用户名: 密码: 验证码:
单羧基双羟肟酸的设计合成及其对一水硬铝石和铝硅矿物的捕收性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
综合使用量子化学计算方法、动电位、吸附量测定和红外光谱表征等手段,结合单矿物、人工混合矿浮选,研究了铝土矿浮选脱硅螯合捕收剂HCDA。
     基于捕收剂为异极性分子的结构特征要求,构建含羟肟酸基和羧基的异极性分子结构模型,最后确定HCDA捕收剂,其分子结构为:非极性基为拥有8个碳链长的直链,极性基为两个羟肟基和一个羧酸基。接着进行该结构捕收剂分子的性能预测,并与本课题组之前研发的捕收剂COBA分子做作对比。量子化学计算结果——分析分子前线轨道能量、电荷分布、键合原子距离、分子中的离域状况以及分子的HOMO、LUMO分布图等各项指数都显示HCDA将是一个性能卓越的捕收剂,捕收性能将比COBA强;性能判据结果——比较捕收剂的溶度积、CMC、HLB以及基团电负性等各项捕收剂性能指数,得到的结果显示HCDA在捕收性和选择性上都比COBA优越。
     设计了捕收剂HCDA分子的合成路线,以丙二酸二甲酯和氯甲酸甲酯为原料经多步反应最终得到目标产物HCDA。同时考察了反应时间、反应温度、以及反应投料对反应产率的影响。
     单矿物浮选实验表明:以HCDA作捕收剂浮选三种矿物时,一水硬铝石得到较好的效果,其回收率在HCDA浓度为2×10-4mol/L, pH7.0时达到96%,而高岭石和伊利石分别只有20%和10%。一水硬铝石的回收率受pH变化和药剂浓度变化的影响很大,而其它两种矿物几乎不受影响。人工混合矿浮选实验结果表明:浮选分离一水硬铝石和铝硅酸盐矿物的最佳pH值7.0,捕收剂HCDA浓度为2×10-4mol/L,可实现其有效分选。
     通过吸附量、混矿铝硅比、动电位、红外光谱分析了捕收剂对三种矿物的作用机理,结果表明:吸附量结果与浮选实验结果一致,一水硬铝石的回收率受pH值变化影响明显,且在pH7.0时达到最大值,而其它两种矿物受pH变化影响很小。矿物动电位测试结果显示,pH对一水硬铝石矿物表面电性影响很大。一水硬铝石与HCDA作用后,IEP从pH6.0移到pH4.0, pH5.0~pH9.0表面电位负移明显,pH7.0负移最大,其他两种矿物表面电位无明显变化;红外光谱表明,HCDA对一水硬铝石吸附存在化学吸附,对高岭石和伊利石吸附主要是物理吸附;根据结论建立了一个HCDA与一水硬铝石表面多环螯合模型。
From the viewpoint of molecular design, electronic structure of flotation collector detailly studied by quantum chemistry methods, combining with determination of surface charge, infrared spectrum, adsorption quantity and flotation tests. Screening and designing of collector for bauxite flotation was carried out in order to improve the flotation selectivity and recovery. An efficient and practical chelated collector, HCDA, was developed.
     Based on the heteropolarity requirment of the collector structure, the heteropolar molecular structure models containing both hydroxamino group and carboxyl group were designed, finally the collector named HCDA was confirmed. The molecular structure is as below:it owns a nonpolar group of eight carbon lengths and a polar group containing two hydroxamino groups and carboxyl group. Consequently, the performance prediction of this collector molecular was executed with the comparison of the collector named COBA which was explored by our team formerly. The results of the quantum chemistry calculation—the analysis result of every index indicates that HCDA will be a excellent collector (such as the molecular extreme orbits energy, charges distribution, the bonding atom distances, the delocalization state and the molecular LOMO and LUMO location picture), and its collecting ability will be much stronger than that of COBA; the performance criterion results—the collector performance indexes (the solubility product, the CMC, the HLB and group negativity etc.) were compared between the two collectors mentioned above, the results revealed that HCDA will have better collecting ability and selectivity than COBA.
