用户名: 密码: 验证码:
糙米发芽过程中γ-氨基丁酸(GABA)转化富集技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以粳糙米为试材,研究了不同培养条件、培养液组分对糙米发芽过程中GABA转化量的影响,优化了富含GABA发芽糙米培养条件,初步研究了发芽糙米中GAD的酶学特性。
     1、研究了浸泡培养下,不同温度、通气量和培养时间对发芽糙米的生理活性和GABA等物质含量的影响。结果表明:随着温度的升高,糙米的生长速率加快,GABA累积量增加。通气有利于发芽糙米生长,以1.0 L min~(-1)时发芽糙米中GABA累积量最高。培养时间72h内,GABA含量随培养时间的延长而增加。利用响应面法优化糙米培养条件,得出浸泡培养条件下发芽糙米高效转化GABA的最佳条件为:培养温度33.43℃、通气量1.28 L min~(-1)和培养时间47.6h。
     2、研究了糙米在浸泡培养过程中加入谷氨酸钠、抗坏血酸以及谷氨酸钠加入时间对发芽糙米GABA转化量的影响。在单因子试验的基础上,进行了正交试验。结果表明:谷氨酸钠为1mg mL~(-1),抗坏血酸为5mg mL~(-1)以及培养24h后加入谷氨酸钠的条件下发芽糙米中GABA富积量高达203.47μg g~(-1),比对照高出2.73倍。
     3、发芽糙米中GAD酶学性质的研究结果表明:最适反应pH为5.5-6.0,最适反应温度为40℃,以L-Glu为底物,双到数作图法得到Km为1.69 mM,Languir作图法得到Km为1.43mM。
     4、进行了富含γ-氨基丁酸精白米制备工艺的研究。结果表明,固定发芽糙米中的GABA以热水处理为最好,在温度90℃和加水率1:1的条件下处理6min,转入50℃干燥箱内干燥至安全含水量。对高效转化GABA发芽糙米进行碾白处理可有效地改善产品的感官质量,但造成产品的营养损失,碾白90s后得到的精白米中GABA含量为8.962mg(100g~(-1)DW)。
Effects of different cultivation conditions, composition of culture liquid onγ-aminobutyric acid (GABA) enrichment in geminating brown rice {Oryza stativa L. subsp. Japonaca) were investigated and process parameters for brown rice germination were optimized. The properties of L-glutamate decarboxylase (GAD) were preliminarily studied. The processing technology of fine rice rich in GABA was developed, which provide a guideline for germinated brown rice industrialization. In this dissertation, major working and findings were summarized as follows:1. Under soaking cultivation condition, effects of different temperatures, aerating volume and duration on the physiological activities of and content of GABA in germinating brown rice was investigated using single factor trial and Box-Behnken design. The growth rate of brown rice sprout increased and accumulation of GABA was accelerated with increase of temperature. Aerating was in favor of the growth of brown rice sprout. The maximum content of GABA in germinated brown rice was reached at an aerated volume of 1.0 L min-1. GABA content increased over time within 72 hours.The maximum GABA content in germinating brown rice had been observed at a speed of 1.28 L min~(-1) and temperature of 41.08℃germinated for 47.6 hours with response surface methodology.2. The brown rice was immersed into the solution with different additives concentration of monosodium glutamate (MSG) and ascorbic acid (ASA) for germination under the conditions of 32℃, aerated volume of 1.2 liter per minute and darkness. The influence of MSG, ASA and the time of MSG addition on the accumulation of GABA in germinating brown rice was studied with single and orthogonal trial designs. The results showed that under the optimum combination condition of 1 mg mL~(-1) MSG, 5 mg mL~(-1) ASA and after adding the MSG for 24 hours germination, the content of GABA in germinated brown rice reached 203.47μ.g g~(-1), which was 3.73 times higher than that in control group.3. GAD in germinated brown rice exhibited an optimum pH value range from 5.5 to 6.0 and optimum reaction temperature of 40℃. Analysis of Lineweaver-Burkand Langmuir for GAD with L-Glu substrate was carded out, the Km were 1.43 mM.On the other hand, the Km of 1.69 mM was calculated by the method of double - reciprocal plotting.
