用户名: 密码: 验证码:
机械球磨法制备Ti-Cr及Ti-Cu阻燃合金层的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高能球磨过程中,金属粉末在经历冷焊和细化的同时,其中一部分粉末沉积在球磨罐壁和磨球表面,经过反复挤压和冷焊,形成一定厚度的合金层。根据这一原理,本文设计了Ti-Cr、Ti-Cu两组合金粉末,为了在钛及其合金表面形成具有阻燃效果的表面合金层。
     首先以纯钛和纯铬粉为原始粉末,在TC4表面成功制备了Ti-Cr阻燃合金层,基体表层晶粒细化效果很明显,显微硬度也有很明显的提高,抗氧化性能也有较大的提升。通过扫描、高温氧化、划痕、摩擦磨损、激光烧蚀实验对不同工艺形成的合金层进行表征,总结出球磨时间10h为最佳。
     在商用纯钛表面成功制备了Ti-Cu阻燃合金层,表层晶粒细化效果也很明显,显微硬度也有很明显的提高,抗氧化性能也稍有的提升。通过扫描、划痕、摩擦磨损、激光烧蚀实验对不同工艺形成的合金层进行表征,总结出球磨时间5h为最佳。
     对高能球磨技术制备合金层的机理进行了探讨,大量粉末颗粒由于磨球的作用被强制压入试样表面,并冷焊在基体表面;此外,粉末颗粒彼此之间也发生广泛焊合,形成复合粒子。已经进入基体的粉末粒子一方面与激活态的基体发生交互作用,原子间彼此相互扩散,形成冶金结合的合金层;另一方面,与大量复合粒子继续发生冷焊作用,使合金层往外生长。当球磨作用达到一定程度时,进一步的球磨对合金层有很严重的破坏作用,使得所形成合金层不连续、不均匀。
     对阻燃钛合金的阻燃机理进行了探讨,认为Ti-Cr合金层中的Cr元素具有很重要的作用,它能形成致密的氧化层阻止氧气的向内传输,以达到阻燃的目的,同时铬的氧化物容易以气态的形式存在,更容易带走热量,可以降低温度,也能达到阻燃的目的。Ti-Cu合金层中的Cu也具有很重的作用,一方面,液相的析出吸收大量热量,降低体系温度,另一方面,析出的液相能够阻止燃烧,两方面的共同作用达到阻燃的目的。
During the process of high energy ball milling, the powder undergoes cold welding and the resulted refinement. Due to the repeated collisions and cold welding, a fraction of powder tends to adhere to the surface of balls and the inner wall of chamber, so as to form a coating layer. Based on this principle, Ti-Cr and Ti-Cu powder was used to prepare the some surface coatings with the ability of burn-resistant in this paper.
     The Ti-Cr coating was fabricated on the surface of TC4 putting the pure titanium along with chromium powder in the chamber. The grain size declined markedly on the upper surface its microhardness and performance of high temperature anti-oxidation became better. All the results showed that the optimal milling time was 10h.
     The Ti-Cu coating was fabricated on the surface of pure titanium putting the pure titanium powder along with chromium powder in the chamber. All the results of experiments were almost the same as that of Ti-Cr coating but the optimal milling time was 5h instead.
     The author studied the fabrication principle of coating using the method of high energy ball milling. A great deal of powder was pressed and cold-welded to the surface of substrate then coating was formed. Meanwhile, the cold welding happened among the powder then compound particles were formed. The diffusions happened between the powder which had been pressed into the substrate and the substrate, which made the coating metallurgical bonded. There was one important thing had to be mentioned was that with over milling time, the coating would be broken.
     The author also studied the principle of burn resistant titanium. In the author’s opinion, the Cr element in the Ti-Cr coating took a great important part in the burn resistance. First, the compact chromic oxide had the ability to stop transmitting the oxygen inward, so the substrate couldn’t be burned without oxygen. Second, it is easier to be the way of gaseity for chromic oxide than titanium oxide, which could take the more heat away then declined the temperature, the substrate would not be burned at the low temperature. The Cu element in the Ti-Cu coating also took a great important port in the burn resistance. The formation of liquid needs a lot of heat energy, so the system’s temperature will be decreased, which has the ability of stopping the burning. Meanwhile, the liquid phase has the ability of putting out the fire.