     The synthetic routine of collector HCDA molecular is suggested and carried out. The object product HCDA was synthesized by using methyl malonate and methyl chloroformate as raw materials through four steps. Meanwhile, the influence of the reaction time, temperature and the material addition on the yield was observed.
     The results of flotation tests with single minerals showed that the diaspore has a striking result when HCDA as a collector was applied in the flotation of these three minerals. At the HCDA concentration of 2×10-4 mol/L and pH7, the recovery of diaspore reached 96%, while the recovery of kaolinite and illite are only 20% and 10%, respectively. The recovery of diaspore can be affected significantly by the change of the pulp pH value and the reagent concentration; however, the influence of the pulp pH value and the reagent concentration on the other two alumiosilicate minerals are very little. The results of flotation tests with artificial mixture of minerals reveal that the ultimate condition for separating diaspore from the aluminosilicate minerals is at pH7 when the concentration of collector HCDA is 2×10-4mol/L. The ratio of aluminum to silicon of artificial mixture of minerals flotation revealed that diaspore can be separated from aluminosilicate minerals.
     The interaction mechanism of the collector HCDA with the three mineral was investigated by adsorption amount, FTIR spectra and zeta potential measurements. The results of adsorption amount were in agreement with that of the flotation test. The change of solution pH has an apparent influence on the adsorption amount of the reagent while has a very little one on that of the aluminosilicate minerals, where the adsorption amount came to maximum at pH7.
     The results of zeta potential measurements showed that the IEP of diaspore, kaolinite and illite are pH6.0, pH3.6 and pH3.0, respectively. The surface electrical property of diaspore was affected largely by the change of solution pH. After diaspore being conditioned by HCDA, its IEP moved from pH 6 down to pH 4, and its zeta potential value shifted apparently in the range of pH5~pH9. At the pH7, the largest shift can be observed. At the same time, no obvious change of zeta potential can be found on the two aluminoslicate minerals surface; the infrared spectra disclosed that HCDA mainly chemisorbed on the diaspore surface while mainly physically adsorbed on the kaolinite and illite surface. According to the conclusion, a polycyclic chelated model between HCDA and diaspore was suggested.
引文
[1]顾松青.我国的铝土矿资源和高效低耗的氧化铝生产技术[J].中国有色属学报,2004,14(1):91-97.
    [2]管永诗,张云.我国铝土矿资源及氧化铝工业的现状[J].矿产保护与利用,1998,(6):42-44.
    [3]李海普.改性高分子药剂对铝硅矿物浮选作用机理及其结构-性能研究[D].长沙:中南大学,2002.
    [4]毕诗文.铝土矿的拜尔法溶出[M].北京:冶金工业出版社,1997.
    [5]曲正.铝土矿铝硅比与拜耳法生产能耗的关系[J].轻金属,1998,(11):20-23.
    [6]朱训.中国矿情(第二卷)[M].北京:科学出版社,1998.
    [7]《矿产资源综合利用手册》编辑委员会.矿产资源综合利用手册[M].北京:科学出版社,2000.
    [8]红钢.河南铝土矿工艺矿物学研究[J].轻金属,2001,(11):6-10.
    [9]胡岳华,王毓华,王淀佐.铝硅矿物浮选与铝土矿脱硅[M].北京:科学技术出版社,2004.
    [10]欧阳坚,卢寿慈.我国铝土矿资源特征与选矿加工研究[J].矿产综合利用,1995,(2):24-26.
    [11]邵志博.中国氧化铝工业的发展方向[J].世界有色金属,1999,(3):8-12.
    [12]罗建川.基于铝土矿资源全球化的我国铝工业发展战略研究[D].中南大学,2006.
