用户名: 密码: 验证码:
嗅鞘细胞培养液对神经样细胞RhoA活性和轴突生长的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:
     观察嗅鞘细胞培养液(olfactory ensheathing cells culture medium,OECCM)对神经样细胞PC12细胞活性RhoA的表达和轴突生长的影响,探讨嗅鞘细胞促进脊髓轴突生长与RhoA/ROCK信号通路的关系。
     研究方法:
     (1)原代嗅鞘细胞培养并纯化,鉴定,收集培养上清制备成OECCM。
     (2)PC12细胞株培养,经OECCM和或RhoA激活剂LPA作用后,用Western blotting方法检测活性RhoA水平。
     (3)PC12细胞株培养,加入OECCM后观察细胞形态学变化。
     (4)PC12细胞株培养,经OECCM和或RhoA激活剂LPA作用后,用免疫荧光法观测RhoA吸光度(A)值的变化。
     (5)PC12细胞株培养,经OECCM和或RhoA激活剂LPA作用后,细胞用鬼笔环肽进行染色,并在荧光显微镜下观察应激纤维的形成变化。
     (6)PC12细胞株培养,经OECCM作用后,用免疫荧光法检测神经丝蛋白(neurofilament protein , NF)的表达及分布。
     (7)PC12细胞株培养,经OECCM作用后,用Western blotting方法检测神经丝蛋白、突触蛋白和突触素蛋白的相对含量。
     研究结果:
     (1)培养的嗅鞘细胞呈双极、三极和多极,胞体较小,立体感强,折光性好,细胞突起相互交织成网状结构,嗅鞘细胞的纯度在85%以上。
     (2)嗅鞘细胞培养液可抑制RhoA活性,并能拮抗LPA引起的活性RhoA增高。
     (3)在PC12细胞株中,经OECCM作用后,细胞长有长短不一突起,并随着时间的延长交织成网。
     (4)在PC12细胞株中,经OECCM和或RhoA激活剂LPA作用后,免疫荧光显示OECCM作用组RhoA吸光度(A)值明显低于对照组,而LPA组中则明显增高。
     (5)嗅鞘细胞培养液对LPA引起的应激纤维形成有抑制作用。
     (6)在PC12细胞株中,经OECCM作用后,神经丝蛋白的分布范围逐渐增加,其分布面积与β-tubulin分布面积的比值较对照组显著增高。
     (7)在PC12细胞株中,经OECCM作用后,神经丝蛋白、突触蛋白和突触素蛋白的表达显著高于对照组。
     结论:
     嗅鞘细胞培养液可促进神经样细胞PC12细胞轴突生长,在结构和功能上向神经元分化,并在此过程中抑制了RhoA活性,表明嗅鞘细胞促神经轴突生长机制可能通过RhoA/ROCK信号通路。
Objective
     To observe the expression of olfactory ensheathing cells culture medium(OECCM)on RhoA activity in nerve-like cells PC12 cells, and investigate the relationship between Olfactory ensheathing cells promote axon growth and RhoA / ROCK signaling pathway. Methods
     (1) Primary olfactory ensheathing cells were cultured, purified and identified, and the purified cell conditioned medium was collected into the OECCM.
     (2) PC12 cells were cultured and treated with OECCM and/or LPA, and then the amount of GTP-RhoA was detected by Western Blotting.
     (3) PC12 cells were cultured and treated with OECCM, and then the morphological changes were observed .
     (4) PC12 cells were cultured and treated with OECCM and/or LPA, and then the absorbance value changes of RhoA were observed by immunofluorescence.
     (5) PC12 cells were cultured and treated with OECCM and/or LPA, and then the cells were stained with phalloidin and the formation of stress fiber was visualized under fluorescent microscope.
     (6) PC12 cells were cultured and treated with OECCM, and then the expression and distribution of neurofilament protein was detected by immunofluorescence.
     (7) PC12 cells were cultured and treated with OECCM, and then the relative content of neurofilament proteins, synapsin, synaptophysin were detected by Western Blotting.
     Results
     (1) Cultured olfactory ensheathing cells were bipolar, tripolar and multipolar , and the cell bodies were smaller,stereoscopic, and good refraction. The cell processes are intertwined into a network structure, and the olfactory ensheathing cells in more than 85% purity.
     (2) Olfactory ensheathing cell culture medium could inhibit the activation of RhoA, and could antagonize RhoA activity caused by LPA.
     (3) In the PC12 cell line, by the role of olfactory ensheathing cell culture medium, the cells have long processes of varying lengths, and with time woven into nets.