     4. Investigation on the processing technology of fine rice rich in GABA was carried out. Germinated brown rice was subjected to blanching in hot water for inaction of intrinsic enzyme. The minimum GABA loss was obtained at the temperature of 90℃and 1:1 the ratio of rice to water for 6 minutes and then drying to safe water content at 50℃. Sensory quality of germinated brown rice rich in GABA could be improved through slight milling. But nutritional components might be loss during milling. The content of GABA in fine rice was 8.962 mg/100gDW after milling for 90 seconds, which was higher than normal fine rice.
引文
1. Hara K, Saito Y, KiriharaY, et al. The interaction of antinociceptive effects of morphine and GABA receptor agonists within the rat spinal cord [J]. Anesth Analg, 1999,89(2):422-427.
    2. Bormann J. The ABC of GABA receptors [J]. Trends-Pharmacol-Sci, 2000, 21 (1): 16-19.
    3. Jones KA, Borowsky B,Tarran JA.GABA_B receptors function as a heterometic assembly of the subunite GABA_BR1 and GABA_BR2 [J] .Nature, 1998,396:674.
    4. Stewar F C, Thompson J F, Dent C. γ-aminobutyric acid: a constituent of the potato tuber? [J]Science, 1949,110: 439-440.
    5. Roberts JKM, Callis J, Wemmer D, Walbot V, Jardetzky O. Mechanism of cytoplasmic pH regulation in hypoxic maize root tips and its role in survival under hypoxia. Proc[M], Natl. Acad. Sei. U.S.A., 1984, 81:3379-3383.
    6. AntoniwLD, SprentJI. Primary metabolites of Phaseolus vulgaris nodules [J]. Phytochemistry, 1978, 17(4): 675-678.
    7. Guinn G, BrinberhoffLA .. Crop Sci,[M] 1970, 10: 175-178.
    8. Ito O, Kumazawa K. Soil Sci [J]. Plant Nutr, 1976, 22: 181-183.
    9. Mayer R R, Cherry J L, Rhodes D. Effects of heat shock on amino acid metabolism of cowpea cells [J]. Phytochemistry, 1990, 94: 796-810.
    10. Wallace W, Secor J, Schrader L. Rapid accumulation of γ-amino acid and alanine in soybean leaves in response to and abrupt transfer to lower temperature, darkness or mechanical manipulation [J]. Plant Physiol, 1984,75: 170-175.
    11. Ramputh A1, Bown A W. Rapid γ-aminobutyric acid synthesis and the inhibition of the growth and development of oblique-banded leaf-roller larvae [J]. Plant Physiol., 1996, 111:1349-1352.
    12. Aurisano N, Bertani A, Rogianni R. Involvement of calcium and clalmodulin in protein and amino acid metabolism in rice roots under anoxia [J]. Plant Cell Physiol, 1995, 36:1525-1529.
    13. Tsushida T, Murai T. Conversion of glutamic acid to γ-aminobutyric acid in tea leaves under anaerobic conditions [J]. Agric Biol Chem, 1987, 51:2805-2871.
    14. Streeter JG, Thompson JF. In vivo and in vitro studies on γ-aminobutyric acid metabolism with the radish plant(Raphanus sativus L) [J]..Plant Physiol, 1972, 49: 579-584.
    15. Bouche N, Fait A, Bouchez D, Moller SG, Fromm H. Mitochondrial succinic-semialdehyde dehydrogenase of the γ-aminobutyric shunt is required to restrict levels of reactive oxygen intermediates in plants [J]. Plant Physiol, 2003, 100(11): 6483-6848.
    16 Tiburcio AF, Altabella T, Borrell A. Polyamine metabolism and its regulation [J]. Physiol Plant, 1997, 100: 664-674.
    17. Bhatnagar P, Glasheen BM, Bains SK et al. Transgenic manipulation of the metabolism of polyamines in Poplar cells [J].Physiol Plant, 2001, 125:2139-2153.
    18. Satya NV, Nair PM. Metabolism enzymology and possible roles of 4-aminobutyrate in higher plants [J]. Phytochemistry, 1990, 29: 367-375.