引文
[1]王金友,葛志明,周彦邦.航空用钛合金.上海:上海科学技术出版社, 1985年.
    [2]张平则.双层辉光等离子表面合金化阻燃钛合金研究.山西太原:太原理工大学, 2004.
    [3]陶春虎,刘庆珠,曹春晓,等.航空用钛合金的失效及其预防.北京:国防工业出版社, 2002年.
    [4]陈光.高压压气机钛着火的危害与防止措施.国际航空. 1995(1):40~42.
    [5]张平则,徐重,张高会,等. Ti-Cu表面阻燃钛合金研究.稀有金属材料与工程, 2005, 34(1):162~165.
    [6] Glickstein M. R, et al. Proceedings of the 3rd DOD Conference on Laser Effects. Vulnerability and Countermeasures, USA, 1977, 19.
    [7]王金友.国外抗燃烧钛合金发展动向.航空科学技术, 1995(2):38-40.
    [8]宁兴龙.阻燃钛合金.钛工业进展, 1998(1):31-34.
    [9]黄旭,曹春晓,王宝,等.阻燃钛合金Alloy C,航空制造工程, 1997(6):24-26.
    [10] Eylon D. High-temperature titanium alloys, Jounal of Materials, 1984(11):55-62.
    [11]李倩,赵永庆,吴欢,等. Ti40阻燃钛合金的高温氧化行为.钛工业进展, 2007, 24(3):16~19
    [12]赵永庆,周廉,邓炬. Ti40合金的阻燃性能及其阻燃机理分析.稀有金属材料与工程, 1999, 28(2):77-80.
    [13]王金友.俄罗斯抗燃烧钛合金的发展,航空科学技术, 1995(3):38-40.
    [14]马雪丹,赵永庆,周廉,等. Ti14合金半固态下的氧化行为研究.铸造, 2003, 52(12):1133~1136
    [15]赵永庆,马雪丹,吴玮璐,等. Ti14钛合金半固态氧化和变形行为研究.稀有金属材料与工程, 2003, 32(11):885~888
    [16]劳金海.航空发动机钛合金气机盘等温锻件的研制.上海钢研, 1996(1):22~29
    [17] Hemson R. New titanium-niobium alloy solves autoclave Problem. Advanced Materials and Processes, 1995, 144(5):27-28.
    [18] Sehutz R.W. Environmental Behavior of Beta Titanium Alloys. Proc. 3rd Japan International SMAPE Symposium, 1993:7~10.
    [19] S. Romankov, W. Sha, S.D. Kaloshkin, et al. Fabrication of Ti–Al coatings by mechanical alloying method. Surface and Coatings Technology, 2006, 201(6):3235~3245
    [20] S. Romankov, W. Sha, E. Ermakov, et al. Characterization of aluminized layer formation duringannealing of Ti coated with an Al film. Journal of Alloys and Compounds, 2006, 420(1-2):63~70
    [21] S.E. Romankov, S. Suleeva, T.V. Volkova, et al. Influence of thermal treatment on the structure of Ti–Al films. Crystal Engineering, 2002, 5(3-4):255~263
    [22]赵永庆,赵香苗,罗国珍,等.阻燃钛合金.稀有金属材料与工程. 1996, 25(5):1~6
    [23]赵永庆,周廉,王笑.一种钛合金燃烧速度的检测方法.中国专利. 98101281.7.