     (4) In the PC12 cell line , by the role of olfactory ensheathing cell culture medium and/or LPA, the immunofluorescence staining showed the absorbance value of RhoA in olfactory ensheathing cell culture medium group was significantly lower than the control group, while the LPA group was significantly higher.
     (5) Olfactory ensheathing cell culture medium was able to antagonize the LPA-induced stress fiber formation.
     (6) In the PC12 cell line, by the role of olfactory ensheathing cell culture medium, immunofluorescence staining showed the distribution of neurofilament protein gradually increased and the distribution of size and size distribution ofβ-tubulin ratio was significantly higher than the control group.
     (7) In the PC12 cell line, by the role of olfactory ensheathing cell culture medium, the Western blotting showed the expression level of NF, synapsin and synaptophysin in olfactory ensheathing cell culture medium group was significantly higher than the control group.
     Conclusion
     Olfactory ensheathing cell culture medium could promote the axonal growth of PC12 cells, the structural and functional differentiation into neurons, and in the process inhibit RhoA activity, which makes olfactory ensheathing cells promote neurite growth mechanism through the RhoA / ROCK signaling pathway may exist.
引文
[1] Woodhall E, West AK, Chuah M I. Cultured olfactory ensheathing cells express nerve growth factor, brain-derived neurotrophic factor, glia cell line-derived neurotrophic factor and their receptors[J]. Brain ResMolBrain Res, 2001, 88 (1 -2);203 - 213.
    [2]张迎宏,马芙蓉.嗅鞘细胞移植治疗中枢神经损伤研究进展[J].中华医学文摘:耳鼻咽喉学, 2005, l20(4);211 - 214.
    [3] Sasaki T,Takai Y. The Rho small G protein family-Rho GDI system as a temporal and spatial determinant for cytoskeletal control[J]. Biochem Biophys Res Commun, 1998, 245(3):641–645.
    [4] Ridley AJ ,Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and (actin stress fibers in response to growth factors[J]. Cell, 1992, 70(3):389–399.
    [5] Majumdar M, Seasholtz TM, Goldstein D et al. Requirement for Rho-mediated myosin light chain phosphorylation in thrombinstimulated cell rounding and its dissociation from mitogenesis[J]. Biol Chem, 1998, 273(17):10099–10106.
    [6] Lummen G, Virchow S, Rumenapp U et al. Identification of G protein-coupled receptors potently stimulating migration of human transitional-cell carcinoma cells[J]. Naunyn Schmiedebergs Arch Pharmacol,1997, 356(6):769–776.
    [7] Raftopoulou M, Hall A. Cell migration:Rho GTPases lead the way[J]. Developmental Biology, 2004, 265(1):23-32.
    [8] Imamura F, Horai T, Mukai M et al. Induction of in vitro tumor cell invasion of cellular monolayers by lysophosphatidic acid or phospholipase D[J]. Biochem Biophys Res Commun, 1993, 193(2):497–503.
    [9] Imamura F, Shinkai K, Mukai M et al. Rho-mediated protein tyrosine phosphorylation in lysophosphatidic-acidinduced tumor-cell invasion[J]. Int JCancer,1996, 65(5):627–632.
    [10] Hill CS,Wynne J, Treisman R. The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF[J]. Cell, 1995, 81(7):1159-1170.
    [11] Bence K, Ma W, Kozasa T et al. Direct stimulation of Bruton’s tyrosine kinase by G(q)-protein alaph-subunit[J]. Nature, 1997, 389(6648):296–299.
    [12] Fromm C, Coso OA, Montaner S et al. The small GTP-binding protein Rho links G protein-coupled receptors and Galpha12 to the serum response element and to cellular transformation[J]. Proc Natl Acad Sci USA,1997, 94(19):10098–10103.
    [13] Yamamoto M, Marui N, Sakai T et al. ADP-ribosylation of the rhoA gene product by botulinum C3 exoenzyme causes Swiss 3T3 cells to accumulate in the G1 phase of the cell cycle[J]. Oncogene, 1993, 8(6):1449–1455.
    [14] Olson MF, Paterson HF, Marshal CJ. Signals from Ras and RhoGTPases interact to regulate expression of p21Waf1/Cip1[J]. Nature, 1998, 394(6690):295–299.
    [15] Zohn IM,Campbell SL,Khosravi- Fa R et al. Rho family proteins and Ras transformation: the RHOad less traveled gets congested[J]. Oncogene,1998, 17(11 Reviews):1415-1438.
    [16] Richardson PM, McGuinness UM, Aguayo AJ.Axons from CNS neurons regenerate into PNS grafts[J]. Nature,1980,284(5753): 264-265.
