用户名: 密码: 验证码:
运动诱导大鼠条件性味觉厌恶的脑机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
味觉刺激与内脏不适感觉相联合,动物可对该味觉刺激产生拒绝和回避行为,称为条件性味觉厌恶(CTA)。近来研究发现,味觉刺激与身体运动相联合后也可诱导动物形成CTA,但参与运动诱导CTA的脑结构尚不清楚,因此,本研究以SD大鼠为对象,分为对照组、糖精刺激组、CTA组、CTA+糖精刺激组,CTA组和CTA+糖精刺激组大鼠,在摄取糖精溶液后负重游泳20 min,直至糖精溶液嗜好比低于30%,对照组和CTA组直接取脑制片,糖精刺激组和CTA+糖精刺激组经口腔插管给以糖精溶液5 ml后取脑制片,用免疫组织化学法检测脑内Fos蛋白表达,并探讨了获得CTA后,毁除最后区(AP)对脑内Fos蛋白表达变化的影响。结果显示:
     1.甜味刺激和建立CTA均可诱导臂旁外侧核外侧部(LPBE)、内侧臂旁核外部(MPBE)、丘脑中央内侧核(CM)、丘脑室旁核(PV)、下丘脑外侧区(LH)、基底外侧杏仁核(BLA)、伏核壳部(AcbSh)、外侧隔核腹侧部(LSV)等核团内Fos蛋白表达增多。甜味刺激和建立CTA间不存在交互作用,提示这些脑区与味质辨别、味觉报酬评价以及CTA建立后的行为表达等有关,并且其影响是相对独立的。
     2.臂旁外侧核中央部(LPBC)内Fos表达水平,在给以甜味刺激时升高,丘脑前背侧核(AD)、中央杏仁核(CeA)、下丘脑背内侧核背侧部(DMD)内Fos蛋白表达水平,在建立CTA后升高。甜味刺激与建立CTA间存在交互作用。即甜味刺激可诱导正常大鼠上述核团内Fos表达增多,但建立CTA后,甜味刺激对Fos表达的上调作用消失。提示LPBC、CeA、AD和DMD在CTA建立中,与相关感觉信息及行为表达信息的整合有关。
     3.甜味刺激诱导内侧杏仁核(Me)内Fos蛋白表达增多,而与CTA建立与否无关;建立CTA诱导孤束核中间部(SolIM)、未定带(ZI)内Fos蛋白表达增多,与甜味刺激无交互作用。说明Me内Fos表达的变化主要与甜味刺激有关,而SolIM和ZI内Fos表达的变化主要与CTA建立有关。
     4.毁除AP使已获得的CTA消退加快,给以条件性味觉刺激时,厌恶反应减弱。毁除AP的大鼠LPBC内Fos表达水平显著高于假手术组,而MPBE、LPBE、BLA、AcbSh、伏核中央部(AcbC)、被盖背侧核中央部(DTgC)等核团内的Fos蛋白表达水平显著低于假手术组。提示参与CTA建立和消退过程的脑结构既有关联也有不同。
When taste stimulus is combined with gastrointestinal malaise, animals will refuse to ingest it and escape. This behavior is described as conditioned taste aversion (CTA). It is studied recently that the CTA can also be induced by the association of the gustatory stimulus and the physical exercise, but the brain structures taking part in the CTA are not clear yet. So SD rats used by my experiments were divide into four groups, and they were the control group、the saccharin stimulus group、the CTA group and the CTA with saccharin stimulus group. The rats of the CTA group and the CTA with saccharin stimulus group were given the saccharin solution before a 20 min swimming treatment until the predilection ratio of the saccharin solution was lower than 30%. While the brains of the control group and the CTA group were directly dislodged to be made into sections. The other groups were given the same procedures after intraoral stimuli with 5 ml of the saccharin solution through intraoral cannulas. Fos expression was examined by the immunohistochemistry and explored the change of Fos expression in brains of rats that had been lesioned the area postrema (AP)after having acquired CTA. The results suggested:
     1. Fos expression induce by both the seet taste stimulus and the establishment of the CTA increased in the external part of the lateral parabrachial nucleus (LPBE), external part of the medial parabrachial nucleus (MPBE), central medial thalamic nucleus (CM), paraventricular thalamic nucleus(PV), lateral hypothalamic area (LH), basolateral amygdaloid nucleus(BLA), shell area of nucleus accumbens (AcbSh) and ventral part of the lateral septal nucleus (LSV). The sweet taste stimulus and the establishment of CTA were not interactional. This denoted that these brain areas were associated with the discrimination of the gustatory quality, reward value of the taste and the behavioral expression after having acquired CTA. They effected on these brain areas independently.