    [24]孙护国,霍武军.航空发动机钛合金机件的阻燃技术.专题综述,2003(1):46~49
    [25]黄旭,曹春晓,马济民,等.航空发动机钛燃烧及阻燃钛合金.材料工程,1997(8):11~15
    [26]赵永庆,周廉,邓炬. Ti40合金的阻燃性能及其阻燃机理分析.稀有金属材料与工程,1999, 28(2):77~80
    [27] Minmin Wang, Yongqing Zhao, Lian Zhou, et al. Study on creep behavior of Ti–V–Cr burn resistant alloys. Materials Letters, 2004, 58(26):3248~3252
    [28]辛社伟,赵永庆,曾卫东. Al元素对Ti40阻燃钛合金550℃热稳定性的影响.中国有色金属学报,2007, 17(9):1475~1480
    [29] S.W. Xin, Y.Q. Zhao, W.D. Zeng, et al. Research on thermal stability of Ti40 alloy at 550℃. Materials Science and Engineering A , 2008, 477(1-2):372~378
    [30] Y.Q. Zhao, W.L. Wu, X.D. Ma, et al. Semi-solid oxidation and deformation behavior of Ti14 alloy. Materials Science and Engineering A, 2004, 373(1-2):315~319
    [31] Y.Q. Zhao, W.L. Wu, H. Chang. Research on microstructure and mechanical properties of a newα+Ti2Cu alloy after semi-solid deformation. Materials Science and Engineering A, 2006, 416(1-2):181~186
    [32] Z. Xu, X. Liu, P. Zhang, et al. Double glow plasma surface alloying and plasma nitriding. Surface and Coatings Technology, 2007, 201(9-11):4822~4825
    [33] Pingze Zhang, Zhong Xu, Gaohui Zhang, et al. Surface plasma chromized burn-resistant titanium alloy. Surface and Coatings Technology, 2007, 201(9-11):4884~4887
    [34]张平则,徐重,张高会,等.双辉等离子表面冶金Ti2Cu阻燃合金的制备工.中国有色金属学报,2005, 15(1):110~115
    [35] Ivanov E, Suryanarayana C. Materials and process design through mechanochemical routes. Journal of Materials Synthesis and Processing, 2000, 8(3~4):235~244.
    [36] Kun C. Mechanical alloying process during high energy ball milling. Metal Powder Report, 1997, 51(1):36~41.
    [37] Aboud T, Weiss B Z, Chaim R. Mechanical alloying of the immiscible system W-Cu. Nanostructured Materials, 1995, 6(1~4):405~408
    [38] Miller M K, Russell K F, Hoelzer D T. Characterization of precipitates in MA/ODS ferritic alloys. Journal of Nuclear Materials, 2006, 351(1~3):261~268.
    [39] Mohamed S. El-Genk, Jean-Michel Tournier. A review of refractory metal alloys and mechanically alloyed-oxide dispersion strengthened steels for space nuclear power systems. Journal of Nuclear Materials, 2005, 340(1):93~112
    [40] Rojas P A, Penaloza A, Worner C H, et al. Supersaturated Cu-Li solid solutions produced by mechanical alloying. Journal of Alloys and Compounds, 2006, 425(1~2):334~338
    [41] V.L. Fadeeva, V.K. Portnoy, Yu.V. Baldokbin, et al. Nanocrystalline BBC solid solutions of Al-Fe-V system prepared by mechanical alloying. Nano Structured Materials, 1999, 12(5-8):625~628
    [42] Zhong-Wu Zhang, Jing-En Zhou, Sheng-Qi Xi, et al. Formation of crystalline and amorphous solid solutions of W–Ni–Fe powder during mechanical alloying. Journal of Alloys and Compounds, 2004, 370(1-2):186~191
    [43] M. Nakhl, B. Chevalier, J.-L. Bobet, et al. Structural and hydriding properties of the intermetallic Y1-xNi2synthesized by mechanical alloying or submitted to mechanical grinding. Journal of Alloys and Compounds, 2001, 314(1-2):275~280
    [44] M.H. Enayati, Z. Sadeghian, M. Salehi, et al. The effect of milling parameters on the synthesis of Ni3Al intermetallic compound by mechanical alloying. Materials Science and Engineering A, 2004, 375–377:809~811
    [45] Hee Yong Lee, Nam Hoon Goo, Woon Tae Jeong, et al. The surface state of nanocrystalline and amorphous Mg Ni alloys prepared by mechanical alloying. Journal of Alloys and Compounds, 2000, 313(1-2)258~262
    [46] S.S. Nayak, B.S. Murty. Synthesis and stability of L12–Al3Ti by mechanical alloying. Materials Science and Engineering A, 2004, 367(1-2):218~224
    [47] J.J. Sunol, A. Gonzalez, J. Bonastre, et al. Synthesis and characterization of nanocrystalline FeNiZrB developed by mechanical alloying. Journal of Alloys and Compounds, 2007, 434–435:415~419
    [48] Okonska I, Iwasieczko W, Jarzebski M, et al. Hydrogenation properties of amorphous 2Mg+Fe/xwt%Ni materials prepared by mechanical alloying (x=0, 100, 200). International Journal of Hydrogen Energy, 2007, 32(17): 4186~4190.
