用户名: 密码: 验证码:
部分粘结预应力CFRP筋混凝土梁试验与理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于9根梁的低周反复荷载试验、有限元模拟和理论分析,对部分粘结预应力CFRP筋混凝土梁的抗震性能进行了较为系统的研究,并对其静力设计理论进行了研究。主要研究工作包括四个部分:
     第一部分,进行了9根梁的低周反复荷载试验,对其受力过程、破坏形态、特征荷载、恢复力模型、变形恢复能力、延性性能、刚度退化、耗能能力等进行较为系统的研究。研究表明:破坏形态为混凝土压碎;与预应力钢筋混凝土梁相比,部分粘结预应力CFRP筋混凝土梁的位移延性系数在3.9~6.3之间,具有较好的抗震性能;提高张拉控制应力,增大综合配筋指数和预应力度对预应力CFRP筋混凝土梁抗震性能不利;随着无粘结段长度的增加,部分预应力CFRP筋混凝土梁的抗弯承载力降低,变形能力增强。
     第二部分,采用ANSYS对9根部分粘结预应力CFRP筋混凝土梁的静力特性进行了模拟分析,理论值与试验值吻合良好,在此基础上展开了参数分析。研究表明:当无粘结段长度比例从0.25增至0.75时,承载能力降低了约12.0%,位移延性从4.1增至6.1;提高张拉控制应力和预应力度,部分粘结预应力CFRP筋混凝土梁的屈服荷载和极限荷载增大,但其位移延性系数减小;加载间距对部分粘结预应力CFRP筋混凝土梁的受力性能有较大的影响,而混凝土强度等级对其影响较小。
     第三部分,对部分粘结预应力CFRP筋混凝土梁设计理论进行了较为系统的研究,综合考虑预应力CFRP筋的无粘结段长度比例、外荷载形式、综合配筋指数、预应力筋配筋形式等因素,推导了预应力CFRP筋的弹性应力增量和极限应力增量计算公式,并在此基础上提出了部分粘结预应力CFRP筋混凝土梁的抗弯承载力、抗裂度、挠度、裂缝宽度等设计建议。
     第四部分,通过对国内外已有结构安全性指标的研究,首次提出了结构综合安全性指标——X指标;与其他延性指标相比,该指标能综合评估预应力FRP筋混凝土梁的抗弯承载力、变形和延性性能。
     其中,部分粘结预应力CFRP筋混凝土梁低周反复荷载试验和静力设计理论研究在国内外均属首次,研究成果将为预应力CFRP筋混凝土结构在实际工程的应用提供科学依据,并为预应力CFRP筋混凝土结构设计规范的编制提供参考。
Based on the experimental investigation and theoretical analysis, the structural behavior of the partially prestressed concrete beams with partially bonded CFRP tendons were studied deeply. The ductility evaluation of presstressed concrete beams with FRP tendons were summarized and analyzed. Herein, the authors initially conducted the investigation on the seismic behaviors and design theory of partially prestressed partially bonded CFRP concrete beams should be pointed out emphatically. The research work mainly included the following four parts:
    Firstly, 9 beam specimens are tested to investigate the seismic behaviors of presstressed concrete beams with partially bonded CFRP tendons. The research objectives focus on the loading process, failure modes, characteristic loads, hysteretic model, deformation restoring capacity, ductility, stiffness degradation, and energy dissipation capacity. Studies show that all specimens fail at the top surface of the beams, where the concrete is crushed. The displacement ductility of prestressed concrete beams with partially bonded CFRP tendons, which range from 4 to7, are a little smaller than that with steel strands, the ductility values of the latter one are more than 6.5. The increases of jacking stress, reinforcement ratio as well as PPR lead to worse seismic behavior. With the increases of the unbonded length of CFRP tendons, the load-carrying capacity of the corresponding beams decrease, but the deformation capacity would be improved. From the experimental results, the conclusion that partially prestressed, partially bonded CFRP or steel strands concrete beams with middle PPR exhibit better hysteretic behavior.
    Secondly, full range analysis of 9 prestressed concrete beams with partially bonded CFRP tendons are simulated by ANSYS software. On basis of the simulation, parameter analyses are conducted on the effect of different parameters. Studies show the flexural strengths increase 12.0%, when unbonded length to span ratios increase from 0.25 to 0.75, but the ductility evaluations based on displacement increase from 4 to 6. The higher jacking stress and PPR achieves higher crack moments, yielding loads and flexural strengths, but lower ductility. The shear-to-span ratio has an important parameter on the static behavior of partially bonded prestressed CFRP concrete beams. The strength indexes and deformation indexes are 1.4-1.8, and 4.0~7.5, respectively. What the stated above shows prestressed concrete beams with
     partially bonded CFRP tendons exhibit better deformation and ductility ability.
     Thirdly, the design theory for partially prestressed partially bonded CFRP concrete beams is studied on the basis of the experimental results and previous tested dates. Considering the effect of unbonded length of CFRP tendons, loading profile, reinforcement ratio, formulas for calculating the stress increment of CFRP tendons under elastic state and ultimate state are proposed. Furthermore, the design guidelines for determining the flexural capacity, crack resistance, deflection and crack width of prestressed concrete beams with partially bonded CFRP tendons are put forward.
     Finally, the ductility evaluations of prestressed concrete beams with FRP tendons are summarized. According to the existing tested dates of prestressed FRP concrete beams, comparison among different ductility evaluations are carried out. Studies show conventional ductility evaluations are not suitable for presressed FRP concrete beams. The ductility values based on energy are more than that on deformation. F or J index could evaluate the load-carrying capacity and deformation capacity more reasonably.
     Tested results and studies fruits obtained in this paper could provide better understanding for the applications and design specifications of prestressed concrete structures with CFRP tendons.