    19. Ling V, Snedden WA, Shelp BJ et al .Analysis of a soluble calmodulin binding protein from fana bean roots: identification of glutamate decarboxylase as a calmodulin-activated enzyme [J]. Plant cell, 1994, 6:1135-1143.
    20. Snedden W A, Tzahi T, Formm H, Shelp BJ. Calcium/Calmodulin Activation of Soybean Glutamate Decarboxylase [J]. Plant Physiol. 1995, 108: 543-549.
    21.蒋振晖,顾振新.高等植物体内γ-氨基丁酸合成、代谢及其生理作用[J]。植物生理学通讯.2003,39(3):249-254.
    22. BaumG, Lev-Yadun S, Fridmann γ, Arazi T, Katsnelson H, Zik M, Fromm H. Calmodulin binding to glutamate decarboxylase is required for regulation of glutamate and GABA metabolism and normal development of plants [J]. Plant Physiol, 1996, 15: 2988-2996.
    23. Streeter JG, Thompson JF. Anaerobic accumulation of γ-aminobutyric acid and alanine in radish leaves(Raphanus sativus L.) [J].Plant Physiol, 1972, 49:572-578
    24. Cauwenberghe ORV, Shelp BJ. Biochemical characterization of partially purified gaba: pyruvate transaminase from Nicotiana tabacum [J]. Phytochem, 1999, 52:575-581.
    25. Busch KB, Fromm H. Plant succinic semialdehyde dehydrogenase .Cloning; purification, localization in mitochondria, and regulation by adenine nucleotides [J]. Plant Physiol, 1999, 121 : 589-597.
    26. Bagni N, Caloni GL, Speranza A. Polyamines as sole nitrogen sources for Helianthus tuberosus explants in vitro [J] .New Phytol, 1978, 80: 314-317.
    27. Perez-Amador, Carbonell J。Arginine decarboxylase and putrescine oxidase in ovaries of Pisum sativum [J].Plant Physioi, 1995, 107: 865-872.
    28. Breitkreuz KE, Shelp BJ. Subcellular compartmentation of the 4-aminobutyrate shunt in protoplasts from developing soybean cotyledons [J].Plant Physiol, 1995,108: 99-103.
    29. Breitkreuz KE, Shelp BJ, Fischer WN, Schwacker R, Rentsch D. Identification and characterization of GABA, proline and quaternary ammonium compound transporters from Arabidopsis thaliana [J]. Plant Physiol, 1999, 450:280-284
    30. Fischer WN .Amino acid transport in plants [J] .Trends plant Sci, 998, 3:188-195.
    31. Chung 1, Bown AW, Shelp BJ.The Production and Efflux of 4-Aminobutyrate in Isolated Mesophyll Cells [J]. Plant Physiol, 1992, 99: 659-664.
    32. Chotewa E, Cholewinski AJ, Sheip BJ, Snedden WS, Bown AW. Cold Shock-stidumulated γ-aminobutyric acid synthesis is mediated by an increase in cytolic Ca2+ not by an increase in cytosolic H+ [J]. Can J Bot, 1997, 75: 375-382.
    33. Scott-Taggert CP, Cauwenberghe ORV, Mclean MD, Shelp BJ. Regulation of y-aminobutyric acid synthesis in situ by glutamate availability [J]. Physiologia Biologia Plantarum, 1999, 106: 363-369.
    34. Schuler V. GABA_B receptor subtypes assemble into functional heterometic complexes [J]. Nature, 1998, 396:683.
    35. Gallego, P.P. et al.,.A role for glutamate decarboxylase during tomato ripening: the characteristics of a cDNA encoding a putative glutamate decarboxylase with a calmodulin-inding site, Plant Mol. Biol. ,1995,27, 1143-1151
    36. Carroll, A.D. et al.,Ammonium assimilation and the role of γ-aminobutyric acid in pH homeostasis in carrot cell suspensions, Plant Physiol. 1994,106,513-520.
    37. Kayahara, H..Elucidation of functionality of GABA and probability for novel foodstuff. Japan Food Science. 1994, 41, 39-45.
