用户名: 密码: 验证码:
碳纳米管湿度传感器敏感特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿度传感器作为湿度信息的采集单元,已经在环境监测、仓库存储、工业生产、气象等方面得到广泛应用,成为当前最具实用性的传感器之一。由于碳纳米管具有比表面积大、吸附能力强、电学特性优异等特点,近年来一直受到湿度传感器研究领域的关注。由碳纳米管制作的湿度传感器具有响应速度快,灵敏度高等优点,具有良好的发展前景。
     本文首先针对目前直流电压测试条件下的电阻型碳纳米管湿度传感器稳定性相对较差的问题,提出采用交流信号对传感器进行检测,并探讨传感器工作原理与介质介电弛豫效应对传感器电容与电阻的作用机制。根据上述分析结果,开展应用介电弛豫原理的新型检测方法研究,提出一种基于交流信号检测的电阻型碳纳米管湿度传感器。同时,通过对介电弛豫基本模型的研究,在原有碳纳米管湿度传感器模型中引入了介电损耗产生的电导,从而对传感器原有模型进行补充与完善。
     为验证上述基于交流信号检测的电阻型碳纳米管湿度传感器的工作原理的正确性,制作了一种叉指电极式碳纳米管湿度传感器。分别对该传感器电阻与电容的频率特性进行实验研究,发现随测试频率升高,敏感薄膜内部毛细凝聚产生的液态水的极化率将降低,使传感器电容随湿度的变化量下降。该实验结果与传感器电容频率特性理论分析结果具有相同的规律性。同时,当环境湿度发生变化,传感器电导的变化量随频率升高而增加,此时传感器对环境湿度的敏感以介电弛豫效应为主,实现了对所提出的基于交流信号检测的电阻型碳纳米管湿度传感器的实验验证。
     同时,对基于交流信号检测的电阻型碳纳米管湿度传感器模型与传感器实验数据进行拟合,发现两者拟合良好,从而验证了对基于交流信号检测的电阻型碳纳米管湿度传感器所建立模型的正确性。
     最后,本文对所提出的基于交流信号检测的电阻型碳纳米管湿度传感器性能进行测试与分析。针对目前电阻型碳纳米管湿度传感器普遍存在稳定性较差,电阻波动较大的缺点,重点分析了传感器的稳定性,提出利用提高测试频率来提高传感器稳定性的方法。根据实验结果,测试频率200kHz时传感器电阻随时间波动的相对变化量为500Hz时的1/4。同时,对传感器线性度、灵敏度等特性进行实验研究,结果表明测试频率为200kHz时传感器线性度最好,达到2.72%;此时传感器灵敏度为-6.84/%RH;响应时间与恢复时间分别约为6s和14s。
     该论文提出的基于交流信号检测的电阻型碳纳米管湿度传感器具有较高的稳定性与灵敏度;同时,所提出的传感器电学模型与数学模型为电阻型碳纳米管湿度传感器的结构设计与研制奠定了相应理论基础。
Humidity sensor, as a collection unit for humidity information, has been widelyapplied in environmental monitoring, warehouse storage, industrial production andweather humidity detection, and become one kind of the most universal sensorspresently. As carbon nanotubes possess great surface area to volume ratio, strongadsorption ability and distinguished electrics property, they have received greatattention in sensor research field. With fast response and high sensitivity, humiditysensors fabricated by carbon nanotubes sensing material have shown goodapplication prospect.
     In this dissertation, humidity detection under alternating signals for carbonnanotubes sensor is proposed, considering of the low stability problem for resistivehumidity sensor under direct current testings. Sensor’s working principle andmedium dielectric relaxation effect on its capacitance and resistance are alsoinvestigated. According to the above analysis, a novel humidity detecting method isdeveloped adopting dielectric relaxation theory and a kind of resistive carbonnanotubes humidity sensor under alternating testing signals is proposed based on thetheory. Meanwhile, in research of basic dielectric relaxation model, dielectric loss isintroduced into the former carbon nanotubes humidity sensor model and a relevantconductance is produced, which makes complements for the humidity sensing modelof carbon nanotubes film.
