用户名: 密码: 验证码:
组元磁化法制备ZrO_2/Ni梯度功能材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在综述了梯度功能材料制备方法和研究进展的基础上,本论文提出了一种基于组元磁导率差异制备梯度材料的新方法。具体如下:将梯度磁场作用于由磁性粒子和非磁性粒子组成的复合浆料,磁性粒子将向强磁场区域移动,沿磁场方向形成成分梯度,通过后续固化、干燥和烧结,最终制得梯度材料。
     采用这种新方法成功制备出ZrO_2/Ni梯度材料。根据实验需要设计了麦克斯韦线圈和亥姆霍兹线圈;采用旋转粘度仪分析了ZrO_2/Ni复合浆料的粘度特性;通过金相显微镜、扫描电镜和能谱分析仪等手段,研究了固相分数、磁场梯度、成型时间、磁性粒子浓度等因素对ZrO_2/Ni梯度材料组织和成分分布的影响;通过Monte Carlo模拟的方法,研究了磁场强度、磁场梯度、磁性粒子相互作用、磁性粒子浓度和非磁性粒子浓度等因素对体系中粒子分布的影响。
     本文的主要研究结果如下:
     获得了不同磁场中Ni和ZrO_2复合浆料粘度的变化规律。无外加磁场时,Ni和ZrO_2复合浆料的粘度随PVP分散剂含量的增加先增大后减小,在PVP分散剂含量为1.8 wt.%时,浆料粘度值最低。在磁场中,浆料的相对粘度随着PVP分散剂含量的增加而逐渐降低。浆料粘度随固相体积分数的增加而迅速增大。当磁场强度增加时,浆料粘度先迅速增大,然后逐渐趋于稳定。此外,浆料粘度随Ni粒子浓度增加而增大。这是因为Ni粒子会在磁场中团聚形成链状团簇,随着磁场强度和Ni含量的增加,Ni团簇逐渐增大、增多,导致粘度增大。
     掌握了Ni在ZrO_2/Ni梯度材料厚度方向的成分梯度随固相分数、磁场梯度、磁场作用时间、磁性粒子浓度的变化规律。随固相体积分数的增加,样品致密度逐渐增大,而成分梯度逐渐降低。随着磁场梯度增加至3.0 T/m,Ni成分梯度逐渐增大,而沿厚度方向显微硬度逐渐降低。粒子在浆料中的移动不是瞬时过程,与磁场作用时间有关。随着磁场作用时间的延长,成分梯度逐渐增大,在作用时间超过15 s后,浆料结构保持稳定。此外,随浆料中Ni浓度的增加,Ni成分梯度逐渐降低,当Ni含量达到15 wt.%时,成分梯度已经消失。提出了磁性粒子在梯度磁场中的分布模型,合理解释实验结果。
     采用Monte Carlo方法分别模拟了匀强磁场和梯度磁场中磁性粒子的运动规律。结果表明,在匀强磁场中磁性粒子团聚形成平行磁场方向的链状团簇。团簇随计算时间的增加而逐渐长大,最后趋于稳定。随着磁性粒子间相互作用的增加,团簇尺寸逐渐增大。但是,体系中粒子分布却不受磁场强度的影响。随着磁性粒子浓度的增加,相邻磁性粒子间距变小,彼此间磁相互作用增强,导致团簇尺寸逐渐增大。体系中的非磁性粒子对磁性粒子的移动存在阻碍作用,并且随着非磁性粒子浓度的增加,阻碍作用逐渐增强。在梯度磁场中,随着磁场梯度的增加,体系中磁性粒子的成分梯度逐渐增大;随着磁性粒子间磁相互作用的增强,团簇尺寸逐渐增大,而成分梯度逐渐减小;此外,非磁性粒子对磁性粒子在梯度磁场中的移动存在阻碍作用,随着非磁性粒子浓度的增加,磁性粒子沿磁场方向的成分梯度逐渐降低。
Functionally graded materials(FGMs)are a class of special composites with continuously changed mechanical,physical and chemical properties,which have normally been fabricated by means of vapor deposition,powder metallurgy,plasma spraying,self-propagation high temperature synthesis,electro deposition,etc.Based on the distinct difference in magnetic susceptibility between components,a new approach was developed to prepare FGMs.When a gradient magnetic field was applied on the suspension comprised of both magnetic and nonmagnetic particles,the magnetic ones were driven towards high field regions,thus a composition gradient along the field direction was formed.After subsequent drying and sintering process,FGMs were obtained.