    [13]李章存.铝的能耗分析[J].轻金属,1998,(5):3-5.
    [14]谢岷.铝土矿选矿试验研究[J].有色金属(选矿部分),1995,(6):12-16
    [15]钮因健.对我国铝土矿资源和氧化铝工业发展的认识[J].轻金属,2003,(3):3-8.
    [16]杨进涛.化学选矿在我国的发展[J].有色金属(选矿部分),1994,(3):37-41.
    [17]唐林生,黄开国.化学选矿在矿物除杂中的应用[J].国外金属矿选矿,1989,(9):45-49
    [18]刘今,程汉林,吴若琼.低铝硅比铝土矿预脱硅研究[J].中南大学学报,1996,(6):666-670.
    [19]仇振琢.铝土矿预脱硅工艺的改进[J].轻金属,1985,(9):9-12.
    [20]罗琳,何伯泉.高硅铝土矿焙烧预脱硅研究现状评述[J].金属矿山,1999,(1):31-35.
    [21]罗琳,刘永康.一水硬铝石-高岭石型铝土矿焙烧脱硅热力学机理研究[J].有色 金属,1999,51(1):25-30.
    [22]马跃如,罗琳.铝土矿的化学选矿[J].中国锰业,1999,17(2):10-130
    [23]姜涛.铝硅矿物的热行为及铝土矿石的热化学活化脱硅[D].中南大学,2002.
    [24]周国华,薛玉兰,蒋玉仁,等.浅谈铝土矿生物选矿[J].矿产综合利用,2000,(6):38-40.
    [25]索洛日JI M.细菌在矿物工程中的应用[J].国外金属矿选矿,1991,(5):1-10.
    [26]Vasan S S, Modak J M, Natarajan K A. Some recent advances in the bioprocessing of bauxite[J]. International Journal of Mineral Processing.2001, (62):173-186.
    [28]Grondeva V I.铝土矿的微生物选矿[J].国外金属矿选矿,1989,(11):9-16.
    [29]李聆值.采用生物技术提高铝土矿质量[J].中国有色金属学报,1998,18(增刊2):361-364.
    [30]冯其明,刘广义,卢毅屏.九十年代铝土矿选矿除杂研究现状与展望[J].轻金属,1998,(4):9-13.
    [31]刘王旺,张晓风.高硅铝土矿脱硅选矿的现状和前景[J].轻金属,1998,(6):9-12.
    [32]姜涛,邱冠周.中低品位铝土矿选矿预脱硅的新进展[J].矿冶工程,1999,19(2):3-6.
    [33]黄国智,葛长礼.铝土矿脱硅方法及其研究的进展[J].轻金属,1999,(5):16-20.
    [34]方启学,黄国智.我国铝土矿资源特征及其选矿脱硅技术[J].国外金属矿选矿,2000,37(5):11-16.
    [35]胡岳华,刘晓文,邱冠周,等.一水硬铝石型铝土矿脱硅浮选分离溶液化学I-晶体结构与可浮性[J].矿冶工程,2000,20(2):11-14.
    [36]崔吉让,方启学,黄国智.一水硬铝石与高岭石的晶体结构和表面性质[J].有色金属,1999,51(4):25-30.
    [37]印万忠,韩跃新,魏新超,等.一水硬铝石和高岭石可浮性的晶体化学分析[J].金属矿山,2001,(6):29-33.
    [38]张国范.铝土矿浮选脱硅的基础理论与工艺研究[D].长沙,中南大学,2001.
    [39]刘晓文.一水硬铝石与层状硅酸盐矿物的晶体结构与表面性质研究[D].中南大学,2003.
    [40]曹学锋.铝硅酸盐矿物捕收剂的合成及结构-性能研究[D].中南大学,2003.
    [41]骆兆军,胡岳华,王毓华,等.铝土矿反浮选体系分散与凝聚理论[J].中国有 色金属学报,2001,11(4):680-683.