     A carbon nanotube humidity sensor with interdigital electrodes is fabricated tovalidate the principle of this novel sensor under alternating signal detection.Investigations are made on frequency characteristics of the sensor’s resistance andcapacitance by experiments. As testing frequency increases, it turns out liquid watertransformed by vapor capillary condensation in the sensing film has lowerpolarization ratio, so that sensor capacitance variation to humidity reduces. Theexperimental results are consistent with the theoretical analysis, comfirming itscorrectness. While the resistive sensor conductance variation to humidity increaseswith frequency ascent and here dielectric relaxation effect dominates in humiditysensing. The experimental theory validation forementioned has been realized.
     Also, the experimental data of the sensor is fitted to the novel resistive sensormodel based on alternating signal detection and they prove well fitted, whichapproves correctness of the established model.
     Finally, the proposed sensor under alternating signals are tested and analyzedon its performance. Due to disvantages of weak stability and irregular resistance fluctuation for current humidity sensors, here the sensor stability is emphasized andstability improving method is proposed by elevating sensor’s testing frequency.Sensor resistance variation to time at200kHz reduces to1/4of that at500Hz byexperimental results. Meanwhile, investigations on the sensor’s linearity andsensitivity properties prove that frequency of200kHz offers the optimum linearityof2.72%, where the sensor sensitivity achieves-6.84/%RH and its response andrecovery time are6s and14s respectively.
     The resistive carbon nanotubes humidity sensor based on alternating signaldetection proposed in this work has relatively high stability and sensitivity forpotential application. The sensor’s electric model and mathematic model providetheory basis for profound research of resistive carbon nanotubes humidity sensorsand contribute to their further developments.
引文
[1] Bruno Patissier. Humidity sensors for automotive,appliances and consumerapplications [J]. Sensors and Actuators B,1999,59:231-234.
    [2] Guodong Ye,Changzhi Yang,Youming Chen,et al. A new approach formeasuring predicted mean vote(PMV)and standard effective temperature(SET)[J]. Building and Environment,2003,(38):33-44.
    [3] Timothy J. Harpster,Brian Stark,Khalil Najafi. A passive wireless integratedhumidity sensor [J]. Sensors and Actuators A,2002,95:100-107.
    [4] Junhong Wang,DavidJ. Carlson,DavidB. Parsons,et al. Performance ofoperational radiosonde humidity sensors in direct comparison with a chilledmirror dew-point hygrometer and its climate implication [J]. GeophysicalResearch letters,2003,30(16):11.
    [5]邱碧秀.电子陶瓷材料[M].世界图书出版公司,1990:81-153.
    [6] L.L.W. Chow,M.M.F. Yuen,P.C.H. Chan,et al. Cheung. Reactive sputteredTiO2thin film humidity sensor with negative substrate bias [J]. Sensors andActuators B,2001,76:310-315.
    [7]高桥清,小长井诚.传感器电子学[M].宇航出版社,1987:177-191.
    [8] T. Nitta,Z. Terada,S. Hayakawa. Humidity-sensitive electrical conduction ofMgCr204-TIO2Porous ceramics [J]. American Ceramic Society,1979,63(5-6):295-300.
    [9] Youngdeuk Kim,Bongbu Jung,Hunkee Lee. Capacitive humidity sensor designbased on anodic aluminum oxide [J]. Sensors and Actuators B,2009,141:441-446.
    [10] P.R. Story,D.W. Galipeau,R.D. Mileham. A study of low-cost sensors formeasuring low relative humidity [J]. Sensors and Actuators B,1995,24:681-685.
    [11] Y. Sakai,Y. Sadaoka,M. Matsuguchi. Humidity sensors based on polymer thinfilms [J]. Sensors and Actuators B,1996,35:85-90.
    [12] Karsten Sager,Andreas Schroth,Arne Nakladal,et al. Humidity-dependentmechanical properties of polyimide films and their use for IC-compatiblehumidity sensors [J]. Sensors and Actuators A,1996,53:330-334.
    [13] Z.M. Rittersma. Recent achievements in miniaturised humidity sensors-areview of transduction techniques [J]. Sensors and Actuators A,2002,96:196-210.
