. P. A. Marijnissen, and M. J. C. van Gemert, Light dosimetry in optical phantoms and in tissues: I, Multiple flux and transport theory, Phys. Med.
    
    
    Biol., 33: 437-454, 1988.
    M. M. Ivanenko, P. Hering, M. Klein, E. Gams, TMLR: Management of Coronary Artery Disease, Springer, 153-164, 1997.
    Cheong W-F, Summary of optical properties. In: Optical-Thermal Response of Laser-irradiated Tissue, A. J. Welch, M. J. C. van Gemert (eds), New York: Plenum, 275-303, 1995.
    Niemz MH, Laser-tissue interactions, Berlin Heidelberg: Springer, 1996.
    Graaff R., Dassel A. C. M., Koelink M. H., et al, Optical properties of human dermis in vitro and in vivo, Appl. Opt., 32: 435-447, 1993b.
    Cilesiz I. F., Welch A. J., Light dosimetry: effects of dehydration and thermal damage on the optical properties of the human aorta. Appl. Opt., 32: 477-487, 1993.
    Ishimaru A., Wave Propagation and Scattering in Random Media, New York: Academic, 1978.
    Ishimaru A., Diffusion of light in turbid media, Appl. Opt., 28: 2210-2215, 1989.
    Kubelka P., Munk F., Ein Beitrag zur, Optik der Farbanstriche, Z. Techn. Phys., 12: 593-601, 1931.
    Graaff R., Koelink M.H., de Mul F.F. M., et al, Condensed Monte Carlo simulations for the description of light transport. Appl. Optics, 32: 426-434, 1991.
    Metropolis N., Ulam S., The Monte Carlo method, J. Am. Stat. Assoc., 44: 335-350, 1949.
    Meier R. R., Lee J. S., Anderson, D. E., Atmospheric scattering of middle UV radiation from an internal source. Appl. Opt., 17: 3216- 3225, 1978.
    Groenhuis R. A. J., Ferwerda H. A., and Ten Bosch J. J., Scattering and absorption of turbid materials determined from reflection measurements. Appl. Opt., 22: 2456- 2462, 1983.
    Niwayama M, Lin L, Shao J, et al, Quantitative measurement of muscle oxygenation by NIRS: Analysis of the influence of a subcutaneous fat layer and skin, Proceedings of SPIE, 3597: 291-299, 1999.
    Niwayama M, Hamaoka T, Lin L, et al, Quantitative muscle oxygenation measurement using NIRS with correction for the influence of a fat layer: Comparison of oxygen consumption rates with measurements by other techniques, Proceedings of SPIE, 3911: 256-265, 2000.
    李忠明,骆清明,激光对生物组织热和热致机械损伤的物理分析,激光生物学报,9(2): 81-84, 2000.
    Leonard I. Grossweiner, James L. Karagiannes, Porter W. Johnson, et al, Gaussian beam spread in biological tissue, Applied Optics, 29(3):379-383, 1990a.
    