     ZrO_2/Ni FGM with a continuously changing composition has been successfully fabricated using this method.Uniform and gradient magnetic fields were designed to meet the need of experiments.The viscosity variations of suspension composed of both Ni and ZrO_2 particles within and without magnetic fields were investigated.The effects of influencing factors on microstructures of ZrO_2/Ni FGMs were studied systematically.The distributions of particles under both uniform and gradient magnetic fields were studied using two-dimensional Monte Carlo simulations.The effects of field strength,field gradient,magnetic interaction and concentration of magnetic and nonmagnetic particles on distribution of particles were investigated.Flux meter,rotational viscometer,scanning electron microscope(SEM),energy dispersive spectrometer(EDS)and optical microscope(OM)were employed.
     The results are summarized as follows:
     The field dependence of viscosity of suspensions composed of both Ni and ZrO_2 particles was obtained.With increasing PVP content,the viscosity increased,then reached the maximum value at 1.8 wt.%,and finally decreased.However,the relative viscosity decreased as PVP content increased in the presence of magnetic field.Moreover,the viscosity increased rapidly as the solid content increased.When a magnetic field was applied on the suspension,the viscosity of suspension increased dramatically.Furthermore,the viscosity increased as a function of field strength and Ni content,which can be attributed mainly to the magnetization of Ni particles.Ni particles aggregated to form chain-like clusters under magnetic fields.The size and number of clusters increased as field strength and Ni content increased,thus the viscosity of suspension increased.
     A composition gradient of Ni was formed along the field direction in ZrO_2/Ni FGMs prepared under gradient magnetic fields.As the solid content in suspension increased,the density of FGMs increased,but the composition gradient decreased.With increasing field gradient from 0.5 to 3.0 T/m,composition gradient of Ni increased,but the microhardness along thickness direction decreased.Moreover,the migration of magnetic particles under gradient magnetic fields was not an instantaneous process but a time-dependent one.The composition gradient increased with the prolongation of holding time,and remained nearly unchanged after 15 s.However,the composition gradient decreased as Ni concentration increased from 4 to 15 wt.%,which can be attributed mainly to the formation of Ni clusters.A schematic model was proposed to explain the distribution of particles in gradient magnetic fields.
     Through the two-dimensional Monte Carlo simulations,the distributions of particles under uniform and gradient magnetic fields in the suspension comprised of both magnetic particles (MPs)and nonmagnetic particles(NPs)were studied.Chain-like MP clusters were formed along the field direction.With the prolongation of computing time,clusters grew gradually, and finally kept stable.The size of clusters increased with increasing interaction between MPs. However,the distribution of particles remained unchanged as the field strength varied.As the concentration of MPs increased,the distance between MPs decreased and the interaction increased,resulting in the growth of clusters.A gradient distribution of MPs was formed along the field gradient direction under gradient magnetic fields.The composition gradient increased with increasing the field gradient,however,decreased as the interaction between MPs increased,accompanied by the formation of chain-like MP clusters.Moreover,NPs were found to hinder the translation of MPs along the field direction both in uniform and gradient magnetic field.As the NP concentration increased,the translation of MPs became difficult.
引文
[1]R.J.Butcher,C.E.Rousseau,H.V.Tippur.A functionally graded particulate composite:preparation,measurements and failure analysis.Acta Mater.,1999,47(1):259-268.
    [2]Y.Nagasaka,T.Sato,T.Ushiku.Non-destructive evaluation of thermal diffusivity distributions of functionally graded materials by photothermal radiometry.Meas.Sci.Technol.,2001,12:2081-2088.
    [3]B.Kieback,A.Neubrand,H.Riedel.Processing techniques for functionally graded materials.Mater.Sci.Eng.A,2003,362(1-2):81-106.
    [4]G.Tomandl,M.Mangler,D.Stoyan,A.Tscheschel,T.B.Freiberg,J.Goebbels,G.Weidemann.Characterisation methods for functionally graded materials.J.Mater.Sci.,2006,41:4143-4151.
    [5]新野正之,平井敏雄.日本复合材料学会志,1987,13(6):257.
    [6]A Mortensen,S Suresh.Functionally graded metals and metal-ceramic composites.Ⅰ.Processing.Int.Mater.Rev.,1995,40(6):239-265.
    [7]S Suresh,A Mortensen.Functionally graded metals and metal-ceramic composites.Ⅱ. Thermomechanical behaviour.Int.Mater.Rev.,1997,42(3):85-116.
    [8]赵军,艾兴,张建华.功能梯度材料的发展及展望.材料导报,1997,11(4):57-60.
    [9]Yoshinari Miyamoto,W.A.Kaysser,B.H.Rabin,A.Kawasaki,Renee G.Ford.Functionally Graded Materials:Design,Processing,and Applications,1999,Springer,230.[10]O.Sivakesavama,Y.V.R.K.Prasad.Hot deformation behaviour of as-cast Mg-2Zn-1Mn alloy in compression:a study with processing map.Mater.Sci.Eng.A.,2003,362(1-2):118-124.