    [14] Chil-Won Lee,Hee-Woo Rhee,Myoung-Seon Gong. Humidity sensor usingepoxy resin containing quaternary ammonium salts [J]. Sensors and ActuatorsB,2001,73:124-129.
    [15] Myoung-Seon Gong,Myong-Hoon Lee,Hee-Woo Rhee. Humidity sensor usingcross-linked copolymers containing viologen moiety [J]. Sensors and ActuatorsB,2001,73:185-191.
    [16] Xin Lv,Yang Li,Peng Li,et al. A resistive-type humidity sensor based oncrosslinked polyelectrolyte prepared by UV irradiation [J]. Sensors andActuators B,2009,135:581-586.
    [17] Uksong Kang,Kensall D. A High-Speed Capacitive Humidity Sensor withOn-Chip Thermal Reset [J]. IEEE Transacal On Sonelectron Devices,2000,47(4):702-710.
    [18] Masanobu Matsuguch,Takaaki Kuroiwa,Tetsuya Miyagishi,et al. Stability andreliability of capacitive-type relative humidity sensors using crosslinkedpolyimide films [J]. Sensors and Actuators B,1998,52:53–57.
    [19] Lei Gu,Qing-An Huang,Ming Qin. A novel capacitive-type humidity sensorusing CMOS fabrication technology [J]. Sensors and Actuators B,2004,99:491-498.
    [20] Che-Hsin Lin,Ching-Hsiu Chen. Sensitivity enhancement of capacitive-typephotoresistor-based humidity sensors using deliquescent salt diffusion method[J]. Sensors and Actuators B,2008,129:531-537.
    [21] Lijima S. Helical microtubules of graphitic carbon [J]. Nature,1991(354):56-58.
    [22] Rupesh Khare,Suryasarathi Bose. Carbon Nanotube Based Composites-AReview [J]. Journal of Minerals and Materials Characterization andEngineering,2005,4(1):31-46.
    [23] K.G. Ong,C.A.Grimes,C.L.Robbins,et al. Desigh and application of awireless,passive,resonant-circuit environmental monitoring sensor [J]. Sensorand Actuators A,2001,93:33-43.
    [24] Keat.G. Ong,Craig A. Grimes. A Carbon Nanotube-based Sensor for CO2Monitoring [J]. Sensor,2001,1:193-205.
    [25] KeatGheeOng, KefengZeng, CraigA.Grimes. A Wireless, Passive CarbonNanotube-Based Gas Sensor [J]. IEEE Sensors Journal,2002,2(2):82-88.
    [26]朱宏伟,吴德海,徐才录.碳纳米管[M].机械工业出版社.2003.
    [27] Chen H.W,Wu R.J,Chan K.H,et al. The application of CNT/Nafion compositematerial to low humidity sensing measurement [J]. Sensors and Actuators B,2005,104:80-84.
    [28] Pi G.S,Yi L.S,Chu C.L. A low humidity sensor made of quartz crystalmicrobalance coated with multi-walled carbon nanotubes/Nafion compositematerial films [J]. Sensors and Actuators B,2006,115:338-342.
    [29] Pi-Guey Su, Jia-Fang Tsai. Low-humidity sensing properties of carbonnanotubes measured by a quartz crystal microbalance [J]. Sensors and ActuatorsB,2009,135:506-511.
    [30]吕品,张绍成.基于多壁碳纳米管敏感膜的石英微振天平气体传感器敏感特性的研究[J].辽宁大学学报,2006,33(2):175-176.
    [31] Walt A. de Heer, A. Chatelain,D. Ugarte. A Carbon Nanotube Field-EmissionElectron Source [J]. Science,1995,270(5239):1179-1180.
    [32] N.S.Lee, D.S.Chung, I.T.Han. Application of carbon nanotubes to fieldemission displays [J]. Diamond Relat. Mater,2001,10:265-270.
    [33] Q.H.Wang,A.A.Setlur,J.M.Lauerhaas,et al. A nanotube-based field-emissionflat panel display [J]. Applied Physics Letters,1998,72(22):2912-2913.