    [42]王淀佐.浮选剂作用原理与应用[M].北京:冶金工业出版社,1994.
    [43]邱冠周,胡岳华,王淀佐.颗粒间相互作用与细粒浮选[M].长沙:中南工业大学出版社,1993.
    [44]王淀佐,胡岳华.浮选溶液化学[M].长沙:湖南科学技术出版社,1988.
    [45]胡岳华,邱冠周,王淀佐.大分子浮选剂的作用原理与应用[J].国外金属矿选矿,1993,(12):29-51.
    [46]布叶罗帕乌里克M.氢键在提高分选效率的药剂吸附中的作用[J].国外金属矿选矿,2001,(6):36-39.
    [47]梁爱珍.国外铝土矿选矿研究概况[J].国外金属矿选矿,1983,(1):31-36.
    [48]Eygels M A. Selective flotation of kaolinite-hydrargillite[J]. Tsvemye Met Jan, 1970,(1):84-86.
    [49]黄攀峰,张国范,冯其明.铝土矿浮选脱硅研究进展[J].矿产保护与利用,2003,(1):50-54.
    [50]Kuznetsov V P. Flotation of lean porous hydrargillite-kaolinite bauxites [J]. Leningrad,1972:143-145.
    [51]Lyushnya L M. Beneficiation of unconditioned Ukrainian Bauxites [J]. Obogashch Polez lskop,1973, (13):3-9.
    [52]曾克文,刘俊星,周凯,等.低铝硅比铝土矿选矿试验研究[J].有色金属(选矿部分),2008(5):1-7.
    [53]方启学,黄国智.铝土矿选矿脱硅技术研究[J].有色金属(选矿部分),2001(3):1-7.
    [54]刘逸超.水云母-一水硬铝石型铝土矿浮选试验[J].有色金属(选矿部分),1984,(1):11-13.
    [55]蒋昊,李光辉,胡岳华.铝土矿的铝硅分离[J].国外金属矿选矿,2001,(5):24-29.
    [56]胡岳华,蒋昊,邱冠周,等.一水硬铝石型铝土矿铝硅浮分离溶液[J].中国有色金属学报,2001,11(1):125-130.
    [57]蒋昊.铝土矿浮选脱硅过程中阳离子捕收剂与矿物和含铝硅酸矿物作用的溶液化学研究[D].中南大学:2004.
    [58]张国范,冯其明,卢毅屏,等.油酸钠对一水硬铝石和高岭石的捕收机理[J].中国有色金属学报,2001,11(2):298-301.
    [59]张国范,陈启元,冯其明,等.温度对油酸钠在一水硬铝石矿物表面吸附的影响[J].中国有色金属学报,2004,14(6):1042-1046.
    [60]Ishchenko V V. Action of sodium hexameta phosphate and sodium oleate upon bauxite minerals[J]. Izv VUZ Tsvet Metal,1972, (5):8-12.
    [61]Ishchenko V V. Pysicochemical interaction of bauxite-forming minerals with flotation reagents [J]. Nauch Tech Konf Ureal Politeckh Inst,1973, (1):1011.
    [62]Salatic D. Floatability of boehmite and kaolin with anionic collectors [J]. Trav Com Int Etude bauxite, Alumina Alum,1979,(15):157-159.
    [63]蒋玉仁,胡岳华,曹学锋.新型鳌合捕收剂COBA结构与捕收性能的关系[J].中国有色金属学报,2001,11(4):702-706.
    [64]刘广义.一水硬铝石型铝土矿浮选脱硅研究[D].长沙:中南工业大学,1999.
    [65]林样辉,路平.高效新品种捕收剂RA-315的制备和应用[J].矿冶工程,1993,(3):31-35.
    [66]Wang Y H, Hu Y H, Chen X Q. Aluminum-silicates flotation with quaternary ammonium salt[J]. Trans Nonferrous Met Soc China,2003,13(3):715-719.