    [11]Liangde Xie,Xinqing Ma,Eric H.Jordan,Nitin P.Padture,Danny.T.Xiao,Maurice Gell.Identification of coating deposition mechanisms in the solution-precursor plasma-spray process using model spray experiments.Mater.Sci.Eng.A,2003,362(1-2):204-212.
    [12]Christopher P.Shaw,Roger W.Whatmore,Jeffrey R.Alcock.Porous.Functionally Gradient Pyroelectric Materials.J.Am.Ceram.Soc.,2007,90(1):137-142.
    [13]A.Almajid,M.Taya,K.Takagi,J.F.Li,R.Watanabe.Fabrication and modeling of porous FGM piezoelectric actuators.Proceedings of SPIE,2002,4701:467-476.
    [14]M.Thieme,K.P.Wieters,F.Bergner,D.Scharnweber,H.Worch,J.Ndop,T.J.Kim,W.Grill.Titanium powder sintering for preparation of a porous FGM destined as a skeletal replacement implant.Mater.Sci.Forum,1999:374-379.
    [15]A.Mortensen,S.Suresh.Funcitonally graded metals and metal-ceramic composites:Part 1 Processing.Int.Mater.Rev.,1995,40(6):239-265.
    [16]W.Y.Lee,D.P.Stinton,C.C.Berndt,F.Erdogan,Y.Lee,Z.Mutasim.Concept of Functionally Graded Materials for Advanced Thermal Barrier Coating Applications.J.Am.Ceram.Soc.,1996,79(12):3003-3012.
    [17]F.H.B.Mertins,H.Kruidhof,H.J.M.Bouwmeester.Centrifugal Casting of Tubular Pcrovskite Membranes.J.Am.Ceram.Soc.,2005,88(11):3003-3007.
    [18]T.P.D.Rajan,R.M.Pillai,B.C.Pai.Functionally graded Al-Al_3Ni in situ intermetallic composites:Fabrication and microstructural characterization.J.Alloy.Compd.,2008,453(1-2):L4-L7.
    [19]E.Müller,C.Drasar,J.Schilz,W.A.Kaysser.Functionally graded materials for sensor and energy applications.Mater.Sci.Eng.A,2003,362(1-2):17-39.
    [20]R.Jedamzik,A.Neubrand,J.Rodel.Functionally graded materials by electrochemical processing and infiltration:application to tungsten/copper composites.J.Mater.Sci,2000,35(2):477-486.
    [21]T.Nakamura,T.Wang,S.Sampath.Determination of properties of graded materials by inverse analysis and instrumented indentation.Acta Mater.,2000,48(17):4293-4306.
    [22]Koizumi M,Niino M.Overview of FGM research in Japan,In:Functionally Gradient Materials.MRS Bull,1995:19-21.
    [23]Holt J.B.,Koizumi M.,Munirl Z.A.Ceramic Transactions.Proceedings of second international symoposium on functionally gradient material.Functionally Gradient Materials,1992:152-160.
    [24]Zhengyi Fu,Zhenlin Yang,Yuan Runzhang.Functionally Gradient Materials Prepared by SHS Method (1)-Exploratory Study on TiB_2-Al System.Journal of Wuhan University of Technology,1991,4.
    [25]B.Inschner,M.Yamanouch i,M.Koizum i.Proceeding of the First International Symposium on Functionally G rad ientMaterials.FGM Forum,1990:101-103.
    [26]A.J.Markworth1,K.S.Ramesh,W.P.Parks.Modelling studies applied to functionally graded materials.J.Mater.Sci.,1995,30(9):2183-2193.
    [27]Sasaki,M.Wang,Y.Hirano,T.Hirai.Design of SiC/C functionally gradient material and its preparation by chemical vapor deposition.J.Ceram.Soc.Jpn.,1989,97(5):539-543.
    [28]Eroglu S,Birla N C,Demirci M.Synthesis of functionally gradient nickel-chromium-aluminum /magnesia-Zirconia coatings by plansma spray technique.Mater.Lett,1993,12(14):1099-1102.
    [29]Ishibashi H.,Tobimatsu H.,Matsumoto T.,Hayashi K.,Tomsia A.P.,Saiz E.Characterization of Mo-SiO2 functionally graded materials.Mater.Trans.A-Phys.Metall.Mater.Sci.,2000,31(1):299-308.
    [30]H.Z.Wang,S.W.Yao,S.Matsumura.Electrochemical preparation and characterization of Ni/SiC gradient deposit.J.Mater.Process.Technol.,2004,145(3):299-302.
    [31]Tang,XF,Zhang,LM,Yuan,RZ.Thermal stress relaxation design and fabrication of PSZ/Mo Functionally Gradient Materials.Journal of the Chinese Ceramic Society,1994,22:44-49.
    [32]Q.Shen,L.Zhang,R.Yuan.Design and fabrication of Ni/Ni3AlTiC functionally graded materials.Journal of the Chinese Ceramic Society,1997,4:406-412.