    [34] A.M.Rao,D.Jacques,R.C.Haddon. Insitu-grown carbon nanotubes array withexcellent field emission characteristics [J]. Applied Physics Letters,2000,76(25):3813-3815.
    [35] Do-Hyung Kim,Chang-Duk Kim,Hyeong Rag Lee. Eects of the ion irradiationof screen-printed carbon nanotubes for use in field emission displayapplications [J]. Carbon,2004,42:1807-1812.
    [36] Huang J.R,Li M.Q,Huang Z.Y,et al. A novel conductive humidity sensorbased on field ionization from carbon nanotubes [J]. Sensors and Actuators A,2007,133:467-471.
    [37]黄改燕,陈长鑫,张亚非.单壁碳纳米管场效应晶体管的制备工艺研究[J].纳米器件与技术,2008,45(2):78-82.
    [38] Sander J. Tans,Alwin R. M. Verschueren,Cees Dekker. Room-temperaturetransistor based on a single carbon nanotubes [J]. Nature,1998,393(7):49-52.
    [39] A.Zahab,L.Spina,P.Poncharal. Water-vapor effect on the electrical conductivityof a single-walled carbon nanotubes mat [J]. Physical Review B,2000,62(15):10000-10003.
    [40] PilSun Na,Hyojin Kim. Investigation of the humidity effect on the electricalproperties of single-walled carbon nanotubes transistors [J]. Applied PhysicsLetters,2005,87(9):093101.
    [41] Dongchul Sung,Suklyun Hong. Ab initio study of the effect of water adsorptionon the carbon nanotubes field-effect transistor [J]. Applied Physics Letters,2006,89(24):243110.
    [42] Marcus Rinkio,Marina Y.Zavodchikova,Paivi Torma,et al. Effect of humidityon the hysteresis of single walled carbon nanotubes field-effect transistors [J].Phys. Sta. Sol,2008,245(10):2315-2318.
    [43] Wei-Fen Jiang,Shun-Hua Xiao,Huan-Yun Zhang,et al. Capacitive humiditysensing properties of carbon nanotubes grown on silicon nanoporous pillararray [J]. Science in China Series E:Technological Sciences,2007,50(4):510-515.
    [44] J.T.W. Yeow,J.P.M. She. Carbon nanotube-enhanced capillary condensation fora capacitive humidity sensor [J]. Institute Of Physics Publishing NanoTechnology,2006,(17):5441-5448.
    [45] Varghese O.K, Kichambre P.D, Gong D. Gas sensing characteristics ofmulti-wall carbon nanotubes [J]. Sensors and Actuators,2001,B(81):32-41.
    [46] Bruzzi M,Miglio S,Scaringella M,Bongiorno G,et al. First study of humiditysensors based on nano structured carbon films produced by supersonic clusterbeamed position [J]. Sensors and Actuators B,2004,100:173-176.
    [47] M. Saleem,Kh.S.Karimov,Z.M.Karieva,et al. Humidity sensing properties ofCNT–OD–VETP nanocomposite films [J]. Physica E,2010,(43):28-32.
    [48]吴子华,万录,廖克俊,等.多壁碳纳米管膜湿敏特性的研究[J].物理学报,2004,53(10):3462-3466.
    [49] Yu H,Cao T,Zhou L,et al. Layer-by-Layer assembly and humidity sensitivebehavior of poly(ethyleneimine)/multiwall carbon nanotube composite films[J]. Sensors and Actuators B,2006,119:512-515.
    [50] Jiang W.F,Xiao S.H,Feng C.Y,et al. Resistive humidity sensitivity of arrayedmulti-wall carbon nanotube nests grown on arrayed nano porous silicon pillars[J]. Sensors and Actuators B,2007,125:651-655.
    [51] Su P.G, Wang C.S. In situ synthesized composite thin films ofMWCNTs/PMMA doped with KOH as a resistive humidity sensor [J]. Sensorsand Actuators B,2007,124:303-308.
    [52] Litao Liu,Xiongying Ye,Kang Wu,Zhaoying Zhou,Dongjin Lee,TianhongCui. Humidity Sensitivity of Carbon Nanotube and Poly(Dimethyldiallylammonium Chloride)Composite Films [J]. IEEE SensorsJournal,2009,(9)10:1308-1314.