     2. Fos expression enhanced in the central part of the lateral parabrachial nucleus (LPBC) when rats were stimulated by the sweet taste, and Fos expression increased in the anterodorsal thalamic nucleus (AD), central amygdaloid nucleus (CeA) and dorsal part of dorsomedial hypothalamic nucleus (DMD) when rats established the CTA. The sweet taste stimulus interacted with the establishment of the CTA. It is said that Fos expression induced by the sweet taste stimulus increased in these areas above, but did not rise any more after the CTA had been set up. The results suggested that the LPBC, CeA, AD and DMD were involved in integrating the sense information and the information of the behavioral expression.
     3. More Fos expression induced by the sweet taste stimulus in the medial amygdaloid nucleus (Me) was not involved in establishing the CTA or not. The increase in Fos expression in the intermediate nucleus of the solitary traits (SolIM) and the zona incerta (ZI) generated after rats had set up the CTA. There was not interaction between the establishment of the CTA and the sweet taste stimulus. This indicated that the sweet taste stimulus was critical for the change of Fos expression in the Me, and the establishment of the CTA was a primary factor for Fos expression in SolIM and ZI.
     4. The destruction of the AP could accelerate the extinction of the acquired CTA and decreased aversive reactions when rats were given the conditioned taste stimulus. Fos expression of rats with lesions of the AP was higher significantly than the Sham- lesioned group in the LPBC, but was lower significantly than the Sham- lesioned group in the MPBE, LPBE, BLA, AcbSh, core area of accumbens nucleus (AcbC) and central part of dorsal tegmental nucleus (DTgC). The results suggested that brain areas taking part in the establishment of the CTA were associated with brain areas participating in the extinction of the CTA, but there were differences between them.
引文
[1]史玉兰,白文忠.条件性味觉厌恶学习对大鼠闹区亮脑啡肽表达的影响[J].河北师范大学学报(自然科学版), 2002, 26(2): 185-186.
    [2]Swank M W, Schafe G E, Bernstein I L. C-fos induction in response to taste stimuli previously paired with amphetamine or LiCl during taste aversion learning[J]. Brain Res, 1995, 673: 251-256.
    [3]Yamamoto T, Nagai T, Shimura T, et al. Role of chemical mediators in the taste system[J]. Jpn J Pharmacol, 1998, 76: 325.
    [4]Houpt T A, berlin R A, Smith G P. Altered induction of c-Fos in the central nucleus of the amygdala correlated with conditioned taste aversion expression[J]. Neuroscience, 1995, 21: 1682-1686.
    [5]杨杰,林文娟,郑丽等.味觉厌恶性条件反射建立后脑内c-Fos的表达[J].心理学报, 2000, 32(4): 433-437.
    [6]Caulliez R, Meile M J, Nicolaidis S. A lateral hypothalamic D1 dopaminergic mechanism in conditioned taste aversion[J]. Brain Res, 1996, 29: 234-245.
    [7]Garcia J, Kimeldorf D J, Koelling R A. Conditioned aversion to saccharin resulting from exposure to gamma radiation[J]. Science, 1995, 122: 157-158.
    [8]Misanin J R, Guanowsky V, Riccio D C. The effect of CS-preexposure on conditioned taste aversion in young and adult rats[J]. Physiol Behav, 1983, 30(6): 859-862.
    [9]蒋恩社.味觉刺激与c-fos原癌基因表达[J].国外医学·生理、病理科学与临床分册, 2001, 21(6): 440-442.
    [10]Bures J, Bermu dez-Rattoni F, Yamamoto T. Conditioned taste aversion: memory of a special kind[J]. Oxford: Oxford University Press, 1998, p.1-178.
    [11]刘志勇.即刻早基因c-fos和c-jun与学习记忆[J].实用临床医学, 2004, 5(1): 121-123.
    [12]张鑫宇,李建民.即刻早期基因c- fos与学习记忆的关系及研究进展[J].中国疗养医学, 2009, 18(6): 534-536.
    [13]王磊.早期即刻基因与老年痴呆[J].国外医学神经病学神经外科学, 2002, 29(3): 277-278.