    [33]Yunhan Ling,Jiangtao Li,Changchun Ge.Processing and Evaluation of Graded SiC/Cu Facing Plasma Composite.Journal of University of Science and Technology Beijing,2001,23(3):257-261.
    [34]A.Wu,J.Li,C.Ge,J.Li,A.Kawasaki.Fabrication and Evaluation of SiC/C Functionally Graded Material.Journal of Inorganic Materials,2001,16(6):1239-1242.
    [35]Y.Li,Y.Wang,J.Zhong.Functionally Graded Materials.Materials Review,2002,16(10):9-11.
    [36]Zhu J.C.,Lai Z.H.,Yin Z.D.,Jeon J.H.,Lee S.Y.Fabrication of ZrO_2-NiCr functionally graded material by power metallurgy.Mater.Chem.Phys.,2001,68(1-3):130-135.
    [37]Obata Y.Steady Thermal Stresses in Functionally Gradient plate(Influence of Mechanical Boundary Conditions),Material Tans.,JSME,1992,58(553):1689.
    [38]Obata Y.Steady Thermal Stresses in a Hollow Circular Cylinder and Hollow Sphere of A Functionally Gradient Material.J.Therm.Stresses,1994,17(3):471.
    [39]Obata Y.Unsteady Thermal Stresses in a Functionally Gradient Material Plate(Analysis of one-dimensional Unsteady Heat Transfer Problem).Trans.JSME,1993,59(560):1090.
    [40]Obata Y.Unsteady Thermal Stresses in a Functionally Gradient Plate(Influence of Heating and cooling Conditions on Unsteady Thermal Stresses).Tans.JSME,1993,58(553):1097.
    [41]Tanigawa Y,Transient.Thermal Stress Analysis of a Multilayered Composite Laminate Cylinder with a uniformly Distributed Heat Supply and Its Analytical Development to Nonhomogeneous Materials.Trans.JSME,1989,55(513):1133.
    [42]K.Pietrzak,D.Kalinski,M.Chmielewski.Interlayer of Al_2O_3-Cr functionally graded material for reduction of thermal stresses in alumina heat resisting steel joints.J.Eur.Ceram.Soc.,2007,27(2-3):1281-1286.
    [43]H.Tsukamoto.Analytical method of inelastic thermal stress in a functionally graded material plate by a combination of micro- and macromechanical approaches.Compos.Pt.B-Eng.,2003,34(6):561-568.
    [44]A.J.Goupee,S.S.Vel.Two-dimensional optimization of material composition of functionally graded materials using meshless analyses and a genetic algorithm.Comput Meth.Appl.Mech.Eng.,2006,195(44-47):5926-5948.
    [45]J.Ma,G.E.B Tan.Processing and characterization of metal-ceramics functionally gradient materials,J.Mater.Process.Technol.,2001,113(1-3):446-449.
    [46]G.Jin,M.Takeuchi,S.Honda,T.Nishikawa,H.Awaji.Properties of multilayered mullite/Mo functionally graded materials fabricated by powder metallurgy processing.Mater.Chem.Phys.,2005,89(2-3):238-243.
    [47]C.L.Chu,J.C.Zhu.,Z.D.Yin,S.D.Wang.Hydroxyapatite-Ti functionally graded biomaterial fabricated by powder metallurgy.Mater.Sci Eng.A,1999,271(1-2):95-100.
    [48]B.Kieback,A.Neubrand,H.Riedel.Processing techniques for functionally graded materials.Mater.Sci.Eng.A.2003,362(1-2):81-106.
    [49]S.Put,J.Vleugels,O.Van der Biest.Functionally graded WC-Co materials produced by electrophoretic deposition.Scripta Mater.,2001,45(10):1139-1145.
    [50]Weiping Liu,J.N.DuPont.Fabrication of functionally graded TiC/Ti composites by Laser Engineered Net Shaping.Scripta Mater.,2003,48(9):1337-1342.
    [51]K.A.Khor,Y.W.Gu,Z.L.Dong.Mechanical behavior of plasma sprayed functionally graded YSZ/NiCoCrAlY composite coatings.Surf.Coat.Technol.,2001,139(2-3):200-206.
    [52]Niino M,Hirai T,Watanbe R.Study on the heat-resistant funcionally gradient material.J.Jpn.Soc.of Compos.Mater.,1987,13(6):257-264.
    [53]W.Y.Lee,D.P.Stinton,C.C.Berndt,F.Erdogan,Y.Lee,Z.Mutasim.Concept of Functionally Graded Materials for Advanced Thermal Barrier Coating Applications.J.Am.Ceram.Soc.,1996,79(12):3003-3012.
    [54]K.A.Khor,Y.W.Gu,C.H.Quek,P.Cheang.Plasma spraying of functionally graded hydroxyapatite/Ti-6Al-4V coatings.Surf.Coat Technol.,2003,168(2-3):195-201.