    [53] Litao Liu,Xiongying Ye,Kang Wu,et al. Humidity Sensitivity of Multi-WalledCarbon Nanotube Networks Deposited by Dielectrophoresis [J]. Sensors,2009,(9):1714-1721.
    [54] Kum-Pyo Yoo,Lee-Taek Lim,Nam-Ki Min,et al. Novel resistive-type humiditysensor based on multiwall carbon nanotube/polyimide composite films [J].Sensors and Actuators B,2010,145:120-125.
    [55] Q.Y. Tang,Y.C. Chan,K. Zhang. Fast response resistive humidity sensitivity ofpolyimide/multiwall carbon nanotube composite films [J]. Sensors andActuators B,2011,152:99-106.
    [56] C. L. Cao,C. G. Hu,L. Fang. Humidity Sensor Based onMulti-Walled CarbonNanotube Thin Films [J]. Journal of Nanomaterials,2011,2011:1-5.
    [57] Alexander V. Neimark,Peter I. Ravikovitch. Capillary condensation in MMSand pore structure characterization [J]. Microporous and MesoporousMaterials,2001,44-45:697-707.
    [58] Gerrit Gunther,Johannes Prass,Oskar Paris. Novel Insights into NanoporeDeformation Caused by Capillary Condensation [J]. Physical ReviewLetters,2008,101(8):086104.
    [59] Zekeriyya Gemici,Patrick I. Schwachulla,Erik H. Williamson,et al. TargetedFunctionalization of Nanoparticle Thin Films via Capillary Condensation [J].Nano Letters,2009,9(3):1064-1070.
    [60]赵振国.吸附作用应用原理[M].北京:化学工业出版社,2005:132-143.
    [61] R. Saito,T. Takeya,T. Kimura,et al. Raman intensity of single-wall carbonnanotubes [J]. Physical Review B,1998,57(7):4145-4152.
    [62] Yasuhito Ohta,Yoshiko Okamoto,Stephan Irle,et al. Rapid Growth of aSingle-Walled Carbon Nanotube on an Iron Cluster: Density-FunctionalTight-Binding Molecular Dynamics Simulations [J]. ACSNANO,2008,2(7):1437-1444.
    [63] Phaedon Avouris. Carbon nanotube electronics [J]. Chemical Physics,2002,281:429-445.
    [64] Eric L. Shirley,L. J. Terminello. Brillouin-zone-selection effects in graphitephotoelectron angular distributions [J]. Physical Review B,1995,51(19):13614-13622.
    [65] D. D. L. Chung. Review Graphite [J]. Jounal Of Materials Science,2002,37:1475-1489.
    [66] J. W. Mintmire,C. T. White. Universal Density of States for Carbon Nanotubes[J]. Physical Review Letters,1998,81(12):2506-2509.
    [67] Liu Yang,Jie Han. Electronic Structure of Deformed Carbon Nanotubes [J].Physical Review Letters,2000,85(1):154-157.
    [68]殷之文.电介质物理学[M].北京:科学出版社,2003:37-49.
    [69]孙目真.电介质物理基础[M].广州:华南理工大学出版社科学出版社,2003:33-58.
    [70] Ryan R. Kohlmeyer,Alireza Javadi,Basudev Pradhan,et al. Electrical andDielectric Properties of Hydroxylated Carbon Nanotube-Elastomer Composites[J]. J. Phys. Chem. C,2009,113,17626-17629.
    [71]李景德,沈韩,陈敏.电介质理论[M].北京:科学出版社,2003:4-5.
    [72]赵孔双.介电谱方法及应用[M].北京:化学工业出版社,2006:3-21.
    [73] Chao-Hai Du,Qian-Zhong Xue,Pu-Kun Liu,et al. Loss-Induced ModalTransition in a Dielectric-Coated Metal Cylindrical Waveguide for GyroTraveling Wave Tube Applications [J]. IEEE Electron Device Letters,2008,29(11):1256-1258.