    [14]Lindemann B. Receptors and transduction in taste[J]. Nature, 2001, 413: 219-225.
    [15]Yamamoto T. Central mechanisms of taste: Cognition, emotion and taste-elicited behaviors[J]. Japanese Dental Science Review, 2008, 44: 91-99.
    [16]史玉兰,白文忠.味觉厌恶学习的研究进展[J].解剖学研究, 2002, 24, (3): 227-229.
    [17]Scott T R, Verhagen J V. Taste as a factor in the management of nutrition[J]. Ingestive Behavior Obesity, 2000, 16: 874-885.
    [18]Olds J, Milner P M. Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain[J]. J Comp Physiol Psychol, 1954, 47: 419-27.
    [19]Bakshi V P, Kelley A E. Feeding induced by opioid stimulation of the ventral striatum: role of opiate receptor subtypes[J]. Pharmacol Exp Ther, 1993, 265: 1253-1260.
    [20]余鹏,夏伟,崔彩莲等.电损毁伏核核部或壳部对大鼠吗啡奖赏效应及其性功能的影响[J].中国药物依赖性杂志, 2007, 16(5): 341-346.
    [21]Stratford T R, Kelley A E. Evidence of a functional relationship between the nucleus accumbens shell and lateral hypothalamus subserving the control of feeding behavior[J]. J Neurosci, 1999, 19: 11040-11048.
    [22]Shimura T, Imaoka H, Yamamoto T. Neurochemical modulation of ingestive behavior in the ventral pallidum[J]. Eur J Neurosci, 2006, 3: 1596-1604.
    [23]Shimura T, Kamada Y, Yamamoto T. Ventral tegmental lesions reduce overconsumption of normally preferred taste ?uid in rats[J]. Behav Brain Res, 2002, 134: 123-130.
    [24]Shimura T, Imaoka H, Okazaki Y, at el. Involvement of the mesolimbic system in palatability induced ingestion[J]. Chem Senses, 2005, 30: 188-189.
    [25]Shimura T, Tanaka H, Yamamoto T. Salient responsiveness of parabrachial neurons to the conditioned stimulus after the acquisition of taste aversionlearning in rats[J]. Neuroscience, 1997, 81: 239-247.
    [26]Bemstein I L, Chavez M, Allen D, et al. Area postrema mediation of physiological and behvioral effects of lithium chloride in the rat[J]. Brain Research, 1992, 575: 132-137.
    [27]Kosten T, Contreras R J, Stetson P W, et al. Enhanced saline intake and decreased heart rate after area postrema ablations in rat[J]. Physiol Behav, 1983, 31: 777-785.
    [28]Schafe G E, Bernstein I L. Forebrain contribution to the induction of a brainstem correlate of conditioned taste aversion : I. The amygdala[J]. Brain Res, 1996, 741(122): 109-116.
    [29]Spray K J, Halsell C B, Bernstein I L. C-fos induction in respons to saccharin after taste aversion learning on conditioning method[J]. Brain Res, 2000, 852: 225-227.
    [30]Scalera G, Spector A C, Norgren R. Excitotoxic lesions of the parabrachial nuclei prevent conditioned taste aversion and sodium appetite in rats[J]. Behav Neurosic, 1995, 109: 997-1008.
    [31]Reilly S. The parabrachial nucleus and conditioned taste aversion[J]. Brain Res Bull, 1999, 48(3): 239-254.
    [32]Yamamoto T, Sawa K. Comparison of c-Fos-like immunoreactivity in the brainstem following intreoral and intragastric infusions of chemical solutions in rats[J]. Brain Res, 2000, 866(1-2): 144-151.
    [33]Yamamoto T. Neural mechanisms of taste aversion learning[J]. Neuroscience Research, 1993, 16: 181-185.
    [34]Ivanova S F, Bures J. Acquisition of conditioned taste aversion is disrupted by prolonged retrograde effects of interacerebral injection of tetrodotoxin in rats[J]. Behav Neurosic, 1990, 104: 948-954.
    [35]Sakai N, Yamamoto T. Role of the medial and lateral parabrachial nucleus in acquisition and retention of conditioned taste aversion in rats[J]. Behavioural Brain Res, 1998, 93: 63-70.
    [36]Yasoshima Y, Scott T R, Yamamoto T. Involvement of the supramammillarynucleus in aversive conditioning[J]. Behav Neurosci, 2005, 119: 1290-1297.