    38. Turano PJ, Fang TK. Characterizationof two glutamate decarboxylase cDNA clones from Arabldopsis [J].Plant Physiol, 1998, 117:1411-1421.
    39. Matthews CK, van Holde KE. Anaplerotic sequences: the need to replace cycle intermediates [M]: Biochemistry, 1996, pp. 503-506, Benjamin/Cummings Publishing, USA/UK.
    40. Micallef BJ, Shelp BJ. Arginine metabolism in developing soybean cotyledons Ⅲ. Utilization [J]. Plant Physiol, 1989, 91:170-174.
    41. Rhodes, D.,Handa, S. and Bressan, R.A.. Metabolic changes associated with adaptation of plant cells to water stress [J], Plant Physiol, 1986, 82, 890-903.
    42. Solomon PS, Oliver RP. Evidence that γ-aminobutyric acid is a major nitrogen source during Cladosporium fuNum infection of tomato [J]. Planta, 2002, 214: 414-420.
    43. Simmoff N, Cumbes QJ. Hydmxyl radical scavenging activity of compatible solutes [J]. Phytochemistry, 1989,28:1057-1060.
    44. Guem J, Kurkdjian A. Intracellular pH: measurement and importance in cell activity [J].Annu Rev Plant Physiol Plant Mol Biol, 1989, 40:271-303
    45. Crawford LA, Bown AW, Breitkreuz KE, Guinei FC. The synthesis of γ-aminobutyric acid in response to treatments reducing cytosolic pH [J]. Plant Physiol, 1994, 104: 865-871.
    46. Ken' ichi Ohtsubo, Keitaro Suzuki, Yuji Yasui, Takafumi Kasum.Bio-functional components in the processed pre-germinated brown rice by a twin-screw extruder. Journal of Food Composition and Analysis.2005,18, 303-316.
    47. Nair P M, Satyanrayan V, Metabolism enzymology and possible of 4-aminobutyrate in higher plant [J].Phytoehem, 1990, 29:367-375
    48. White JH,Wise A, Main MU. Heterodimerization is required for the formation of a functional GABA_B receptor [J]. Nature, 1998, 396:679.
    49. Bowery G. Metabotropic GABA_B receptors [J]. Neurotransmissions, 1999, 15(2):3.
    50. Santicioli P, Del Bianco E, Tramontana M, et al. Adenosine inhibits action potential-dependent release of calcitonin gene-related peptide- and substance P-like immunoreactivities from primary afferents in rat spinal cord [J].. Neurosci Lett, 1992, 14, 211-214.
    51. Pérez-Alfocea, F. et al.NaCl stress-induced organic solute changes on leaves and calli of Lycopersicon esculentum, L. pennelli and their interspecific hybrid, J. Plant Physiol. 1995,143, 106—111
    52.杵渊美倭子,关谷美由纪,山崎彬,等.高压处理利用玄米中γ-酪酸(GABA)蓄积[J],日本食品科学工学会誌,1999,46(5)323-328
    53.伊藤汛.(γ-酪酸)高含有米糠制造方法[J],食品工业,2000,5:61-64.
    54.大坪贞视.米胚芽,米糠用γ-酪酸大量生产方法[J],北陆农业新技术,2000,10:66-68.
    55.横田哲治.米(发芽玄米)时代[J],食品科学,2000,10:34-37.
    56.大久长范,阿部雪子.玄米发芽伴γ-酪酸生成[J],秋田县综合食品研究所报告,1999:85-86.
    1. Takayo Saikusa, Toshiroh Horino,Yutaka Mori. Accumulation of γ-aminobutyric Acid in the Rice Germ During Water Soaking [J]. Biosci Biotech Biochem. 1994, 58(12):91-92.
    2. Crawford L A, Bown A W and Breitkreuz K E, et al. The synthesis of γ-Aminobutyric acid in response to treatments reducing cytosolic pH [J]..Physilo. 1994,104:865-871.
    3.蒋振辉,顾振新.高等植物体内γ-氨基丁酸合成、代谢及生理作用[J].植物生理学通讯,2003,39(3):249-255.
    4.顾振新,蒋振辉.食品原料中γ-氨基丁酸形成机理及转化技术[J].食品与发酵工业,2002,28(10):65-70.
