用户名: 密码: 验证码:
基于振动信号的涡旋压缩机噪声检测系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
涡旋压缩机被广泛应用于空调、冰箱、制冷等电器设备中,作为设备的主要噪声源,对其在生产制造环节进行降噪也越来越受到厂家的重视。对压缩机进行检测,可以掌握噪声的大小、来源及分布,是实现降噪不可缺少的环节。
     为避免背景噪声的干扰,对于压缩机的噪声测量,目前通常的做法是将压缩机移至消声室进行抽检。实验条件的苛刻和检测步骤的繁琐显然不利于实际的生产。针对传统测试中存在的不足,本文提出一种以振代噪的压缩机噪声检测方法,该方法根据声辐射理论以及振动和噪声之间的相关关系,通过实验获得声辐射效率曲线,并对声强的分布进行观察与分析,将测点进行简化。该方法只需在现场采集部分测点的振动信号就能较为准确的反映压缩机的整体噪声状况,相比传统方法,该方法简单可行,对于实际生产具有重要的指导意义。
     本文内容主要包括以振代噪理论的研究和噪声检测系统的开发。对于以振带噪的研究,本文首先介绍了声学以及声强测试的基础理论与方法,分析了涡旋压缩机的结构、工作原理及特点,然后对以振代噪理论进行了深入研究,设计了振动噪声相关性实验方案,最后过实验测试验证了振动和噪声具有很高的相关性,可以根据振动信号对噪声进行预测,同时获得了某类型涡旋压缩机的声辐射效率曲线,为噪声检测系统的开发奠定了基础。
     根据噪声检测的需要,本文提出了一种基于Linux的嵌入式噪声检测系统。系统通过IIS总线控制音频芯片UDA1341进行数据采集,4个通道的加速度传感器依次将振动信号输入采集模块进行增益放大,通过A/D转换,送入S3C2410进行数据的分析处理,并采用DMA方式进行保存,最终将分析结果显示在LCD上。该系统不仅包含数据采集、时域分析、频域分析等基本功能,而且,将经过处理的数据首先采用恒定百分比带宽数字滤波方法对其进行带通滤波,然后根据振动和噪声的变换关系和已获得的声辐射效率曲线最终得到噪声的1/3倍频程及噪声分贝值。工程实际应用表明,该噪声检测系统能够准确的进行数据采集,具有较高的噪声预测精度和良好的人机交互界面。
Scroll compressor is widely used in air conditioners, refrigerators, refrigeration and other electrical equipment. As the equipment of the main noise source, reducing the noise in the production of the manufacturing sector has been paid more and more attention by the manufacturers. We can understand the noise level, source and its distribution through testing the compressor, so detection is an essential part of achieving noise reduction.
     As for the compressor noise measurement, the most current common measure is to move the compressor to anechoic chamber for sampling inspection, and this is obviously not conducive to the complicated practical production because of harsh experimental conditions and testing procedures. Aimed at these shortcomings existed in traditional test, a new compressor noise detection method is put forward based the relationship vibration and noise. According to the correlation between sound radiation and vibration and noise radiation, sound radiation efficiency curve is obtained via experiment, and then we can simplify the measuring points through observing and analyzing the distribution of sound intensity. This method can accurately reflect the whole noise status of compressor by just collecting some field vibration signals on some certain measuring points. Compared to traditional method, this method is easy and simple, and has an important guiding significance for actual production.
     Two main parts of contents are contained in this research including the theory of reflecting noise using vibration and the development of noise detection system. For the former, the basic acoustics and the basic theory and methods of sound intensity measurement is introduced firstly, and the structure, as well as the working principle and characteristics of scroll compressor is also analyzed. Secondly, the theory of reflecting noise using is investigated for further study and designs vibration and noise-related experiment program. Final test shows that it has a high correlation between vibration and noise and we can predict the noise via vibration signals. At the same time, we also get its sound radiation efficiency curve which laid the foundation for the development of noise detection system.
     According to the needs of noise detection, a noise detection system based embedded Linux is put forward in the research. Data collection is done through the audio chip UDA1341 controlled by IIS bus and vibration signals coming from 4-channel accelerometer sensor are amplified through acquisition module. And then, these signals are sent to S3C2410 for further processing after A/D conversion. Here, we uses DMA mode to save and the results are displayed on the LCD. The system not only contains data collection, time domain analysis, frequency domain analysis and others basic functions, but also 1/3 octave and noise decibel is obtained through processing using a constant percentage of the first digital filter for band-pass filter. Applied to practical application, it can be included that the developed noise detection system can collect data accurately, and has higher prediction accuracy, as well as good man-machine interface.
引文
[1]李吉.旋转机械结构噪声及其控制机理的研究[D].大连:大连理工大学,2002.
    [2]刘慧玲.环境噪声控制[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [3]曲宗长.压缩机测试技术[M].北京:兵器工业出版社,1990.
    [4]杜勇.压缩机噪声在线监测系统的开发研究[D].大连:大连理工大学,2005.
    [5]赵远扬,李连生,熊春杰等.涡旋压缩机研究概述[J].流体机械.2002(9):28-31.
    [6]夏海峰.变频压缩机初探[J].电机电器技术.2002,4:27-29.