    [17] Kubo T, Hata K, Yamaguchi A, et al. Rho-ROCK inhibitors as emerging strategies to promote nerve regeneration[J]. Curr Pharm Des.2007,13(24):2493 -2499.
    [18] Mimura F, Yamagishi S, Arimura N, et al. Myelin-associated glycoprotein inhibits microtubule assembly by a Rho-kinase-dependent mechanism[J]. J Biol Chem.2006,281(23) :15970-15979.
    [19] Gross RE, Mei Q, Gutekunst CA, et al. The pivotal role of RhoA GTPase in the molecular signaling of axon growth inhibition after CNS injury and targeted therapeutic strategies[J]. Cell Transplant.2007;16(3):245-262.
    [20] Fu Q, Hue J, Li S. Nonsteroidal anti-inflammatory drugs promote axon regeneration via RhoA inhibition[J]. J Neurosci.2007,27(15):4154-4164.
    [21] Fournier AE, GrandPre T, Strittmatter SM. Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration[J]. Nature,2001,409(6818): 341-346.
    [22] Josephson A, Trifunovski A, Widmer HR,et al. Nogo-receptor gene activity: cellular localization and developmental regulation of mRNA in mice and humans[J]. J Comp Neurol,2002,453(3): 292-304.
    [23] Wang KC, Kim JA, Sivasankaran R,et al. P75 interacts with the Nogo receptor as a co-receptor for Nogo, MAC and OMgp [J]. Nature,2002,420(6911):74-78.
    [24] Yamashita T, Higuchi H, Tohyama M. The p75 receptor transduces the signal from myelin-associated glycoprotein to Rho[J]. J Cell Biol,2002,157(4):565-570.
    [25] Borisoff JF, Chan CC, Hiebert GW,et al. Suppression of Rho-kinase activity promotes axonal growth on inhibitory CNS substrates [J]. Mol Cell Neurosci,2003,22(3):405-416.
    [26] Schweigreiter R, Walmsley AR, Niederost B,et al. Versican V2 and the central inhibitory domain of Nogo-A inhibit neurite growth via p75NTR/NgR-independent pathways that converge at RhoA [J]. Mol Cell Neurosci,2004,27(2):163–174.
    [27] Dubreuil CI,Winton MJ, McKerracher L. Rho activation patterns after spinal cord injury and the role of activated Rho in apoptosis in the central nervous system[J]. J Cell Biology,2003,162(2):233-243.
    [28] Lopez-Vales R, Fores J, Navarro X, et al. Chronic transplantation of olfactory ensheathing cells promotes partial recovery after complete spinal cord transaction in the rat[J]. Glia,2007,55(3):303-311.
    [29] Moon LD, Leasure JL,Gage FH, et al.Motor enrichment sustains hindlimb movement recovered after spinal cord injury and glial transplantation[J]. Restor Neurol Neurosci,2006,24(3):147-161.
    [30] Keyvan-Fouladi N, Raisman G, Li Y. Functional repair of the corticospinal tractby delayed transplantation of olfactory ensheathing cells in adult rats[J]. J Neurosci,2003,23(28):9428-9434.
    [31] O’Toole DA, West AK, Chuah MI. Effect of olfactory ensheathing cells on reactive astrocytes in vitro[J].Cell Mol Life Sci,2007,64(10):1303-1309.
    [32] Leaver SG, Harvey AR, Plant GW. Adult olfactory ensheathing glia promote the long-distance growth of adult retinal ganglion cell neurites in vitro[J]. Glia, 2006,53(5):467-476.
    [33] Li Y,Field PM ,Raisman G.Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells[J].Science,1997,277(5334):2000-2002.
    [34] Ramon-Cueto A ,Cordero MI,Santos-Benito FF,el a1.Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing gila[J].Neuron,2000,25(2):425-435.
    [35] Nash HH , Borke RC , Anders JJ . New method of purification for establishing primary cultures of ensheathing cells from the adult olfactory bulb[J]. Glia , 2001 ,34 (2) :81-87.
    [36] Ibrahim A ,Li Y ,Li D,el a1.Olfactory ensheathing cells:ripples of an incoming tide? [J]. Lancet Neurol,2006,5(5):453-457.
    [37] Andrews MR,Stelzner DJ.Evaluation of olfactory ensheathing and schwann cells after implantation into a dorsal injury of adult rat spinal cord[J]. J Neurotrauma. 2007,24(11):1773-1792.