    [55]K.A.Khor,Z.L.Dong,Y.W.Gu.Plasma sprayed functionally graded thermal barrier coatings.Mater.Lett.1999,38(6):437-444.
    [56]Y.T.Pei,V.Ocelik,J.Th.M.De Hosson.Interfacial adhesion of laser clad functionally graded materials.Mater.Sci.Eng.A,2003,342(1-2):192-200.
    [57]Y.T.Pei,J.Th.M.De Hosson.Functionally graded materials produced by laser cladding.Acta Mater.,2000,48(10):2617-2624.
    [58]G.R.Liu,X.Han,Y.G.Xu,K.Y.Lam.Material characterization of functionally graded material by means of elastic waves and a progressive-learning neural network.Compos.Sci.Technol,2001,61(10):1401-1411.
    [59]X.Han,G.R.Liu,K.Y.Lam.Transient waves in plates of functionally graded materials.Int J.Numer.Methods Eng.,2001,52(8):851-865.
    [60]M.Sasaki,T.Hirai.Thermal fatigue resistance of CVD SiC/C functionally gradient material.J.Eur.Ceram.Soc.,1994,14(3):257-260.
    [61]B.A.Movchan.Functionally graded EB PVD coatings.Surf.Coat Technol.,2002,149(2-3):252-262.
    [62]D.E.Burkes,J.J.Moore.Combustion synthesis of a functionally graded NiTi-TiCx composite.J.Eng.Mater.Technol.-Trans.ASME,2006,128(3):445-450.
    [63]B.Y.Li,L.J.Rong,Y.Y.Li,,V.E.Gjunter.Synthesis of porous Ni-Ti shape-memory alloys by self-propagating high-temperature synthesis:reaction mechanism and anisotropy in pore structure.Acta Mater.,2000,48(15):3895-3904.
    [64]D.E.Burkes,J.J.Moore.Microstructure and kinetics of a functionally graded NiTi-TiCx composite produced by combustion synthesis.J.Alloy.Compd.,2007,430(1-2):274-281.
    [65]D.E.Burkes,J.J.Moore.Combustion Synthesis of a Functionally Graded NiTi-TiCx Composite.J. Eng.Mater.Technol.-Trans.ASME,2006,128(3):445-450.
    [66]J.W.Gao,C.Y.Wang.Modeling the solidification of functionally graded materials by centrifugal casting.Mater.Sci.Eng.A,2000,292(2):207-215.
    [67]P.M.Biesheuvel,Henk Verweij.Calculation of the Composition Profile of a Functionally Graded Material Produced by Centrifugal Casting.J.Am.Ceram.Soc.,2000,83(4):743-749.
    [68]S.Put,J.Vleugels,O.Van Der Biest.Gradient profile prediction in functionally graded materials processed by electrophoretic deposition.Acta Mater.,2003,51:6303-6317.
    [69]Sarkar P,Xuening H,Partick S.N.Zirconia/Alumina functionally gradiented composites by electrophoretic deposition techniques.J.Am.Ceram.Soc.,1993,76:1055-1056.
    [70]Fukui Y,Nakanish K,Yamanaka N.Fabrication of functionally gradient materials by centrifugal methodand its evaluation.Jpn.Soc.Heat Treat,1995,35(1):11-17.
    [71]M.Scanlan,D.J.Browne,A.Bates.New casting route to novel functionally gradient light alloys.Mater.Sci.Eng.A,2005,413-414(15):66-71.
    [72]F.H.B.Mertins,H.Kruidhof,H.J.M.Bouwmeester.Centrifugal Casting of Tubular Perovskite Membranes.J.Am.Ceram.Soc.,2005,88(11):3003-3007.
    [73]T.P.D.Rajan,R.M.Pillai,B.C.Pai.Functionally graded Al-Al3Ni in situ intermetallic composites:Fabrication and microstructural characterization.J.Alloy.Compd.,2008,453(1-2):4-7.
    [74]J.W.Gao,C.Y.Wang.Modeling the solidification of functionally graded materials by centrifugal casting.Mater.Sci.Eng.A,2000,292(2):207-215.
    [75]C.R.Choe,M.Park.Functionally gradient type of polymer composites:progression advanced.Mater.Mech.,1996:73-77.
    [76]Y.Hirano,D.J.Mooney.Peptide and Protein Presenting Materials for Tissue Engineering.Adv.Mater.,2004,16,(1):17-25.
    [77]T.Das,S.K.Mallick,D.Paul,S.K.Bhutia,T.K.Bhattacharyya,T.K.Maiti.Microcontact printing of Concanavalin A and its effect on mammalian cell morphology.J.Colloid Interface Sci.,2007,314(1):71-79.