    5.朱广廉,钟海文,张爱琴.植物生理学实验[M],北京:北京大学出版社,1990:175-177
    6.李合生主编.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.
    7.蒋振辉.钙处理对糙米发芽过程中GABA含量及其主要物质含量的影响[M].南京农业大学硕士毕业论文,2003.
    8.陈恩成,张名位,彭超英,池建伟.γ-氨基丁酸的功能特性及其在食品原料中的转化技术研究进展.湖北农学院学报,2004,24(4):316-320.
    9.茅原纮.发芽玄米机能性成分健康增进及病气预防.改善效果,周刊农林,2001,6:4-6.
    10. S.P.Spragg and E.W.Yemm..Respiratory mechanisms and the change of glutathione and ascorbic acid in germinating peas[J]. Journ of Experimental Botany, 1958,10:409-425.
    11. Inatomi K, Slaughter J C. The role of glutamate decarboxylase and γ-aminobutyric acid in germinating barley[J]. Journal Experimental Botany, 1971, 72:561-571.
    12. Fischer WN .Amino acid transport in plants [J] .Trends plant Sci, 998, 3: 188-195.
    1. Takayo S, Toshiroh H, Yutaka M. Accumulation of γ-aminobutyric acid in the rice germination during water soaking [J]. Biosci Biotech Biochem, 1994, 58(12): 91-92
    2. Crawford, Bown, Breitkreuz, Kevin E, Lesley A. The synthesis of γ-aminobutyric acid in response to treatmean reducing ctyosolic pH [J].Plant Physiol, 1994, 104:865-871
    3.顾振新,陈志刚,蒋振辉.赤霉素处理对糙米发芽力及其主要成分变化的影响[J].南京农业大学学报,2003,26(1):74-77
    4.蒋振辉,顾振新.高等植物体内γ-氨基丁酸合成、代谢及生理作用[J].植物生理学通讯,2003,39(3):249-255
    5.陈志刚,顾振新,汪志君,等.糙米的营养成分及其在发芽过程中的变化[J].南京农业大学学报,2003,26(3):84-87
    6.蒋振辉.Ca~(2+)和通气处理对糙米发芽过程中主要物质变化的影响及γ-氨基丁酸富积技术研究[D].南京:南京农业大学硕士毕业论文,2003
    7. Wallace W, Secor J , Schrader L. Rapid accumulation of γ-aminobutyric acid and alanine in soybean leaves in response to an abrupt transfer to lower temperature, darkness or mechanical manipulation [J], Plant Physiol, 1984, 75:170-175
    8. Guem J, Kurkdjian A. Intracellular pH: measurement and importance in cell activity [J].Annu Rev Plant Physiol Plant Mol Biol, 1989, 40: 271-303
    9. Nair P M, Satyanrayan V, Metabolism enzymology and possible of 4-aminobutyrate in higher plant [J].Phytochem, 1990, 29:367-375
    1 Crawford L A,Bown A W and Breitkreuz K E, et al. The synthesis of γ-Aminobutyric acid in response to treatments reducing cytosolic pH [J] Physilo. 1994. 104: 865-871.
    2 Kainuma, K.. Rice-its potential to prevent global hunger. Proceedings of the third session of the work shop on suitable use of agricultural resources and environment management with focus on the role of rice farming[J]. Japan FAO Association, 2004, 41-46.
    3 陈志刚,顾振新.温度处理对发芽糙米中淀粉酶活力的影响[J].食品与发酵工业,2002,29(3):43-48.
    4 刘稼骏,赵光鳌,霍兴云,等.黄原胶对蛋白酶耐热性的作用[J].无锡轻工大学学报,1997,16(2):51-55.
    5 Bown A.W. and Shelp, B.J. The metabolism and physiological roles of 4-aminobutyric acid [J], Biochem (Life Sci. Adv.) 1998, 8, 21-25
    6.朱永义.天然保健米-留胚米[J].粮食与油脂,2000,7:41-42.
    7.吴素玲,孙晓明,王波,等.双孢蘑菇子实体营养成分分析[J].中国野生植物资源,2006,25(2):47-50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700