    [67]Hu Y H, Sun W, Li H P, et al. Role of macromolecules in kaolinite flotation [J]. Minerals Engineering,2004,17(9-10):1017-1022.
    [68]Brady P V, Cygan R T, Kathryn L N. Molecular Controls on Kaolinite Surface Charge [J]. Journal of Colliod and Interface Science,1996, (183),356-364.
    [69]Zhao S G, Zhong H, Liu G Y. Effect of quaternary ammonium salts on flotation behavior of aluminosilicate minerals [J]. J Cent south Univ Technol,2007, (4): 500-504.
    [70]赵世民,王淀佐,胡岳华,等.一水硬铝石的N-(3-二乙基氨丙基)-脂肪酸酰胺浮选[J].有色金属,2004,56(2):84-87.
    [71]赵世民,王淀佐,司湖玉,等.N-[(3-二甲氨基)丙基]-脂肪酸酰胺泡沫浮选一水硬铝石的研究[J].中国矿业大学学报(科技版),2004,(1):70-73.
    [72]关明久.我国冶金级一水硬铝石-高岭石型(或水云母型)铝土矿的选矿试验研究概况[J].矿产综合利用,1989,(4):13-18.
    [73]温英,甘怀俊,王巧华.阳泉铝矾土富铝除铁的研究[J].中国锰业,1995(6):26-29.
    [74]梁爱珍.腐植酸铵在铝土矿浮选中的应用[J].轻金属,1982,(6):1-4.
    [75]杨小生,李艳军,韩跃新,等.浮选方法提高三水铝石铝硅比的研究[J].金属矿山,2006,(5):14-18.
    [76]杨诚.铝矾土半工业选矿试验[J].有色金属(选矿部分),1982,(6):1-5.
    [77]李海普,胡岳华,蒋玉仁.铝土矿脱硅浮选药剂的应用及研究[J].矿产综合利用,2001,(6):31-36.
    [78]李海普,胡岳华.氧肟酸高分子药剂在铝土矿反浮选中的作用[J].金属矿山,2004,(6):26-28,71.
    [79]张国范,卢毅屏,欧乐明,等.捕收剂RL在铝土矿浮选中的应用[J].中国有色金属学报,2001,11(4):712-715.
    [80]李海普,胡岳华,王淀佐,等.阳离子表面活性剂与高岭石的相互作用机理[J].中南大学学报(自然科学版),2004,35(2):228-233.
    [81]蒋玉仁,曹育才,薛玉兰TCPO螯合捕收剂的结构与性能关系[J].矿产综合利用,2001(3):18-22.
    [82]Raghavan S, Fuerstenau D W. On the wettability and flotation concentration of submicron hematite particles with octylhydroxamate as collector [J]. American Institute of Chemical Engineers,1975,71(150):59-67.
    [83]Natarajan R, Fuerstenau D W. Absorption and flotation behavior of manganese dioxide in the presence of octylhydroxamate [J]. International Journal of Mineral Processing,1983,2:139-153.
    [84]Rai Pradip. The surface properties and flotation of rare-earth minerals [D]. California:University of Coliforniar Berkeley,1981.
    [85]陈竟清,赖景陀,叶少岐.水杨氧肟酸对锡石的捕收性能及其作用机理[J].矿冶工程,1991,11(3):20-22.
    [86]刘德全,周春山,朱建光.水杨羟肟酸和P-86混用浮选锡石的捕收机理[J].有色金属,1995,47(3):38-42.
    [87]尤恩R H,罗中平.用异羟肟酸盐捕收剂浮选精制高岭土[J].国外选矿快报,1993,(3):1-9.
    [88]任皞,纪绯绯,宋桂兰.几种捕收剂对有价铌矿物浮选性能的比较[J].有色金属,2006,58(3):106-109.
    [89]Rinelli G, Marabini A M. Flotation of zinc and lead oxide-sulpHide ores with chelating agents [J]. Proc Int Miner Process Congr,1973,(10):493-495.