    [78]Hou Z Z,Abbott N L,Stroeve P.Electroless gold as a substrate for self-assemblied monolayers.Langmuir,1998,14(12):3287-3297.
    [79]Y.Liu,A.Wang,R.O.Claus.Layer-by-layer electrostatic self-assembly of nanoscale Fe_3O_4 particles and polyimide precursor on silicon and silica surface.Appl.Phys.Lett.,1997,71(16):2265.
    [80]Parras-Medécigo E.,Pech-Canul M.I.,Rodriguez-Reyes M.,Gorokhovsky A.Effect of processing parameters on the production of bilayer-graded Al/SiCp composites by pressureless infiltration.Mater.Lett.,2002,56(4):460-464.
    [81]I.Santacruz,B.Ferrari,M.I.Nieto,R.Moreno.Graded ceramic coatings produced by thermogelation of polysaccharides.Mater.Lett,2004,58(21):2579-2582.
    [82]A.J.Sánchez-Herencia,A.J.Millán,M.I.Nieto,R.Moreno.Aqueous colloidal processing of nickel powder.Acta Mater.,2001,49(4):645-651.
    [83]K.J.Montgomery,K.T.Faber.Processing and Surface Flaw Tolerance of Alumina Bilayers.J.Am.Ceram.Soc.,2005,88(2):287-292.
    [84]S.Ananthakumar,K.G.K.Warrier Extrusion characteristics of alumina-aluminium titanate composite using boehmite as a reactive binder.J.Eur.Ceram.Soc.,2001,21(1):71-78.
    [85]C.Liu,D.Hu,J.Xu,D.Yang,M.Qi.In vitro electrochemical corrosion behavior of functionally graded diamond-like carbon coatings on biomedical Nitinol alloy.Thin Solid Films,2006,496(2):457-462.
    [86]V.Y.Petrovsky,Z.S.Rak.Densification,microstructure and properties of electroconductive Si3N4-TaN composites.Part Ⅱ:Electrical and mechanical properties.J.Eur.Ceram.Soc.,2001,21(2):237-244.
    [87]D.J.Aldrich,K M.Jones,S.Govindarajan,J.J.Moore,T.R.Ohno.Microstructure of Molybdenum Disilicide-Silicon Carbide Nanocomposite Thin Films.J.Am.Ceram.Soc.,1998,81(6):1471-1476.
    [88]T.Noda.Thermal Stress in Nonhomogeneous Semi-infinite Elastic Sloid under Steady Distribution of Temperature.Trans.Jpn.Soc Mech.Eng.(A),1985,51:1789-1795.
    [89]严密,彭晓领.磁学基础与磁性材料.杭州:浙江大学出版社.2006:29-36.
    [1]X.L.Peng,M.Yan,W.T.Shi.A new approach for preparation of functionally graded materials in magnetic field via slip casting.Scripta Mater.,2007,56:907.
    [2]林其壬.磁路设计原理.北京:机械工业出版社,1987.
    [3]严密,彭晓领.磁学基础与磁性材料.杭州:浙江大学出版社,2006:29-36.
    [4]王以真.实用磁路设计.天津:天津科学技术出版社,1992.
    [5]赵建勋,博士论文,上海:上海大学,2001.
    [6]段文义.流体力学.沈阳:东北大学出版社,2001.
    [7]闫宝珠.质量与密度测量不确定度评定.北京:中国计量出版社,2002.
    [8]王吉会,郑俊萍,刘家臣,黄定海.材料力学性能.天津:天津大学出版社,第1版,2006.
    [9]裴鹿成.蒙特卡罗方法及其应用.西安:陕西科学技术社出版,第1版,1993.
    [10]N.Metropolis,A.Rosenbluth,M.Rosenbluth,A.Teller,E.Teller.Equation of state calculations by fast computing machines.J.Chem.Phys.,1953,21:1087-1092.
    [1]Laurent Pouilloux,Edouard Kaminski,Stéphane Labrosse.Anisotropic rheology of a cubic medium and implications for geological materials.Geophys.J.Int.,2007,170(2):876-885.
    [2]S.Odenbach,H.Stork.Shear dependence of field-induced contributions to the viscosity of magnetic fluids at low shear rates.J.Magn.Magn.Mater.,1998,183:188-194.
    [3]J.Embs,H.W.Müller,C.Wagner,K.Knorr,M.LOcke.Measuring the rotational viscosity of ferrofluids without shear flow.Phys.Rev.E,1999,61(3):2196-2199.
    [4]B.U.Felderhof.Magnetoviscosity and relaxation in ferrofluids.Phys.Rev.E,2000,62(3):3848-3854.
    [5]Günter K.Auernhammer,Dominique Collin,Philippe Martinoty.Viscoelasticity of suspensions of magnetic particles in a polymer:Effect of confinement and external field.J.Chem.Phys.,2006,124:204907.