    [49] L.W. Deng, J.J. Jiang, S.C. Fan, et al. GHz microwave permeability of CoFeZr amorphous materials synthesized by two-step mechanical alloying. Journal of Magnetism and MagneticMaterials, 2003, 264(1):50~54
    [50] J.C. de Lima, D.M. Triches, T.A. Grandi, et al. Structural study of TM60Ti40 (TM=Fe, Co, Ni) amorphous alloys produced by mechanical alloying. Journal of Non-Crystalline Solids, 2002, 304(1-3):74~181
    [51] Nam-Hee Kwon, Gyeung-Ho Kim, H.S. Song, et al. Synthesis and properties of cubic zirconia–alumina composite by mechanical alloying. Materials Science and Engineering A, 299(1-2):185~194
    [52] Akira Yamauchi, Kyosuke Yoshimi, Kazuya Kurokawa, et al. Synthesis of Mo–Si–B in situ composites by mechanical alloying. Journal of Alloys and Compounds, 2007, 434–435:420~423
    [53] M.H. Maneshian, A. Simchi, Z. Razavi Hesabi. Structural changes during synthesizing of nanostructured W–20 wt% Cu composite powder by mechanical alloying. Materials Science and Engineering A, 2007, 445–446:86~93
    [54] Yusuf Ozcatalbas. Investigation of the machinability behaviour of Al4C3 reinforced Al-based composite produced by mechanical alloying technique. Composites Science and Technology, 2003, 63(1):53~61
    [55]李凤生,刘宏英,刘雪东,等.微纳米粉体制备与改性设备.北京:国防工业出版社,2004
    [56]邹正光,李金莲,陈寒元.高能球磨在复合材料制备中的应用.桂林工学院学报,2002,22(2):174~178
    [57]席生岐.高能球磨固态扩散反应研究.材料科学与工艺, 2000, 8(3):88~91
    [58]林文松.机械合金化中的金属相变.粉末冶金技术, 2001, 19(3):178~180
    [59] Shingu P H, Ishihara K N. Non-equilibrium Materials by Mechanical Alloying. Materials transactions-JIM, 1995, 36(2):96~101
    [60]黄素真.高能球磨制备纯Al纳米晶体材料及性能研究.博士学位论文.昆明:昆明理工大学,2006
    [61]李风生.超细粉体技术.北京:国防工业出版社. 2000
    [62]马明亮.机械合金化诱发固态燃烧还原反应及其原位合成纳米复合材料的研究.博士学位论文.西安:西安交通大学, 1999
    [63] Koch C C, Cahn R W, Hoasen P, et al. Mechanical milling and alloying. Materials Science and Technique, 1991. 15(2):193~241
    [64] Last H R, Garrett Jr R K. Mechanical behavior and properties of mechanically alloyed aluminium alloys. Metall. Mater. Trans. 1996, 27(3):737~745
    [65] Sruyanarayana C. Mechanical alloying and milling. Progress in Materials Science. 2001,46(1-2):1~184
    [66] Suryanarayana C, Ivanov E, Boldyrev V V. The science and technology of mechanical alloying. Materials Science and Engineering. 2001, 304~306:151-158