    [90]胡岳华,王淀佐.黑钨矿的组成与其可浮性[J].有色金属,1985,3.
    [91]刘德全,周春山,王定佐.铜铁灵与苯异羟肟酸浮选锡石的交互作用及其机理[J].中国有色金属学报,1994,4(4):206-212.
    [92]刘邦瑞,鳌合浮选剂[M].北京:冶金出版社,1982.
    [93]王淀佐,林强,蒋玉仁.选矿与冶金药剂分子设计[M].长沙:中南工业大学出版社,1996.
    [94]王淀佐,龙翔云,孙水裕.硫化矿的氧化与浮选机理的量子化学研究[J].中国有色金属学报,1991,1(1):15-23.
    [95]邵绪新,廖沐真.量子化学的基本理论及其在矿物工程中的应用[J].矿冶工程,1991,11(1):67-70.
    [96]董宏军,陈墓.硅线石与捕收剂作用机理的量子化学研究[J].广州有色金属学报,1995,5(1):8-12.
    [97]孙水裕,王淀佐.无捕收剂浮选的电化学及量子化学研究[J].矿冶工程,1993,13(2):22-26.
    [98]丁敦煌,李天瑞.硫化矿物的表面结构和表面电荷与无捕收剂浮选[J].中国有色金属学报,1994,4(3):36-40.
    [99]陈建华,冯其明.浮选药剂的量子化学研究[J].金属矿山,1998,(10):16-20.
    [100]陈建华,冯其明.浮选药剂的量子化学研究[J].有色金属,1999,51(1):18-21.
    [101]蒋玉仁,薛玉兰.浮选药剂性能的能量判据计算[J].中南工业大学学报,1999,30(5):481-484.
    [102]杨刚,龙翔云.巯基类浮选药剂电子结构及其与金属离子作用的量子化学研究[J].高等学校化学学报,2001,22(1):86-90.
    [103]张景来,吕朝晖,王剑波.含复式非极性基团浮选药剂研究[J].北京科技大学学报,2002(1):8-10.
    [104]夏启斌,李忠,邱显扬,等.浮选剂苯甲羟肟酸的量子化学研究[J].矿冶工程,2004,24(1):30-33.
    [105]杨刚,杨高文,徐桦,等.巯基苯并类浮选剂的浮选作用机理及其分子设计[J].化学学报,2004,62(2):153-159.
    [106]张剑锋,胡岳华,徐兢,等.苯氧乙酸类浮选抑制剂性能的量子化学计算[J].中国有色金属学报,2004,14(8):1437-1441.
    [107]Takahashi K, Wakamatsu T. The role of amino acid on the xanthate adsorption at the water-mineral interface [J]. International Journal of Mineral Processing, 1984.12(1-3):127-143.
    [108]Paulus E F, Siam K, Wolinski K, et al. Crystal structures of 4,4'-dimethoxydithiophene and comparison with quantum mechanical calculations [J]. J Mol Struct,1989,196:171-179.
    [109]Numata Y, Takahashi K, Liang R, et al. Adsorption of 2-mercaptobenzothiazole onto pyrite [J]. International Journal of Mineral Processing,1998,53(1-2): 75-86.
    [110]O'Dea A R, Smart R S C, Gerson A R. Molecular modelling of the adsorption of aromatic and aromatic sulfonate molecules from aqueous solutions onto graphite [J]. Carbon,1999,37(7):1133-1142.
    [111]Rai Pradip, Rao B, Krishnamurthy T K. Molecular modeling of interactions of alkyl hydroxamates with calcium minerals [J]. J Colloid Interface Sci,2002, 256(1):106-113.
    [112]Porento M, Hirva P. A theoretical study on the interaction of sullhydryl surfactants with a covellite (001) surface [J]. Surf Sci,2004,555(1-3):75-82.