    [37]Yasoshima Y, Sako N, Senba E, et al. Acute suppression, but not chronic genetic deficiency, of c-fos gene expression impairs long-term memory in aversive taste learning[J]. Proc Natl Acad Sci USA, 2006, 103: 7106-7111.
    [38]康怡,闫剑群.条件性厌味[J].国外医学·生理、病理科学与临床分册, 2002, 22(4): 395-397.
    [39]Edmonds, B K, Edwards G L. The area postrema is involved in paraquat-induced conditioned aversion behavior and neuroendocrine activation of the hypothalamic-pituitary-adrenal axis[J]. Brain Research, 1996, 712: 127-133.
    [40]尹士优,胡淑萍,张安民等.运动与杏仁核原癌基因c-fos的研究综述[J].山西师大体育学院学报, 2008, 23(2):133-137.
    [41]Yasoshima Y, Scott T R, Yaamamoto T. Memory-dependent c-Fos expression in the nucleus accumbens and extended amygdala following the expression of a conditioned taste aversion in the rat[J]. Neuroscience, 2006, 141: 35-45.
    [42]Yasoshima Y, Yamamoto T, Kobayashi K. Amygdala-dependent Mechanisms Underlying Memory Retrieval of Conditioned Taste Aversion[J]. Chem Senses, 2005, 30: 158-159.
    [43]Yamamoto T, Fujimoto Y, Shimura T, et al. Conditioned taste aversion in rats with excitotoxic brain lesions[J]. Neurosci Res, 1995, 22: 31-49.
    [44]Morris R, Frey S, Kasambira T, et al. Ibotenic acid lesions of the basolateral, but not the central, amygdala interfere with conditioned taste aversion: evidence from a combined behavioral and anatomical tract-tracing investigation[J]. Behav Neurosci, 1999, 113: 291-302.
    [45]Inui T, Shimura T, Yamamoto T. The role of the ventral pallidum GABAergic system in conditioned taste aversion: effects of microinjections of a GABAA receptor antagonist on taste palatability of a conditioned stimulus[J]. Brain Res, 2007, 1164: 11-24.
    [46]Lett B T, Grant V L. Wheel running induces conditioned taste aversion in rats trained while hungry and thirsty[J]. Physiol Behav, 1996, 59: 699-702.
    [47]Nakajima S, Masaki T. Taste aversion learning induced by forced swimmingin rats[J]. Physiol Behav, 2004, 80: 623-628.
    [48]Heth D C, Inglis P, Russell J C, et al. Conditioned taste aversion induced by wheel running in not due to novelty stress[J]. Physiol Behav, 2001, 74: 53-56.
    [49]Nakajima S, Hayashi H, Kato T. Taste aversion induced by confinement in a running wheel[J]. Behav Processes, 2000, 49: 35-42.
    [50]Masaki T, Nakajima S. Further evidence for conditioned taste aversion induced by forced swimming[J]. Physiol Behav, 2005, 84: 9-15.
    [51]Masaki T, Nakajima S. Swimming-induced taste aversion and its prevention by a prior history of swimming[J]. Learn Motiv, 2004, 35:406–418.
    [52]Berman R F, Cannon D S. The effect of prior ethanol experience on ethanol-induced saccharin aversions[J]. Physiol Behav. 1974, 12: 1041- 1044.
    [53]Hayashi H, Nakajima S, Urushihara K, et al. Taste avoidance caused by spontaneous wheel running: effects of duration and delay of wheel confinement[J]. Learn Motiv, 2002, 33: 390-409.
    [54]Salvy S J, Heth D C, Pierce W D, et al. Conditioned taste aversion induced by wheel running: further evidence on wheel running duration[J]. Behav Processes, 2004, 66: 101-106.
    [55]Masaki T, Nakajima S. Taste aversion learning induced by delayed swimming activity[J]. Behav Processes, 2004, 67: 357-362.
    [56]Best M R, Domjan M. Characteristics of the lithium-mediated proximal US-preexposure effect in flavor-aversion conditioning[J]. Anim Learn Behav, 1979, 7: 433-440.
    [57]Cole K C, Bakner L, Vernon A, et al. The effect of US pre-exposure on conditioned taste aversion: lack of postconditioning recovery of the aversion[J]. Behav Neural Biol, 1993, 60: 27-30.
    [58]Klein S B, Becker T, Boyle D, et al. The influence of context and UCS intensity on the UCS preexposure effect in a flavor aversion paradigm[J]. Learn Motiv, 1987, 18: 356-370.