    [38] Ramon-Cueto A, Nieto-Sampedro M. Regeneration into the spinal cord of transected dorsal root axons is promoted by ensheathing glia transplants[J]. Exp Neurol,1994,127(2): 232-244.
    [39] Gudino-Cabrera G, Nieto-Sampedro M. Ensheathing cells: large scale purification from adult olfactory bulb, freeze preservation and migration of transplanted cells in adult brain[J]. Restor Neurol Neurosci,1996, 10(1):25-34.
    [40]王珂,周长满,于恩华.成年大鼠嗅球和鼻腔嗅黏膜成鞘细胞的分离、培养与鉴定[J].解剖学报, 2002, 33(5):488-491.
    [41]魏开斌,刘红,李毅,等.成年大鼠嗅粘膜细胞原代培养及形态学研究[J].神经解剖学杂志,2005, 21(4):423-426.
    [42] Lu J, Feron F. Transplantation of nasal olfactory tissue promotes partial recovery in paraplegic adult rats[J]. Brain Res 2001,889(2): 344-335.
    [43] Ren X-D, Kiosses WB, Schwartz MA. Regulation of the small GTPbinding protein Rho by cell adhesion and the cytoskeleton[J]. EMBO J,1999,18(3):578–585.
    [44] Raftopoulou M,Hall A.Cell migration:Rho GTPases lead the way [J].Dev Biol,2004,265(1):23-32.
    [45] Yiu G,He ZG.Signaling mechanisms of the myelin inhibitors of axonregeneration [J].Curr Opin Neurebiol,2003,13(5):545-551.
    [46] Monnier P P,Sierra A,Schwab J M,et a1.The RhoA/ROCK pathway mediates neurite growth—inhibitory activity associated with the chondroitin sulfate proteoglycans of the CNS glial scar[J].Mol Cell Neurosci,2003,22(3):319-330.
    [47] Cao L, Zhu YL, Su Z, et al. Olfactory ensheathing cells promote migration of Schwann cells by secreted nerve growth factor[J]. Glia,2007,55(9):897-904.
    [48] Huang CM , Shui HA , Wu YT , et al . Proteomic analysis of proteins in PC12 cells before and after treatment with nerve growth factor : increased levels of a 43-kDa chromogranin B-derived fragment during neuronal differentiation [J] . Brain Res Mol Brain Res , 2001 , 92 (1-2) : 181-192.
    [49] Julien JP , Mushynski WE. Neurofilaments in health and disease[J]. Prog Nucleic Acid Res Mol Biol , 1998 ,61:1-23.
    [50] Ferreira A, Chin LS, Li L, et al. Distinct roles of synapsin I and synapsin II during neuronal development[J]. Mol Med, 1998, 4(1):22-28.
    [51] Cheetham JJ, Murray J, Ruhkalova M, et al. Interaction of Synapsin I withmembranes[J]. Biochem Biophys Res Commun,2003,309(4):823-829.
    [52] Murrey HE, Gama CI, Kalovidouris SA,et al. Protein fucosylation regulates synapsin Ia/Ib expression and neuronal morphology in primary hippocampal neurons[J]. Proc Natl Acad Sci,2006,103(1):21-26.
    [1] Richardson PM, McGuinness UM, Aguayo AJ.Axons from CNS neurons regenerate into PNS grafts[J]. Nature,1980,284(5753): 264-265.
    [2] Schwab ME, Kapfhammer JP, Bandtlow CE. Inhibitors of neurite growth. Annu.Rev[J]. Neurosci,1993,16:565–595.
    [3] Woolf CJ, Bloechlinger S. It takes more than two to Nogo[J]. Science,2002,297(5584): 1132–1134.
    [4] Huber AB, Weinmann O, Brosamle C,et al. Patterns of Nogo mRNA and protein expression in the developing and adult rat and after CNS lesions[J]. J Neurosci,2002,22(9): 3553–3567.
    [5] DeBellard ME, Tang S, Mukhopadhyay G,et al. Myelin-associated glycoprotein inhibits axonal regeneration from a variety of neurons via interaction with a sialoglycoprotein [J]. Mol Cell Neurosci,1996,7(2):89–101.
    [6] Cai D, Qiu J, Cao Z,et al. Neuronal cyclic AMP controls the developmental loss in ability of axons to regenerate[J]. J Neurosci,2001,21(13): 4731-4739.
    [7] Wang KC, Koprivica V, Kim JA,et al.Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth[J]. Nature,2002,417(6892):941-944.
    [8] Yick LW, Cheung PT, So KF,et al.Axonal regeneration of Clarke's neurons beyond the spinal cord injury scar after treatment with chondroitinase ABC[J]. Exp Neurol, 2003,182(1):160-168.