    [67] Rairden J R, Hebesch E M. Low temperature plasma deposited coating formed from mechanically powders. Thin Solid Film. 1981, 83(3):353~360
    [68] Ivanov E, Suryanarayana C. Materials and process design through mechanochemical routes. Journal of Materials Synthesis and Processing. 2000, 8(3-4):235~244
    [69]马明亮,董增祥,魏健宁,等.高能球磨在材料制备领域的工业化应用.热加工工艺. 2006, 35(6):66~69
    [70] Facundo J, Castro, Jean Louis Bobet. Hydrogen sorption properties of an Mg+WO3 mixture made by reactive mechanical alloying, Jounal of Alloys and Compound. 2004, 366(1-2):303~308
    [71] Schilz J, Riffel M, Pixius K, et al. Meyer. Synthesis of thermoelectric materials by mechanical alloying in planetary ball mills. Powder Technology. 1999,105(1-3):149~154
    [72] McCormick P G, Ding J, Feutrill E H, et al. Mechanically alloyed hard magnetic materials. Journal of Magnetic Material. 1996, 157-158:7~10
    [73]曹顺华,林信平,李炯义,等.纳米晶WC210Co复合粉末的烧结致密化行为.中国有色金属学报, 2004, 14(5):797~801
    [74]黄真,沈以赴,朱永兵,顾冬冬.低碳钢表面Cr合金层的低温高能球磨法制备.兵器材料科学与工程. 2008, 31(2):54~57
    [75]黄真.碳钢表面机械合金化制备高Cr合金层的研究.江苏南京:南京航空航天大学, 2008
    [76]陈振华,陈鼎.机械合金化与固液反应球磨.北京:化学工业出版社, 2006.
    [77] K. Y. Zhu, A. Vassel, F. Brisset, et al. Nanostructure formation mechanism ofα-titanium using SMAT. Acta Materialia, 2004, 52(14):4101~4110,
    [78] Schutz R. W. Environmental behavior of beta titanium alloys. JOM ISSN 1047-4838. 1994, 46(7):24~29
    [79]á. Révész, L. Takacs. Coating metals by surface mechanical attrition treatment. Journal of Alloys and Compounds, 2007, 44(1-2)111:114.
    [80]王文波,徐重,贺志勇,等.双辉技术渗铌对Ti-6Al-4V合金氧化性能的影响.稀有金属材料与工程, 2007, 36(5):869~87
    [81]赵宇光,周伟,彭新,等.钛合金表面低氧压熔结Al-Cr涂层及其高温抗氧化性.吉林大学学报(工学版), 2004, 34(4):521~526
    [82]赵宇光,周伟,秦庆东,梁云虹,姜启川.预氧化处理对钛合金抗高温氧化行为的影响.特种铸造及有色合金,2004(3):34~38
    [83]吴欢,赵永庆,曲恒磊,等.两种Ti-V-Cr系阻燃钛合金在450℃~650℃下的高温氧化行.稀有金属材料与工程, 2003, 23(1):45~49
    [84]黄旭,曹春晓,马济民,等.阻燃钛合金的高温氧化行为.稀有金属材料与工程, 1997, 26(6):27~30
    [85] [德]莱茵斯, [德]皮特尔斯编,陈振华译,钛与钛合金.北京:化学工业出版社, 2005
    [86] A. M. Chase.硅、铝和铬对钦高温氧化行为影响的比较.稀有金属材料与工程, 1986(6):79~83
    [87]黄旭,孙福生,王宝,等. Ti-Cr合金高温氧化行为的研究.航空材料学报, 2000, 20(3):16~20
    [88]胡传炘,宋幼慧.涂层技术原理及应用.北京:化学工业出版社, 2000.