    [113]Hu Y, Sun W, Jiang H, et al. The anomalous behavior of kaolinite flotation with dodecyl amine collector as explained from crystal structure considerations[J]. International Journal of Mineral Processing,2005,76(3):163-172.
    [114]胡显智.羟(氧)肟酸(盐)及其与铜矿物吸附体系的量子化学研究[J].有色金属,1997,49(4):24-28.
    [115]Komura T, Isogai S, Yamaguchi T, et al. Voltammetric behavior of 1,2-dihydroxyanthraquinones attached to glassy carbon electrodes and their surface complexation with copper [J]. Journal of Electroanalytical Chemistry, 2000,490(1-2):70-78.
    [116]Tossell J A, Vaughan D J. A theoretical study on the aromaticity of thiadiazoles and related compounds [J]. Journal of Molecular Structure (Theochem),2001, 549(3):285-288.
    [117]Edelbro R, Sandstrom A, Paul J. Full potential calculations on the electron bandstructures of sphalerite, pyrite and chalcopyrite [J]. Appl Surf Sci,2003, 206(1-4):300-313.
    [118]Gordeijev J, Hirva P. Theoretical studies on the interaction of oleoyl sarcosine with the surface of apatite[J]. Surf Sci,1999,440(3):321-326.
    [119]Porento M, Hirva P. Theoretical studies on the interaction of anionic collectors with Cu+, Cu2+, Zn2+ and Pb2+ ions [J]. Theor Chem Acc,2002,107(4):200-205.
    [120]Karvinen S, Hirva P, Pakkanen T A. Ab initio quantum chemical studies of cluster models for doped anatase and rutile TiO2 [J]. Journal of Molecular Structure:THEOCHEM,2003,626(1-3):271-277.
    [121]Porento M, Hirva P. A theoretical study on the interaction of sulfhydryl surfactants with a covellite (001) surface [J]. Surf Sci,2004,555(1-3):75-82.
    [122]Porento M, Hirva P. Effect of copper atoms on the adsorption of ethyl xanthate on a spHalerite surface [J]. Surf Sci,2005,576(1-3):98-106.
    [123]Yekeler H, Yekeler M. Reactivities of some thiol collectors and their interactions with Ag(+l)ion by molecular modeling [J]. Appl Surf Sci,2004, 236(1-4):435-443.
    [124]Yekeler M, Yekeler H. Molecular modeling study on the relative stabilities of the flotation products for arsenic-containing minerals:dixanthogens and arsenic(Ⅲ) xanthates[J]. J Colloid Interface Sci,2005,284(2):694-697.
    [125]Pradip, Rai B. Design of tailor-made surfactants for industrial applications using a molecular modelling approach [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2002,205(1-2):139-148.
    [126]Pradip, Rai B. Molecular modeling and rational design of flotation reagents [J]. International Journal of Mineral Processing,2003,72(1-4):95-110.
    [127]Dewar M J S, Zoebisch E G, Healy E F, et al. Development and use of quantum mechanical molecular models. 76. AMI:a new general purpose quantum mechanical molecular model[J]. J Am Chem Soc,1985,107(13):3902-3909.
    [128]Gaussian 03, Revision C.01, Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery Jr J A, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gaussian Inc, Wallingford CT,2003.
    [129]Peng W S, Liu G K. Graph of minerals infrared spectra [M]. Beijing:Science and Technology Press,1982.
    [130]Wen L. Mineral Infrared Spectroscopy [M]. Chongqing:Chongqing University press,1989.
    [131]Huang C B, Wang Y H. Removal of aluminosilicates from diasporic-bauxite by selective flocculation using sodium polyacrylate [J]. Separation and Purification Technology,2008,59(3):299-303.
    [132]黄传兵,王毓华,兰叶.有机絮凝剂HSPA分选一水硬铝石型铝土矿的机理[J].中国有色金属学报,2006,16(7):1250-1256.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700