用户名: 密码: 验证码:
人骨髓间充质干细胞早期和晚期间差异表达基因的鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
间充质干细胞(Mesenchymal stem cells,MSCs)具有很强的自我更新能力,并具有很高的可塑性,在组织工程及临床细胞治疗等方面具有广阔的应用前景,所以间充质干细胞已成为干细胞研究的热点,如何在体外培养过程中维持MSCs未分化状态已成为其中的核心问题之一。而到目前为止对调节MSCs生长和未分化状态的分子机理方面的研究甚少。因此为了进一步了解维持MSCs未分化状态的机制,本论文采用自行建立培养的人骨髓间充质干细胞(human bone marrow mesenchymal stem cells, hBM-MSCs)克隆,应用抑制消减杂交(suppression subtractive hybridization, SSH)结合半定量RT-PCR技术筛选和鉴定hBM-MSCs早期和晚期间差异表达的基因。本研究首先分离培养hBM-MSCs,再分别选取传代培养至第五代和第二十代的细胞作为实验方(tester)和驱动方(driver),进行抑制消减杂交,构建cDNA消减杂交文库。然后将消减杂交后的PCR产物克隆到pGEM-T easy载体中,随后挑取阳性克隆进行测序,并与GenBank人基因库中已公布的核酸序列进行同源性比较分析。结果表明挑取的117个克隆分别代表21个已知的人基因,同源性都达到90%以上,这些基因分别具有不同的生物学功能。为进一步确定消减杂交的结果,进行半定量RT-PCR分析,结果发现21个基因中有6个基因在早期hBM-MSCs中的表达量都是晚期中表达量的2倍以上,它们分别是rab23,ddx21 ,tnfaip3 ,nomo2 ,pabpc3及cnn3,这些基因可能对维持hBM-MSCs的未分化状态和调节早期hBM-MSCs的生长具有重要作用。本研究将为这些基因的进一步功能研究以及阐明维持hBM-MSCs未分化状态的机制打下基础,而且有助于改变和控制hBM-MSCs的生长和分化的研究,进一步推动hBM-MSCs在组织工程上的应用。
Mesenchymal stem cells (MSCs) can self-renew, are multipotent cells and can differentiate into many different cells. They are important cell souece for tissue engineering and cell therapy. So far, little is known about how MSC growth and differentiation is regulated, and this study tried to gain some insight into this question by identification of genes differentially expressed in human bone marrow mesenchymal stem cells (hBM-MSCs) between early passages and late passages. hBM-MSCs at passage 5 and passage 20 were used as a tester and a driver respetively for subtractive hybridization experiment. PCR product derived from subtractive hybridization was cloned into pGEM-Teasy vector. A total of 117 positive clones were taken for DNA sequencing. DNA sequence of each clone was compared with GenBank database for gene homologes, and 21 different human known genes were identified representing the 117 clones. DNA sequence homologies between each of these 21 genes and their respective known genes were greater than 90%. To confirm the differential expression of these genes, semi-quantitative RT-PCR analysis were performed, and it showed that 6 genes were indeed differentially expressed in hBM-MSCs between early passages and late passages by more than 1 fold. These genes included rab23, ddx21, tnfaip3, nomo2, pabpc3 and cnn3. These genes may play an important role in maitaning and regulating hBM-MSCs growth and differentiation, and may provide useful information for controlling hBM-MSCs growth and differentiation for tissue engineering.
引文
[1] Homson JA, Itskovitz-Eldor J, Shapiro SS. Embryonic stem cell lines derived from human blastocysts. Science, 1998, 282:1145-7.
    [2] Gearhart J. Cell biology new potential for human embryonic stem cells. Science, 1998, 282(5391):1061-2.
    [3] Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embroyos. Nature, 1981,292 (5819): 154-156.
    [4] Martin G. Isolation of a pluripoten cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. National Academy of Sciences, 1981, 78 (12): 7634-7638.
    [5]赵明,任彩萍.胚胎干细胞诱导分化的研究进展.生命科学, 2005,17( 1):19-24.
    [6]胡娅莉,徐运,崔恒宓.胚胎干细胞的研究进展.医学研究生学报, 2005,18(1) : 77-80.
    [7] Jiang Y, Jahagirdar BN, Reinhardt RL. Pluripoteney of mesenehyreal stem cells derived from adult marrow.Nature, 2002, 418(6893): 41-49.