    Leonard I. Grossweiner, Anan M. Al-Karmi, Porter W. Johnson, et al, Modeling of Tissue Heating With a Pulsed Nd:YAG Laser, Lasers in Surgery and Medicine, 10: 295-302, 1990b.
    M. K. Loze and C. D. Wright, Temperature distributions in semi-infinite and finite-thickness media as a result of absorption of laser light, Applied Optics, 36(2): 494-507, 1997.
    E. R. Hendler, J. Crosbie, and J. D. Hardy, Measurement of skin heating during exposure to infrared heating, Naval Air Materials Center, Philadelphia, PA, Project NM17-01-13-2, 1957.
    Chun-Sing Orr and Robert C. Eberhart, Overview of Bioheat Transfer, In: Optical-Thermal Response of Laser-irradiated Tissue, A. J. Welch, M. J. C. van Gemert (eds), New York: Plenum, 11:367-383, 1995.
    J. C. 切托著,徐云生,钱壬章译,生物传热学基础,北京:科学出版社, 1991.
    陆煜,程林,传热原理与分析,北京:科学出版社,1997.
    Takata A.N., Zaneveld L., Richter W., Laser-induced thermal damage in skin, Aerospace Med., Rep. SAM-TR-77-38, 1977.
    Spells K E, The thermal conductivities of some biological fluids, Phys. Med. Biol., 5: 1399-453, 1960.
    Chato JC, Selected thermophysical properties of biological materiels. In Shitzer A. Eberhart R C (eds), Heat Transfer in Medicine and Biology: Analysis and Applications, New York: Plenum Press, 2: 413-418, 1985.
    Cooper T. E, Trezek G. J, Correlation of Thermal Properties of some Human Tissues with Water Content, Aerospace Med., 42: 24-27, 1971.
    Duck F A, Physical Properties of Tissue: A Complete Reference Book, London: Academic Press, 1991.
    V. V. Tuchin, Y. N. Scherbakor, A. N. Yakumin, et al, Numerical technique for modeling of laser-induced hyperthermia, In Gerhard Muller, Andre Roggan, Laser-induced interstitial thermotherapy, Washington: Washton, SPIE, Bellingham, 100-113, 1995.
    Valvano J.W., et al, Thermal Conductivity and Diffusivity of Biomaterials Measured with Self-Heated Thermistors, Int. J. Thermophys., 6: 301-311, 1985.
    Valvano J.W., Chitsabesan B., Thermal conductivity and diffusivity of arterial wall and atherosclerotic plaque, Lasers Life Sci., 1: 219-229, 1987a.
    Jonathan W. Valvano, Tissue thermal properties and perfusion, In: Optical-Thermal Response of Laser-irradiated Tissue, A. J. Welch, M. J. C. van Gemert (eds), New York: Plenum, 14:484-487, 1995.
    Arkin H, et al, Thermal pulse decay method for simultaneous measurement of local thermal conductivity and blood perfusion: A theoretical analysis, J. Biomech. Eng., 108: 208-214, 1986.
    Chato J C, Measurement of thermal properties of biological materials, In: Heat
    
    
    Transfer in Medicine and Biology, Shitzer A, Eberhart R C (eds), New York: Plenum Press, 167-192, 1985.
    Patel P A, et al, A self-heated thermistor technique to measure effective thermal properties form the tissue surface, J. Biomech. Eng., 109: 330-335, 1987.
    Patel P A, Valvano J W, Hayes L J, Perfusion measurement by a surface thermal probe, IEEE Eng. In Med. And Biol., Boston, 1987.
    Holmes K R, Chen M M, In vivo tissue thermal conductivity and local blood perfusion measured with heat pulse-decay method, Advances in Bioeng., 113-115, 1980.
    Patera A T, et al, Prediction of tissue perfusion from measurement of the phase shift between heat flux and temperature, AMSE, Paper #79-WA/HT-71, 1979.
    Valvano J W, Badeau A F, Pearce J A, Simultaneous measurement of intrinsic and effective thermal conductivity, In: Chato C H, Diller T E, and Roemer R B(eds.), Heat Transfer in Bioengineering and Medicine, HTD-Vol 95, BED. Vol.7, Boston: ASME Winter Annual Meeting, 31-36, 1987b.
    程曙霞,罗大为,钟明,一种可测定生物体体表热导系数的装置,工程热物理学报,21(5): 600-604, 2000.
    何杰,陈超敏,在体生物组织导热系数和血流率的测量,华南理工大学学报(自然科学版),22: 139-144, 1994.
    陈超敏,何杰,在体生物组织热物性测试,生物医学工程学杂志,14(2): 188-192, 1997.
    刘静,任泽霈,王存诚,生物体非均匀热物性测试方法及无损获取生物体皮下温度的近似变分解,中国生物医学工程学报,16(2): 174-180, 192, 1997.
    Touloukian, Y. S. et al, Thermophysical Properties of Maser, New York: IFI/Plenum Press, 2:1072, 1970.
    Cheng S X, Jiang Y F and Liang X G, A Tiny Heat Probe for Measuring the Thermal Conductivity of Non-rigid Materials, Meas. Sci. Technol., 5: 1339-1344, 1994.
    Valvano J W, Patel P A, A self-heated thermistor technique to measure effective Thermal properties from the tissue surface, Transactions of ASME G: 109, 1987c.
    Wang B X, Wang Y M, Study on the Basic Equations of Biomedical Heat Transfer, In: Transfer Phenomena Science and Technology, Beijing: Higher Equation Press, 273-276, 1992.
    Svaasand, L. O., Boerslid, T., Oeveraasen, M., Thermal and optical properties of living tissues, Lasers Surg. Med., 5: 589-602, 1985.
    梁新刚,葛新石,张寅平等,测定生物软组织导热系数的微型热针,科学通报,24: 1903-1905, 1991.
    任泽霈,王存诚,刘静,一种可同时测取非均匀血液灌注率何代谢热产率
    