    [89] Roman Jaworski, Lech Pawlowski, Francine Roudet, et al. Characterization of mechanical properties of suspension plasma sprayed TiO2 coatings using scratch test. Surface and Coatings Technology, 2008, 202(12):2644~2653
    [90]张松,张春华,王茂才. Ti6Al4V表面激光熔覆原位自生TiC颗粒增强钦基复合材料及摩擦磨损性能.金属学报, 2001, 37(3):315~320
    [91]王镇波,雍兴平,陶乃镕,等.表面纳米化对低碳钢摩擦磨损性能的影响.金属学报, 2001, 37(12):1251~1255
    [92] M. Cadenas, R. Vijande, H. J. Montes, et al. Wear behaviour of laser cladded and plasma sprayed WC-Co coatings. Wear, 1997, 212(2):244~253
    [93] L. Fouilland-Paille, S. Ettaqi, S. Benayoun, et al. Structural and mechanical characterization of Ti/TiC cermet coatings synthesized by laser melting. Surface and Coatings Technology, 1997, 88(1-3):204~211
    [94]周月波,张海军. Ni-CeO2纳米复合镀层的摩擦磨损性能.稀有金属材料与工程,2008, 37(3):448~451
    [95]孙岳,黄海明,高锁文.激光烧蚀机理研究进展.失效分析与防护, 2008, 3(2):58~63
    [96]陶杰,承涵,陈照峰,等.聚碳硅烷复合涂层抗激光烧蚀研究.宇航材料工艺, 2008(2):39~42
    [97]赵永庆,赵香苗,朱康英. Ti-Cu-Al合金的阻燃特性和微观组织.金属材料科学与工程, 1998, 27(6):360~362
    [98] Zhaolin Zhan, Yedong He, Deren Wang, et al. Low-temperature processing of Fe–Al intermetallic coatings assisted by ball milling. Intermetallics, 2006, 14(1): 75~81
    [99] C.C Koch. Materials synthesis by mechanical alloying. Annual Review of Materials Science. 1989, 19:121~143.
    [100] J.S Benjamin, T.E Volin. The mechanism of mechanical alloying. Metallurgical and Materials Transactions.1974, 5(8):1929~1934.
    [101] R.M Davis, C.C Koch. Mechanical alloying of brittle components: Silicon and Germanium. Scrience of Metallurgy. 1987, 21(3):305~310.
    [102]吕春菊.高能球磨法制备含硼、碳、氮陶瓷的研究.博士学位论文,浙江:浙江大学, 2006
    [103]李清斌,王晓春编译.徐景春校对.合金中的扩散性相变与合金热力学.辽宁:辽宁科学技术出版社, 1984
    [104] L Lu, M.O Lai, S Zhang. Diffusion in mechanical alloying. Journal of Materials Processing Technology. 1997, 67(1-3):100~104.
    [105] H.V Atkinson, B.A Rickinso. Hot isostatic Poreessing, in J.W bod(Ed.),The Adam Hilger Series on New Manufacturing Processes and Materials. Adam Hilger,Bristol,Philadelphia and New York, 1991, 34.
    [106] M.M Moshksar, M Mizraee. Formation of NiAl intermetallic by gradual and explosive exothermic reaction mechanism during ball milling. Intermetallics. 2004. 12(12):1361~1366.
    [107]刘玉芹,白克武,张翥,等. Ti-Cr-V-Al合金的阻燃机理实验研究.稀有金属. 2000, 24(6):463~465.
    [108]刘玉芹,白克武,沈剑韵,等. Ti-Cr-V与Ti-Cr-Mo合金阻燃机理热力学分析.稀有金属. 1998, 22(3):204~307
    [109]王宝,黄旭,高扬,等.新型Ti-Cu系抗燃烧钛合金探索研究.材料工程. 1998(11):30~32
    [110] Hemson R. New Titanium-Niobium alloy solves autoclave problem. Advanced Materials and Processes. 1995, 14(5):27~28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700