    [8] Terada N, Hamazaki T, Oka M. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature, 2002, 416(6880):485-487.
    [9]姜铧,张洹.间质干细胞来源、鉴定、可塑性和应用前景.暨南大学学报(医学版), 2004, 25( 4) : 468-473.
    [10] Reyes M, Lund T and Lenvik T. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells.Blood, 2001, 98 (9):2615-2625.
    [11] Frankel MS.In search of stem cell policy. Science, 2000, 287:1397.
    [12] Monticone M, Liu Y, Tonachini L. Gene expression profile of human bone marrow stomal cells determined by restriction fragment differential display analysis. Journal of Cellular Biochemistry, 2004, 92:733-744.
    [13] Baksh D, Song L, Tuan RS.Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med, 2004, 8(3): 301-316.
    [14] Noort WA, Kruisselbrink AB, Anker PS, Kruger M. van Bezooijen RL, de Paus RA, Heemskerk MHM, Lowik CWGM, Falkenburg JHF, Willemze R, Fibbe WE.Mesenchymal stem cells promote engraftment of human umbilical cord blood derived CD34+ cells in NOD /SCID mice. Exp Hematol, 2002, 30 (8): 870.
    [15] Williams JT, Southerland SS, Souza J, Calcutt AF, Cartledge RG. Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes. Am Surg, 1999, 65 (1): 22.
    [16] Jiang Y, Vaessen B, Lenvik T, Blackstad M, Reyes M, Verfaillie CM. Multipotent progenitor cells can be isolated from post natal murine bone marrow, muscle, and brain. Exp Hematol, 2002, 30 (8): 896.
    [17]王运涛.骨髓间充质干细胞分离培养的研究进展.国外医学生物工程分册,2002, 25(4):184.
    [18] Hgushi H, Caplan AI.Stem cell technology and biocramics.From cel to gene engineering. J Biomed Mater Res, 1999, 48(6):913.
    [19] Conget PA, Minguel JJ. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol, 1999, 181(1):67.
    [20] Bellows CG, Ciaccia A, Heersche JN.Osteoprogenitor cells in cell populations derived from mouse and rat calvaria differ in their response to corticosterone, cortisol, and cortisone. Bone, 1998, 23:119-125.
    [21] Pittenger MF, Mackay AM, Beck SC.Multolineage potential of adult human mesenchymal stem cells. Science, 1999, 284(2):143-147.
    [22] Bruder SP, Jaiswal N, Haynesworth SE.Growth kinetics, self-renewal, and the osteogential of purified human mesenchymal stem cells during extensive subculativtion and following cryopreservation. J Cell Biochem, 1997, 64(2):278.
    [23] Ferrari G, Coletta M, Paolucci E. Muscle regeneration by bone marrow-derived myogenic progenitors. Science, 1998, 279:1528.
    [24] Brazerlton TR, Rossi FM V, Keshet GI.From marrow to brain: expression of neuronal phenotypers in adult mice.Science, 2000, 290 (5497):1775.
    [25] Rockop DL. Marrow stromal cells as stem cells for non-hematopoietic tissues. Science, 1997, 276 (5309):71-74.
    [26] Sanchez-Ramos J, Song S, Cardozo-pelaze F. Adult bon marrow stromal cells differentiate into neural cells in vitro. Exp Neuro1, 2000, 164(2):247.
    [27] Nuttall ME, Patton, Olives DL. Human trabecular bone cells are able to express both osteoblastic and adipocytic phenotype: implications for osteogenic disorders. J Bone Miner Res, 1998, 13(3):371.
    [28] Leek, Majumdav Mk, Buyaner D. Human mesenchymal stem cells maintain transgene expression during expansion and differentiation. Mol Ther, 2001, 3(6):857.
    [29] Dao MA, Nolta JA. Use of the nx/hu reenograft modle of human hematopoiesis to optimiz methods for retroviral mediated stem cell transduction. Int J Mol Med, 1998, 1: 257.
    [30] Lazarus HM, Haynesworth SE, Gerson SL. Ex vivo expansion and subsequent infusion of human bine marrow-derived stromal progenitor cells(mesenchymal progenitor cells); implication for therapeutic use. Bone Transplant, 1998, 16:557.
    [31] ON Koq, HM Lazarus. Mesenchymal stem cells: heading into theclinic. Bone Marrow Transplantation, 2001, 27: 235-239.