    
    的稳态方法,中国医疗器械杂志,18(4): 209-212, 229, 1994.
    王勖成,邵敏,有限单元法基本原理和数值方法(第二版),北京:清华大学出版社,1995.
    [美] Daryl L. Logan著,伍义生,吴永礼等译,有限元方法基础教程(第三版),北京:电子工业出版社,2003.
    Sekins K M and Emery A F., Thermal science for physical medicine, Therapeutic heat and Cold. Baltimore: Williams and Wilkins(eds), 70-132, 1982.
    B. Lynn and B. Cotsell, Microvasc. Res., 41: 197, 1991.
    Bernard Choi, John A Pearce and Ashley J Welch,Modelling infrared temperature measurements: implications for laser irradiation and cryogen cooling studies,Phys. Med. Biol., 45: 541-557, 2000b.
    Roggan, A., Beuthan, J., Schruder, S., et al, Diagnostik and Terapie met dem Laser, Phys. Biol., 55: 25-50, 1999.
    Tamara L. Troy and Suresh N. Thennadil, Optical Properties of Human Skin in the NIR Wavelength Range of 1000-2200nm.
    Jacques S L, Skin optics, Oregon Medical Laser Center News, Jan., 1998.
    Conway J M, Nqrris K H, Bodwell C E, A new approach for the estimation of body composition: infrared interactance, The Am. J. of Clinical Nutrion, 40: 1123-1130, 1984.
    Tuchin V. V., Jtz S. R., Yaroslavsky I. V., Tissue optics, light distribution and spectroscopy[J], Optical Engineering, 33(10): 3178-3188, 1994.
    M. J. C. van Gemert, Steven L. Jacques, H. J. C. M. Sterenborg, et al, Skin Optics, IEEE TRANSCATIONS ON BOMEDICAL ENGINEERING, 36(12): 1146-1154, 1989.
    I.V. Meglinski, S.J. Matcher, Computer simulation of the skin reflectance spectra, Computer Methods and Programs in Biomedicine, 70: 179-186, 2003.
    J F Becky, et al, In vitro double-integrating-sphere optical properties of tissues between 630 and 1064 nm, Phys. Med. Biol., 42: 2255-2261, 1997.
    Hans-Jochen Foth, Silke Farber, Axel Gauer, et al, Thermal damage threshold at 633 nm of tympanic membrane of pig, Hearing Research, 142: 71-78 , 2000.
    Wilson S B and Spence V A, A tissue heat transfer model for relating dynamic skin temperature changes to physiological parameters Phys. Med. Biol., 33: 895-912, 1988.
    Sükrü ?zen, Osman ?erezci, Sel?uk ??mlek?i, et al, Heat Effect Analysis of Microwave Exposed Skin by Using a Multilayer Human Skin Model, Kluwer, Heat Effect Analysis of MW Exposed Skin: 875-881, 2002.
    戴敏,张荣克,正确使用红外辐射测温仪,石油化工设备技术,23(4): 50-52, 2002.
    Jonathan W. Valvano and John Pearce, Temperature measurements, 15, In: A. J.
    
    
    Welch, Martin J. C. van Gemert (eds), Optical-thermal response of laser-irradiated tissue, New York: Plenum, 1995.
    黄坚武,郑莜霞,曲波等,传感器实际应用电路设计,成都:电子科技大学出版社,1997.
    http://www.27272727.com, WR系列热电偶选型手册,天津市中环温度仪表厂,2003.
    [美]金齐(P.A. Kinzie)著,陈道龙译,热电偶测温,北京:原子能出版社,1980.
    黄泽铣,热电偶原理及其检定,北京:中国计量出版社,1993.
    张裕民,于维海,热电偶冷端温度补偿电路的设计,仪表技术与传感器,6: 10-13, 1993.
    罗四维,传感器应用电路详解,北京:电子工业出版社,1993.
    http://www.bioet.com.cn/LMI_A/index.htm.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700