    [74] Xiao-Ling Shi,Mao-Sheng Cao,Jie Yuan,et al. Nonlinear resonant and highdielectric loss behavior of CdS/α-Fe2O3heterostructure nanocomposites [J].Applied physics letters,2008,93(18):183118.
    [75] Wei-Li Song,Mao-Sheng Cao,Zhi-Ling Hou. High dielectric loss and itsmonotonic dependence of conducting-dominated multiwalled carbonnanotubes/silica nanocomposite on temperature ranging from373to873K inX-band [J]. Applied physics letters,2009,94(23):233110.
    [76] C. J. Kerr,Y. Y. Huang,J. E. Marshall,et al. Effect of filament aspect ratio onthe dielectric response of multiwalled carbon nanotube composites [J]. Appliedphysics letters,2011,109(9):094109.
    [77] K.L. Ngai,A.K. Jonscher,C.T. White,et al. On the origin of the universaldielectric response in condensed matter [J]. Nature,1979,277(18):185-189.
    [78] Uffe M ller, David G. Cooke, Koichiro Tanaka. Terahertz reflectionspectroscopy of Debye relaxation in polar liquids [J]. J. Opt. Soc. Am. B,2009,26(9):A114-A125.
    [79] Helén Jansson, Jan Swenson. The slow dielectric Debye relaxation ofmonoalcohols in confined geometries [J]. The Journal Of Chemical Physics,2011,134(10):104504.
    [80] Noam Agmon. Tetrahedral Displacement:The Molecular Mechanism behind theDebye Relaxation in Water [J]. J. Phys. Chem,1996,100(3):1072-1080.
    [81] Andrew K Jonscher. Dielectric relaxation in solids [J]. Appl. Phys,1999,32:57-70.
    [82] C. R. Bowen,D. P. Almond. Modelling the ‘universal’ dielectric response inheterogeneous materials using microstructural electrical networks [J]. MaterialsScience and Technology,2006,22(6):719-724.
    [83] A. S. Nowick,A. V. Vaysleyb,I. Kuskovsky,et al. Universal dielectric responseof variously doped CeO2ionically conducting ceramics [J]. Physical Review B,1998,58(13):8398-8406.
    [84] M. Penzaa,R. Rossi a,M. Alvisi,et al. Functional characterization of carbonnanotube networked films functionalized with tuned loading of Au nanoclustersfor gas sensing applications [J]. Sensors and Actuators B,2009,140:176-184.
    [85] Xiaohui Peng,Stanislaus S. Wong. Functional Covalent Chemistry of CarbonNanotube Surfaces [J]. Advanced Materials,2009,21:625-642.
    [86] Zan-Zan Zhu,Zhe Wang,Hu-Lin Li,et al. Functional multi-walled carbonnanotube/polyaniline composite films as supports of platinum for formic acidelectrooxidation [J]. Applied Surface Science,2008,254:2934-2940.
    [87]王正元,贾志杰,张增民,等.用红外光谱研究硝酸处理对多壁碳纳米管表面羧基的影响[J].炭素技术.1999,(5):14-16.
    [88]孙毓庆.分析化学[M].北京:科学出版社,2003:553-559.
    [89] Baochang Cheng,Baixiang Tian,Cuicui Xie. Highly sensitive humidity sensorbased on amorphous Al2O3nanotubes [J]. Journal of Materials Chemistry,2011,21:1907-1912.
    [90] Aihua Sun,Lin Huang,Yong Li,et al. Study on humidity sensing propertybased on TiO2porous film and polystyrene sulfonic sodium [J]. Sensors andActuators B,2009,139:543-547.
    [91] Yanyan Zhang,Wuyou Fu,Haibin Yang,et al. Synthesis and characterizationof TiO2nanotubes for humidity sensing [J]. Applied Surface Science,2008,254:5545-5547.
    [92]崔雨.饱和盐溶液湿度发生器的原理与不确定度评定[J].中国仪器仪表.2007(3):77-79.
    [93] Tran D. Hong,Steve Edgington,Richard H. Ellis,et al. Saturated salt solutionsfor humidity control and the survival of dry powder and oil formulations ofBeauveria bassiana conidia [J]. Journal of Invertebrate Pathology,2005,89:136-143.