    [59]Masaki T, Nakajima S. Taste aversion in rats induced by forced swimming, voluntary running, forced running, and lithium chloride injection treatments[J].Physiology Behavior, 2006, 88: 411-416.
    [60]Nakajima S, Urata T, Ogawa Y. Familiarization and cross- familiarization of wheel running and LiCl in conditioned taste aversion[J]. Physiology Behavior, 2006, 88: 1-11.
    [61]Smith S, Fieser S, Jones J, et, al. Effects of swim stress on latent inhibition using a conditioned taste aversion procedure[J]. Physiology Behavior, 2008, 95: 539-541.
    [62]Lett B T, Grant V L, Koh M T, et al. Pairing a flavor with activit in a flat, circular alley induced conditioned taste aversion[J]. Learn Motiv, 1999, 30: 241-249.
    [63]Swank M W, Schafe G E, Bernstein I L. C-fos induction inresponse to taste stimuli previously paired with amphetamine or LiCl duringtaste aversion learning[J]. Brain Res, 1995, 673: 251-256.
    [64]Lett B T, Grant V L, Gaborko L L. Wheel running simultaneously induces CTA and facilitates feeding in non-deprived rats[J]. Appetite, 1998, 31: 351-360.
    [65]Eccles S, Kim E M, O'hare E. Granisetron attenuates exercise-induced conditioned taste aversion in the rat[J]. Appetite, 2005, 44: 325-328.
    [66]Benthem L, Bolhuis J W, Van Der Leest J, et al. Methods for measurement of energy expenditure and substrate concentrations in swimming rats[J]. Physiol Behav, 1994, 56: 151-159.
    [67]Abel E L. Alarm substance emitted by rats in the forced-swim test is a low volatile pheromone[J]. Physiol Behav, 1991, 50: 723-727.
    [68]Abel E L. Gradient of alarm substance in the forced swimming test[J]. Physiol Behav, 1991, 49: 321-323.
    [69]Kelley A E. Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning[J]. Neurosci Biobehav Rev, 2004, 27: 765-776.
    [70]Roitman M F, Wheeler R A, Carelli R M. Nucleusaccumbens neurons are Innately tuned for rewarding and aversive taste stimuli,encode their Predictors, and are linked to motor output[J]. Neuron, 2005, 45:587–597.
    [71]Norgren R. Taste pathways to hypothalamus and amygdala[J]. J Comp Neurol, 1976, 166: 17230.
    [72]Houpt T A, Philopena J M, et al. Increased c-fos expression in nucleus of the solitary tract correlated with conditioned taste aversion to sucrose in rats[J]. Neuroscience Letter, 1994, 172: 1-5.
    [73]Edwards G L, Ritter R C. Ablation of the area postrema causes exaggerated consumption of preferred foods in the rat[J]. Brain Res, 1981, 216: 265-276.
    [74]Edwards G L, White B D, He B, et al. Elevated hypothalamic neuropeptide Y levels in rats with dorsomedial hindbrain lesions[J]. Brain Res, 1997, 755: 84-90.
    [75]Miller C C, Holmes P V, Edwards G L. Area postrema lesions elevate NPY levels and decrease anxiety-related behavior in rats[J]. Physiol Behav, 2002, 77: 135-140.
    [76]Lynch W C, Grace M, Billington C J, et al. Effects of neuropeptide Y on ingestion of ?avored solutions in nondeprived rats[J]. Physiol Behav, 1993, 54: 877-880.
    [77]Leslie R A. Comparative aspects of the area postrema: fine-structural considerations help to determine its function[J]. Cell Mol Neu-robiol, 1986, 6: 95-120.
    [78]Ritter R C, Edwards. Area postrema lesions cause overconsumption of palatable foods but not calories[J]. Physiol Behav, 1984, 32(6): 923-927.
    [79]Miller C C, Holmes P V, Garrett J L, et al. Area postrema-lesions increase operant responding to sucrose in rats[J]. Neurosci Lett, 2005, 381(1-2):135-138.
    [80]Kosten T, Contreras R J. Deficits in conditioned heart rate and taste aversion in area postrema-lesioned rats[J]. Behav Brain Res, 1989, 35: 9-21.
    [81]Zahorik D M. Conditioned physiological changes associated with learned aversions to tastes paired with thiamine deficiency in the rat[J]. J Comp Physiol Psychol, 1973, 79: 189-200.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700