    [6]Yousef Haik,Vinay Pai,Ching-jen Chen.Apparent viscosity of human blood in a high static magnetic field.J.Magn.Magn.Mater.,2001,225:180-186.
    [7]V.Iusan,C.D.Buioca,S.Hadgia.Magnetic fluids of low viscosity.J.Magn.Magn.Mater.,1999,201:38-40.
    [8]Odenbach S,Stork H.Shear dependence of field-induced contributions to the viscosity of magnetic fluids at low shear rates.J.Magn.Magn.Mater.,1998,183(1-2):188-194.
    [9]Embs J,Müller H W,Wagner C,Knorr K,et al.Measuring the rotational viscosity of ferrofluids without shear flow.Phys.Rev.E,2000,61(3):2196-2199.
    [10]Felderhof B U.Magnetoviscosity and relaxation in ferrofluids.Phys.Rev.E,2000,62(3):3848-3854.
    [15]吴望一.流体力学(下).北京:北京大学出版社,2000:257-266.
    [11]M.Shliomis.Mathematical model of structure phenomena in magnetic fluids.Phys.JEPT,1972,34:1291-1294.
    [12]叶萌.磁流体流动与能量传递的格子Boltzmann方法.南京理工大学硕士论文.
    [13]R.W.Chentrell.Modeling of interaction effects in fine particle systems.J.Magn.Magn.Mater.,1996,157:250-255.
    [14]R.E.Rosenzweig.Ferrohydrodynamics.Cambridge,UK:Cambridge University Press,1985:15-17.
    [16]李德才.磁性液体理论及应用.北京:科学出版社,2003.
    [17]R.Hart,P.Cundall,J.Lemos.Formulation of a three dimensional distinct element model.Int.J.Rock Mech.Min.Sci.Geomech.Abstr.,1988,25(3):117.
    [18]M.Shen,J.Cao,J.Zhu.Van Der Waals interaction in colloidal giant electrorheological systems.Int J.Mod.Phys.B,2005,19(7-9):1170-1176.
    [19]Myung-man Kim.Effect of electrostatic,hydrodynamic and Brownian forces on particles trajectories and sieving in normal flow filtration.J.Colloid Interface Sci.,2004,269:425-431.
    [1]X.L.Peng,M.Yan,W.T.Shi.A new approach for preparation of functionally graded materials in magnetic field via slip casting.Scripta Mater.,2007,56:907-909.
    [2]T.Liu,Q.Wang,A.Gao,C.Zhang,C.J.Wang,J.C.He.Fabrication of functionally graded materials by a semi-solid forming process under magnetic field gradients.Scripta Mater,,2007,57(11):992-995.
    [3]Qiang Wang,Tie Liu,Ao Gao,Chao Zhang,Chunjiang Wang,Jicheng He.A novel method for in situ formation of bulk layered composites with compositional gradients by magnetic field gradient.Scripta Mater.,2007,56(12):1087-1090.
    [4]M.G.Sung,K.Sassa,T.Tagawa,T.Miyata,M.Doyama,S.Yamada,S.Asai.Application of a high magnetic field in the carbonization process to increase the strength of carbon fibers.Carbon,2002,40:2013.
    [5]E.Beaugnon,R.Tournier.Levitation of organic materials.Nature,1991,349:470.
    [6]M.A.Weilert,D.L.Whitaker,H.J.Maris,G.M.Seidel.Magnetic Levitation and Noncoalescence of Liquid Helium.Phys.Rev.Lett.,1996,77:4840.
    [7]J.M.Valles,K.Lin,J.M.Denegre,K.L.Mowry.Stable magnetic field gradient levitation of Xenopus laevis:Toward low- gravity simulation.Biophys.J.,1997,73:1130.
    [8]X.Li,Z.Ren,Y.Fautrelle.Investigation of the effect of high magnetic field on the MnBi/Mn1.08Bi phase transformation in Mn-Bi alloys by measuring the magnetic force in gradient magnetic field.Mater.Lett.,2006,60:3379-3384.
    [1]Y.S.Zhu,N.Umeharab,Y.Idoc,A.Satod.Computer simulation of structures and distributions of particles in MAGIC fluid.J.Magn.Magn.Mater.,2006,302:96-104.
    [2]G Kresse,J Hafner.Ab initio molecular-dynamics simulation of the liquid-metalamorphous-semiconductor transition in germanium.Phys.Rew.B,1994,49(20):14251-14269.
    [3]HC Andersen.Molecular dynamics simulations at constant pressure and/or temperature.J.Chem.Phys.,1980,72(4):2384-2393.
    [4]RH Swendsen,JS Wang.Nonuniversal critical dynamics in Monte Carlo simulations.Phys.Rev.Lett.,1987,58:86-88.
    [5]J.E.Hirsch,R.L.Sugar Monte Carlo simulations of one-dimensional fermion systems.Phys.Rev.B,1982,26(9):5033-5055.