    [94] Lewis Greenspan. Humidity Fixed Points of Binary Saturated AqueousSolutions. Journal of research of the national bureau of standards [J].1977,81(1):89-96.
    [95] T. W. Ebbesen, T. Takada. Topological and SP3Defect Structures inNanotubes [J]. Carbon,1995,33(7):973-978.
    [96] Kallista Sears,Chris Skourtis,Ken Atkinson. Focused ion beam milling ofcarbon nanotube yarns to study the relationship between structure and strength[J]. Carbon,2010,48:4450-4456.
    [97] Martin Pumera,Toshio Sasaki,Hideo Iwai,et al. Relationship between CarbonNanotube Structure and Electrochemical Behavior:Heterogeneous ElectronTransfer at Electrochemically Activated Carbon Nanotubes [J]. Chem. Asian J,2008,3:2046-2055.
    [98] Defeng Wu,Liang Wu,Guangcai Yu,et al. Crystallization and ThermalBehavior of Multiwalled Carbon Nanotube/Poly(butylenes terephthalate)Composites [J]. Polymer Engineering And Science,2008,10:1057-1067.
    [99] J. S. Brooks,R. Vasic,A. Kismarahardja. Debye relaxation in high magneticfields [J]. Physical Review B,2008,78(4):045205.
    [100] Sheng Lei,Chao Deng,Yuquan Chen,et al. A novel serial high frequencysurface acoustic wave humidity sensor [J]. Sensors and Actuators A,2011,167:31-236.
    [101] Masanobu Matsuguchi,Takashi Yamanaka,Makoto Yoshida,et al. Long-TermStability of Humidity Sensor Using Polyaniline Blend Films Upon DCOperation [J]. Journal of The Electrochemical Society,2009,156(10):J299-J302.
    [102] Yongsheng Zhang,Ke Yu,Desheng Jiang,et al. Zinc oxide nanorod andnanowire for humidity sensor [J]. Applied Surface Science,2005,242:212-217.
    [103] R. Gao,Z.W. Pan,Z.L. Wang,et al. Work function at the tips of multiwalledcarbon nanotubes [J]. Applied Physics Letters,2001,78(12):1757-1759.
    [104] Masashi Shiraishi,Masafumi Ata. Work function of carbon nanotubes [J].Carbon,2001,(39):1913-1917.
    [105] Hiroki Ago,Thomas Kugler,Franco Cacialli. Work Functions and SurfaceFunctional Groups of Multiwall Carbon Nanotubes [J]. J.Phys.Chem B,1999,103:8116-8121.
    [106] Xian-feng Wang,Bin Ding,Jian-yong Yu. A highly sensitive humidity sensorbased on a nanofibrous membrane coated quartz crystal microbalance [J].Nanotechnology,2010,21:055502.
    [107] Conghui Yuan,Yiting Xu,Yuanming Deng,et al. CuO based inorganic-organichybrid nanowires: a new type of highly sensitive humidity sensor [J].Nanotechnology,2010,21:415501.
    [108] Qin Kuang,Changshi Lao,Zhong Lin Wang,et al. High-Sensitivity HumiditySensor Based on a Single SnO2Nanowire [J]. J. AM. CHEM. SOC.2007,129:6070-6071.
    [109] Yun Wanga,Seungwoo Parka,John T.W. Yeowa,et al. A capacitive humiditysensor based on ordered macroporous silicon with thin film surface coating [J].Sensors and Actuators B,2010,149:136-142.
    [110] Xin Lv,Yang Li,Peng Li,et al. A resistive-type humidity sensor based oncrosslinked polyelectrolyte prepared by UV irradiation [J]. Sensors andActuators B,2009,135:581-586.
    [111] Zhenyu Li,Hongnan Zhang,Wei Zheng,et al. Highly Sensitive and StableHumidity Nanosensors Based on LiCl Doped TiO2Electrospun Nanofibers [J]. J.AM. CHEM. SOC,2008,130:5036-5037.
    [112] ZhuyiWang,Liyi Shi,FengqingWu. The sol-gel template synthesis of porousTiO2for a high performance humidity sensor [J]. Nanotechnology,2011,22:275502.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700