    [7]刘慧敏.基于LabVIEW的变频涡旋压缩机性能测控系统的研究[D].兰州:兰州理工大学,2008.
    [8]江沂.汽车空调用涡旋压缩机技术研究[D].武汉:武汉理工大学,2006.
    [9]晏刚,尚勇等.涡旋式压缩机技术现状[J].制冷与空调.1997,3:14-16.
    [10]H.J.Kim. Transmission Loss and BackPressure Characteristics for Compressor Mufflers[C]. Proceeding of the 1992 International Compressor Engineering Conference at Purdue, Purdue University, West Lafayette, Indiana,1992:1455-1462.
    [11]Nelik Dreiman, Kent Herrick. Vibration and Noise Control of Rotary compressor[C]. Proceeding of the 1998 Internation Compressor Engineering Conference at Purdue, Purdue, Purdue University, West Lafayette, Indiana,1998:324-331.
    [12]Changho Lee, Haekang Youn. Noise Path Identification of Rotary Compressor[C]. Proceeding of the 2000 International Compressor Engineering Conference at Purdue, Purdue University, West Lafayette, Indiana,2000:510-518.
    [13]杨伟成.家用小型制冷压缩机噪声控制[J].家用电器科技,1999,4:16-19.
    [14]王珍,赵之海,杨春立等.涡旋压缩机振动噪声特性的应用研究[J].压缩机技术.2005(5):17-19.
    [15]盛美萍,孙进才.噪声与振动控制技术基础[M].北京:科学出版社,2001.
    [16]何祚镛,赵玉芳.声学理论基础[M].国防工业出版社,1981.
    [17]蒋孝煜,连小珉.声强技术及其在汽车工程中的应用[M].北京:清华大学出版社,2001.
    [18]王孚懋,任勇生,韩宝坤.机械振动与噪声分析基础[M].北京:国防工业出版社,2006.
    [19]Deng Zhaoxiang. Yang Cheng. Study on the Noise Control of EEI Engine with Acoustic Resonator [C]. The Eleventh International Pacific Conference on Automotive Engineering, Shanghai,2001.
    [20]陈鼐.基于ARM的嵌入式数据采集与处理系统[D].南京:南京航空航天大学,2007.
    [21]李俊.嵌入式linux设备驱动开发详解[M]北京:人民邮电出版社,2008.
    [22]Alex Lennon. Embedding Linux[J].IEE Review.2001,7(3):33-3
    [23]马维华.嵌入式系统原理及应用[M]北京:北京邮电大学出版社,2006.
    [24]李驹光.ARM应用系统开发详解——基于S3C4510B的系统设计[M].北京:清华大学出版社,2006
    [25]Samsung Electronics Co. S3C2410X 32 bit Microprocessor User Manuel.2003.
    [26]T. Zouaghi, M. Polobjadoff. Modeling of Polyphone Brushless Exciter Behavior for Failing Diode Operation [J]. IEEE Trans. on Energy Conversion,1998,13(3):214-220.
    [27]胡力刚,许伟明,焦阳.基于S3C2410A和UDA1341TS的嵌入式音频系统设计[J].计算机测量与控制.2009.17(12):2510-2512.
    [28]陈素霞,王伟,孙君顶等.基于S3C2410X的嵌入式音频系统设计[J].微计算机信息,2008(24):157-159.
    [29]王济,胡晓.MATLAB在振动信号处理中的应用[M].北京:中国水利水电出版社,2006.
    [30]李芬华,常铁原,潘立冬等.数字信号处理[M].北京:中国计量出版社,2007
    [31]王宏,贾新民.信号处理基础[M].北京:机械工业出版社,2007.
    [32]梁静.数字Fir滤波器的MATLAB设计和仿真[J].现代机械,2003(6):88-91.
    [33]冉茂华.基于DSP的FIR数字滤波器的设计[D].武汉:武汉理工大学,2006.
    [34]刘胜玉.风电机组嵌入式监测系统研究[D].大连:大连理工大学,2010.
    [35]柳会敏.基于LabVIEW的变频涡旋压缩机性能测控系统的研究[D].兰州:兰州理工大学,2008.
    [36]张攀登.发动机壳体噪声辐射的控制与预测研究[D].重庆:重庆大学,2007.
    [37][澳]M.P.诺顿.工业噪声和振动分析基础[M].航空工业出版社,1993.
    [38]王珍.基于振动信号的涡旋压缩机噪声测量方法的研究[J].压缩机技术,2008(4):4-6.
    [39]Gade S.Sound Intensity (Instrumentation & Applications)[P]. Technical Review,4, 1982. Denmark:B&K
    [40]李智勇.基于频域积分的振动信号处理方法[J].汽车科技,2009(5):28-30.
    [41]李亚峰,欧文盛等.ARM嵌入式Linux系统开发从入门到精通[M].北京:清华大学出版社,2007.
    [42]孙天泽,袁文菊.嵌入式设计及Linux驱动开发指南—基于ARM9处理器[M].第二版.北京:电子工业出版社,2005.
    [43]张春艳.基于Qt的嵌入式图形用户界面研究与实现[D].大连:大连海事大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700