    [6]G.Orkoulas,A.Z.Panagiotopoulos.Free energy and phase equilibria for the restricted primitive model of ionic fluids from Monte Carlo simulations.J.Chem.Phys.,1994,101:1452-1459.
    [7]A.Satoh.A new technique for metropolis Monte Carlo simulation to capture aggregate structures of fine particles:Cluster-moving Monte Carlo algorithm.J.Colloid Interface Sci.,1992,150:461.
    [8]L.L.Castro,R.Miotto.Concentration effects on the grafting of magnetic nanoparticles by Monte Carlo simulations.J.Appl.Phys.,2006,99:08S101.
    [9]A.F.Pshenichnikov,V.V.Mekhonoshin.Equilibrium magnetization and microstructure of the system of superparamagnetic interacting particles:numerical simulation.J.Magn.Magn.Mater.,2000,213(1):357-369.
    [10]A.Satoh,R.W.Chantrellb,S.I.Kamiyamac,G.N.Coverdale.Three Dimensional Monte Carlo Simulations of Thick Chainlike Clusters Composed of Ferromagnetic Fine Particles.J.Magn.Magn.Mater.,1996,181(2):422-428.
    [11]张齐,王建华,朱鹤孙.磁性液体三维蒙特卡洛模拟.自然科学进展,1995,5(1):105-113.
    [12]R.Kato Y.Enomoto,S.Maekawa.Effects of the surface boundary on the magnetization process in type-Ⅱ superconductors.Phys.Rev.B,1993,47:8016-8024.
    [13]A.Satoh.Three-dimensional Monte Carlo simulations of internal aggregate structures in a colloidal dispersion composed of rod-like particles with magnetic moment normal to the particle axis.J.Colloid Interface Sci.,2008,318(1):68-81.
    [14]Tsutomu Ando,Noriyuki Hirota,Akira Satoh,Eric Beaugnon.Experiment and numerical simulation of interactions among magnetic dipoles induced in feeble magnetic substances under high magnetic fields.J.Magn.Magn.Mater.,2006,303(1):39-48.
    [15]Z.Wang,C.Holm,H.W.Müller.Molecular dynamics study on the equilibrium magnetization properties and structure of ferrofluids.Phys.Rev.E,2006,6:021405.
    [16]M.Aoshima,A.Satoh.Two-dimensional Monte Carlo simulations of a colloidal dispersion composed of rod-like ferromagnetic particles in the absence of an applied magnetic field.J.Colloid Interface Sci.,2006,293:77-87.
    [17]M.Aoshima,A.Satoh.Two-dimensional Monte Carlo simulations of a colloidal dispersion composed of polydisperse ferromagnetic particles in an applied magnetic field.J.Colloid Interface Sci.,2005,288:475-288.
    [18]M.Aoshima,A.Satoh.Two-dimensional Monte Carlo simulations of a polydisperse colloidal dispersion composed of ferromagnetic particles for the case of no external magnetic field.J.Colloid Interface Sci.,2004,280:83-90.
    [19]A.Satoh.Introduction to Molecular-Microsimulation of Colloidal Dispersions.Elsevier,Amsterdam,2003.
    [1]M.Matsuzaki,H.Kikura,J.Matsushita,M.Aritomi,H.Akatsuka.Real-time observation of Brownian motion and cluster movement of ferro- and non-magnetic particles in magnetic fluids.Sci.Technol.Adv.Mater.,2004,5:667-671.
    [2]M.Piao,A.M.Lane,D.T.Johnson.Rheological and magnetic properties of a metal particle dispersion exposed to magnetic fields.J.Magn.Magn.Mater.,2003,267:366-372.
    [3]S.Cutillas,G.Bossis,A.Cebersl.Flow-induced transition from cylindrical to layered patterns in magnetorheological suspensions.Phys.Rew.E,1998,57:804-811.
    [4]M.F.Islam,K.H.Lin,D.Lacoste,T.C.Lubensky,A.G.Yodh.Field-induced structures in miscible ferrofluid suspensions with and without latex spheres.Phys.Rew.E,2003,67:021402.
    [5]J.H.E.Promislow,A.P.Gast.Low-energy suspension structure of a magnetorheological fluid.Phys.Rew.E,1995,56:642-651.
    [6]Morisaki,S.Imagawa,A.Sagara,O.Motojima.Numerical study of magnetic field configuration for FFHR from a viewpoint of divertor and edge field structure.Fusion Eng.Des.,2006,81:2749-2754.
    [7]X.Li,Z.Ren,Y.Fautrelle.Investigation of the effect of high magnetic field on the MnBi/Mn1.08Bi phase transformation in Mn-Bi alloys by measuring the magnetic force in gradient magnetic field.Mater.Lett.,2006,60:3379-3384.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700