    [9] Fournier AE, Strittmatter SM. Repulsive factors and axon regeneration in the CNS[J]. Curr Opin Neurobiol ,2001,11(1):89–94.
    [10] Guan KL, Rao Y. Signalling mechanisms mediating neuronal responses toguidance cues [J]. Nat Rev Neurosci,2003,4:941–956.
    [11] Muller BK, Jay DG, Bonhoeffer F. Chromophore-assisted laser inactivation of a repulsive axonal guidance molecule[J]. Curr Biol,1996, 6(11): 1497-502.
    [12] Monnier PP, Sierra A, Macchi P,et al. RGM is a repulsive guidance molecule for retinal axons[J]. Nature, 2002,419(6905): 392-395.
    [13] Sahay A, Kim CH, Sepkuty JP,et al. Secreted semaphorins modulate synaptic transmission in the adult hippocampus[J]. J Neurosci,2005,25(14):3613–3620.
    [14] De Winter F, Oudega M, Lankhorst AJ,et al. Injury-induced class 3 semaphorin expression in the rat spinal cord [J]. Exp Neurol,2002,175(1):61–75.
    [15] Niclou SP, Franssen EH, Ehlert EM,et al. Meningeal cell-derived semaphorin 3A inhibits neurite outgrowth[J]. Mol Cell Neurosci 2003, 24(4):902–912.
    [16] Gallo G,Letourneau PC. Regulation of growth cone actin filaments by guidance cues [J]. J Neurobiol,2004,58(1):92-102.
    [17] Bandtlow C, Dechant G. From cell death to neuronal regeneration,effects of the p75 neurotrophin receptor depend on interactions with partner subunits[J]. Sci STKE 2004, 2004(235):24.
    [18] Fournier AE, Takizawa BT, Strittmatter SM.Rho kinase inhibition enhances axonal egeneration in the injured CNS[J]. J Neurosci,2003,23:1416-1423.
    [19] Negishi M,Katoh H.Rho family GTPases as key regulators for neuronal network formation[J]. J Biochem Tokyo,2002,132:157-166.
    [20] Kobayashi K,Takahashi M,Matsushita N,et al. Survival of developing motor neurons mediated by Rho GTPase signaling pathway through Rho-kinase [J]. J Neurosci,2004,24:3480-3488.
    [21] Fournier AE, GrandPre T, Strittmatter SM. Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration[J]. Nature,2001,409(6818): 341-346.
    [22] Josephson A, Trifunovski A, Widmer HR,et al. Nogo-receptor gene activity: cellular localization and developmental regulation of mRNA in mice and humans[J]. J Comp Neurol,2002,453(3): 292-304.
    [23] Liu BP, Fournier A, GrandPre T,et al. Myelin-associated glycoprotein as a functional ligand for the Nogo-66 receptor[J].Science,2002, 297(5584): 1190-1193.
    [24] Yamashita T, Higuchi H, Tohyama M. The p75 receptor transduces the signal from myelin-associated glycoprotein to Rho[J]. J Cell Biol,2002,157(4):565-570.
    [25] Wang KC, Kim JA, Sivasankaran R,et al. P75 interacts with the Nogo receptor as a co-receptor for Nogo, MAC and OMgp [J]. Nature,2002,420(6911):74-78.
    [26] Sandvig A, Berry M, Barrett LB,et al. Myelin-, reactive glia-, and scar-derived CNS axon growth inhibitors: expression, receptor signaling, and correlation with axon regeneration [J]. Glia,2004,46(3):225–251.
    [27] Schweigreiter R, Walmsley AR, Niederost B,et al. Versican V2 and the central inhibitory domain of Nogo-A inhibit neurite growth via p75NTR/NgR-independent pathways that converge at RhoA [J]. Mol Cell Neurosci,2004,27(2):163–174.
    [28] Borisoff JF, Chan CC, Hiebert GW,et al. Suppression of Rho-kinase activity promotes axonal growth on inhibitory CNS substrates [J]. Mo Cell Neurosci,2003,22(3):405–416.
    [29] Oinuma I, Katoh H, Harada A,et al. Direct interaction of Rnd1 with Plexin-B1 regulates PDZ-RhoGEF-mediated Rho activation by Plexin-B1 and induces cell contraction in COS-7 cells [J]. J Biol Chem,2003,278(28):25671–25677.
    [30] Dergham P, Ellezam B, Essagian C,et al. Rho signaling pathway targeted to promote spinal cord repair[J]. J Neurosci, 2002,22(15):6570–6577.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700