    [32] Garry FP, Murphy JM. Mesenchymal stem cells: clinical applicationsand biological characterization. Int J Biochem Cell Biol, 2004, 6(4): 369-74.
    [33] Quarto R, Mastrogiacomo M , Cancedda R, Kutepov S M , Mukhachev V, Lavroukov A,. Kon E & Marcacci M. Repair of large bone defects with the use of autologous bone marrow stromal cells. New Engl. J. Med, 2001, 344: 385-386.
    [34] Tateishi - Yuyama, Matsubara EH, Murohara T, 1keda U, Shintani S, Masaki H, Amano K, Kishimoto Y, Yoshimoto K, Akashi H, Shimada K, Iwasaka T & lmaizumi T .Therapeutic angiogenesis for patients with limb ischaemia by autologoustransplantation of bone marrow cells : A pilot study and a randomizedcontrolled trial . Lancet, 2002, 360: 427-435.
    [35] Jorgensen C, Douad F, Apparailly F, Noe D. Engineeringmesenchymal stem cells for immunotherapy. Gene Therapy, 2003, 10928-931.
    [36] Sudms M, Norol F. Bone Marrow mesenchymal stem cellssuppress lymphocyte proliferation in vitro but fail to prevent graft versus host disease in mice. J ImmunoL, 2006 Jun, 176 (12):7761-7.
    [37] Bianco P & GRobe P. Stem cells intissue engineering. Nature, 2001, 414: 118-121.
    [38] Stock UA & Vacanti JP. Tissue engineering: current stateand prospects. Ann Rev. Med, 2001, 52: 443-451.
    [39] Watt FM, Hogan BL, M1. Out of Eden: stem cells and their niches. Science, 2000,287(5457): 14272301.
    [40] Watt FM. Stem cell fate and patterning in mammalian ep idermis. CurrOp in Genet Dev, 2001, 11 (4): 410271.
    [41] Petersen BE, Terada N. Stem cells: a journey into a new frontier. J Am Soc Nephrol, 2001, 12 (8): 17732801.
    [42] Ross DA, Kadesch T. Consequences of Notch-mediated induction of Jagged. Exp Cell Res, 2004, 296(2): 173-182.
    [43] Struhl G, Fitzgerald K, Greenwald I. Intrinsic activity of the Lin-12 and Notch intracellular domains in vivo. Cell, 1993, 74(2): 331-345.
    [44] Nam Y, Weng AP, Aster JC, Blacklow SC. Structural requirements for assembly of the CSL intracellular Notch1. Mastermind-like1 transcriptional activation complex. J Biol Chem, 2003, 278(23): 21232-21239.
    [45] Mumm JS, Kopan R. Notch signaling: from the outside in. Dev Biol, 2000, 228(2): 151-165.
    [46] Melissa AB, Robert FW.Study of Telomere Length Reveals Rapid Aging of Human Marrow Stromal Cells following In Vitro Expansion.Stem Cells, 2004, 22:675-682.
    [47] Diatchenko L, Lau YC, Campbell AP, Chenchik A, Mooadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov E, Siebert PD. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes. Proc Natl Acad Sci USA, 1996; 93:6025-6030.
    [48] Diatchenko L, Lukyanov S, Lau YF. Suppression subtractive hybridization: a versatile method for identifying differentially expressed genes. Methods Enzymol, 1999, 303:349- 380.
    [49] Von Stein OD, Thies WG, Hofmann M. A high throughput screening for rarely transcribed differentially expressed genes. Nucleic Acids Res, 1997, 25 (13): 2598- 2602.
    [50] Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S and Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science, 1999, 284: 143-147.
    [51] Negishi Y, Kudo A, Obinata A, Kawashima K, Hirano H, Yanai N, Obinata M, Endo H. Multipotency of a bone marrow stromal cell line, TBR31-2, established from ts-SV40 Tantigen gene transgenic mice. Biochem Biophys Res Commun, 2000, 268: 450-455.
    [52] Sanchez-Ramos J, Song S, Cardozo-Pelaez F, Hazzi C, Stedeford T, Willing A, Freeman TB, Saporta S, Janssen W, Patel N, Cooper DR, Sanberg PR. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neuro, 2000, 164: 247-256.
    [53] Mets T, Verdonk G. In vitro aging of human bone marrow derived stromal cells. Mech Ageing Dev, 1981, 16: 81-89.
    [54] Digirolamo CM, Stokes D, Colter D, Phinney DG, Class R, Prockop DJ. Propagation and senescence of human marrow stromal cells in culture: A simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol, 1999, 107: 275-281.
    [55] D’Ippolito G, Schiller PC, Ricordi C, Roos BA, Howard GA. Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. J Bone Miner Res, 1999, 14: 1115–1122.
    [56] Banfi A, Muraglia A, Dozin B, Mastrogiacomo M, Cancedda R, Quarto R. Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: Implications for their use in cell therapy. Exp Hematol, 2000, 28: 707-715.
    [57] Rombouts WJ, Ploemacher RE. Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia, 2003, 17: 160–170.
    [58] Stenderup K, Justesen J, Clausen C, Kassem M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone, 2003, 33: 919-926.
    [59] Chang YJ, Shih DT, Tseng CP, Hsieh TB, Lee DC and Hwang SM. Disparate mesenchyme-lineage tendencies in mesenchymal stem cells from human bone marrow and umbilical cord blood. Stem Cells, 2006, 24: 679–685.
    [60] Haynesworth SE, Goshima J, Goldberg VM. Characterization of cells with osteogenic potential of human marrow. Bone, 1992, 13 (1):81-88.
    [61] Friedensteni AJ, Chaliakyan RK, Gerasimov UV. Bone mamrw osteogenic stem cells: in vitro cultivation and transplantation in diffusione chambers.Cell Tissue Kniet, 1987, 20:263-272.
    [62] Pereira RF,O Hara MD, Laptev AV. Marrow stromal cells as a source of progenitor cells fornon-hematopoictic tissues in transgeneic mice with a phenotype of osteogenesis imperfecta. Proc Acad Sci USA, 1998, 95:1142.
    [63] Arnold IC, Scott PB. Mesenchymal stem cells: bulidnig blocks for molecular medicine in the 21th century.Trends in Molecular Medcine, 2001, 7:259-264.
    [64] Koe ON, Gerson SL, Cooper BW. Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol, 2000, 18: 307-316.
    [65] Lee ST, Jang HJ, Cheong JW. Treatment of high-risk acute myelogenous leukaemia by myeloablative chemoradiotherapy followed by coinufsion of T cell-depleted haematopoietic stem cells and culture-expanded marrow mesenchymal steme cells from a related donor with one fully mismatched human leucocyte antigen haplotype.Br J Haematol, 2002, 118:1128-1131.
    [66] Majumdar MK,Thiede MA,Mosca DJ. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stormal cells. J Cell Physiol, 1998, 176:57-66.
    [67] Kitano y, Radu A, Shaaban A. Selection, enrichment, and culture expansion of murine mesenchymal progenitor cells by retroviral transduction of cycling adherent bone maorrw Cells. Experimental Hematology, 2000, 28:1460-1469.
    [68] Zeng F, Schultz RM. Gene expression in mouse oocytes and preimplantation embryos: use of suppression subtractive hybridization to identify oocyte- and embryo-specific genes. Biol Reprod, 2003, 68: 31–39.
    [69] Lee KF, Yao YQ, Kwok KL, Xu JS, Yeung WS. Early developing embryos affect the gene expression patterns in the mouse oviduct. Biochem Biophys Res Commun, 2002, 292:564-570.
    [70] Lee KF, Kwok KL, Yeung WS. Suppression subtractive hybridization identifies genes expressed in oviduct during mouse preimplantation period. Biochem Biophys Res Commun, 2000, 277:680-685.
    [71] Girard JP, Baekkevold ES, Yamanaka T, Haraldsen G, Brandtzaeg P, Amalric F. Heterogeneity of endothelial cells: the specialized phenotype of human high endothelialvenules characterized by suppression subtractive hybridization. Am J Pathol, 1999, 155: 2043-2055.
    [72] Wong B R, Rho J, Arron J.TRANCE is anovel ligand of the tumor necrosia factor receptor family that activate c-jun N-terminal kinase in T cells. J Biol Chem, 1997, 272:25190.
    [73] Chu Z, McKinsey T A, Liy L. Suppression of tumor necrosia factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-kB control. Proc Natl Acad Sci USA, 1997, 94:10057.
    [74] Gurskaya N G, Diatchenko L, Chenchik A. Equalizing cDNA subtraction based on selective suppression of polymerase chain reaction: cloning of Jurkat cell tanscripts induced by phytohem aglutin in and phorbol 12-myristable 13-acetate. Anal Biochem, 1996, 240:90.
    [75] Haag J, Aiqner T. Identification of calponin 3 as a novel Smad-binding modulator of BMP signaling expressed in cartilage.Exp Cell Res, 2007, 313(16):3386-94.
    [76] Bain G, Muller T, Wang X, and Papkoff J. Activatedβ-catenin induces osteoblast differentiation of C3H10T1/2 cells and participates in BMP2 mediated signal transduction. Biochem Biophys. Res. Commun, 2003, 301: 84-91.
    [77] Derfoul A, Carlberg AL, Tuan RS and Hall DJ. Differential regulation of osteo-genic marker gene expression by Wnt-3a in embryonic mesenchymal multipotential progenitor cells. Differentiation, 2004, 72: 209-223.
    [78] Varga AC and Wrana JL. The disparate role of BMP in stem cell biology. Oncogene, 2005, 24: 5713-5721.
    [79] Liu ZY, Tang Y, Qiu T, Cao X, and Thomas LC. A Dishevelled-1/Smad1 interaction couples WNT and bone morphogenetic protein signaling pathways in uncommitted bone marrow stromal cells. The Journal of Biological Chemistry, 2006, 281(25):17156-17163.
    [80] Massague J. TGF-beta signal transduction. Annu Rev Biochem, 1998, 67: 753-791.
    [81] Schier AF. Nodal signaling in vertebrate development. Annu Rev Cell Dev Biol, 2003, 19: 589-621.
    [82] Schier AF, Shen MM. Nodal signalling in vertebrate development. Nature, 2000, 403: 385-389.
    [83] Kazuya O, Akira S, Hisanori M, Hiroshi S, Satoshi O, Daisuke S, Yasuyuki M, Tetsuro W, Hitoshi N and Kohei M, Activin-Nodal signaling is involved in propagation of mouseembryonic stem cells. Journal of Cell Science, 2007, 120: 55-65.
    [84] Evans TM, Ferguson C, Wainwright BJ, Parton RG, Wicking C. Rab23, a negative regulator of hedgehog signaling, localizes to the plasma membrane and the endocytic pathway. Traffic, 2003, 4: 869-884.
    [85] Eggenschwiler JT, Espinoza E, Anderson KV. Rab23 is an essential negative regulator of the mouse sonic hedgehog signalling pathway. Nature, 42001, 12:194-198.
    [86] Zhang Y and Kalderon D. Hedgehog acts as a somatic stem cell factor in the Drosophila ovary. Nature, 2001, 410: 599-604.
    [87] Lai K, Kaspar BK, Gage FH and Schaffe DV. Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat. Neurosci, 2003, 6: 21-27.
    [88] Machold R, Hayashi S, Rutlin M, Muzumdar MD, Nery S, Corbin JG, Gritli-Linde A, Dellovade T, Porter JA, Rubin LL, Dudek H, McMahon AP, and Fishell G. Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron, 2003, 39: 937-950.
    [89] Dontu G, Al-Hajj M, Abdallah WM, Clarke MF, Wicha MS. Stem cells in normal breast development and breast cancer. Cell Prolif, 2003, 36: 59-72.
    [90] Kopper L, Hajdu M. Tumor stem cells. Pathol Oncol Res, 2004, 10: 69-73.
    [91] Taipale J, Beachy PA. The hedgehog and Wnt signaling pathways in cancer. Nature, 2001, 411: 349-54.
    [92] Mangus DA, Evans MC and Jacobson A. Poly (A)-binding proteins: multifunctional scaffolds for the posttranscriptional control of gene expression.Genome Biology, 2003, 4: 223-36.
    [93] Eferl R and Wagner EF. AP-1: a double-edged sword in tumorigenesis. Nature Rev. Cancer, 2003, 3: 859-868.
    [94] Kennedy NJ and Davis RJ. Role of JNK in tumor development. Cell Cycle, 2003, 2: 199-201.
    [95] Beyaert R, Heyninck K and Van Huffel S, A20 and A20-binding proteins as cellular inhibitors of nuclear factorkappa B-dependent gene expression and apoptosis. Biochem. Pharmacol, 2000, 60: 1143-1151.
    [96] Heyninck K and Beyaert R. A20 inhibits NF-kappaB activation by dual ubiquitin-editing functions. Trends Biochem. Sci, 2005, 30: 1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700