引文
[1] 洪乃丰.建筑腐蚀可持续发展[J].工业建筑.2006,32(3):76~79.
    [2] B. Benmokrane, O. Chaallal, and R. Masmoud. Flexural response of concrete beams reinforced with FRP reinforcing bars [J]. ACI Structural Journal. 1995, 91 (2): 46~54.
    [3] ACI Committee 440. Guide for the Design and Construction of Concrete Structure Reinforced with FRP Bars [S]. Detroit, Michigan: American Concrete Institute, May, 2001
    [4] 洪乃丰.混凝土中钢筋阻锈剂的应用及发展前景[J].建筑技术.1994,21(11):670~675.
    [5] 柯伟.中国腐蚀调查报告[M].北京:化学工业出版社.2003.
    [6] 薛伟辰.混凝土结构中新型防腐配筋的最新研究进展[J].工业建筑.1999,29(12):1~4.
    [7] Nanni A. FRP Reinforcement for Prestressed and Non-prestressed Concrete Structure [A]. Fiber-Reinforced-Plastic (FRP) Reinforcement for Concrete Structures: Properties and Applications [C]. Developments in Civil Engineering, 1993, 42: 3~12.
    [8] ACI Committee 440. Guide for the Design and Construction of Concrete Structure Reinforced with FRP Bars [S]. Detroit, Michigan: American Concrete Institute, May, 2006.
    [9] 冯鹏,叶列平.FRP结构和FRP组合结构在结构工程中的应用于发展[A].第二届全国土木工程用纤维增强复合材料(FRP)应用技术学术交流会[C],2002,7,中国昆明.
    [10] 韩小雷,X.W.Zou,季静.纤维增强塑料(FRP)在混凝土结构中的应用——FRP材料性能与发展[J].华南理工大学学报(自然科学版).2002,30(2):69~72.
    [11] Jackson, J. G. Concrete Structural Element Reinforced with Glass Fibers [P]. U.S. Patent 2425883, Filed August 8, 1941, Patented August 19, 1947.3.
    [12] C. W. Dolan. FRP Development in the United States [A]. Fiber-Reinforced-Plastic Reinforcement for Concrete Structures: Properties and Applications [C]. A. Nanni, ed., Elsevier, Amsterdam, 1993, 42:129~163.
    [13] ACI Committee 440. State-of-the-art Report on Fiber Reinforced Plastics (FRP) Reinforcement for Concrete Structures [S]. ACI, Detroit, Michigan, 1996.
    [14] Rubinsky, I. A. and Rubinsky, A.. An Investigation into the Use of Fiber-Glass for Prestressed Concrete [J]. Magazine of Concrete Research, 1954, 6(17): 71~78.
    [15] Rubinsky, I. and Rubinsky, E.. Report on Preliminary Investigation on the Feasibility of Using Fiberglass for Prestressing Concrete [R]. Princeton University, Princeton, NJ, 1951.
    [16] L. R. Taerwe, S. Watthys. FRP for Concrete Construction: Activities in Europe [J]. Concrete International. 1999, 21(10): 33~36.
    [17] V. L.Brown and C. L. Bartholomew. FRP Reinforcing Bars in Reinforced Concrete Members [J]. ACI Materials Journal. 1993, 90 (1):34~39.
    [18] B. Benmokrane, O. Chaallal, and R. Masmoudi. Flexural Response of Concrete Beams Reinforced with FRP Reinforcing Bars [J]. ACI Structure Journal. 1996, 91(1):46~55.
    [19] K Kobayashi. Developmental Research of FRP Reinforcement as Tendon of Prestressed Concrete [A]. Proceedings of JCI [C]. 1984, 6: 369~372.
    [20] Y Tsuji, M Kanda, and T Tamura. Applications of FRP Materials to Prestressed Concrete Bridges and Other Structures in Japan [J]. PCI Journal. 1993, 38(4): 50~58.
    [21] Hiroshi Fukuyama. FRP Composites in Japan [J]. Concrete International. 1999, 10:29~32.
    [22] 薛伟辰.混凝土结构中新型配筋FRP的试验研究[R].河海大学博士后研究工作报告.1997.
    [23] 薛伟辰.现代预应力结构设计[M].北京:中国建筑工业出版社,2003.
    [24] 薛伟辰,康清梁.纤维塑料筋FRP在混凝土结构中的应用[J].工业建筑.1999,29(2):19~21.
    [25] 薛伟辰.有粘结预应力纤维塑料混凝土梁的试验研究[J].工业建筑.1999,29(2):11~13.
    [26] 薛伟辰,康清梁.FRP筋粘结锚同性能的试验研究[J].工业建筑.1999,29(12):5~7.
    [27] 高丹盈,B.Benmokrane.纤维聚合物筋与混凝土粘结性能的影响因素[J].工业建筑.2001,31(2):9~14.
    [28] 高丹盈,赵军,B.Benmokrane.纤维聚合物筋混凝土梁裂缝合挠度的特点及计算方法[J].水利学报.2001,8:53~58.
    [29] 高丹盈,B.Benmokrane.玻璃纤维聚合物筋混凝土梁正面承载力的计算方法[J].水利学报.2001,9:73~80.
    [30] 欧进萍,周智,王勃.FRP-OFBG智能复合筋及其在加筋混凝土梁中的应用[J].高技术通讯.2005,15(4):23~28.
    [31] 何政,欧进萍,王勃,张新越.FRP筋及其配筋混凝土构件的力学性能与智能特性[A].第二届全国土木工程用纤维增强复合材料(FRP)应用技术学术文流会[C].中国·昆明,2002,7:32~42.
    [32] 欧进萍,王勃,张新越,何政,钱民中.混凝土结构用CFRP筋的感知性能试验研究[J].复合材料学报.2003,20f6):47~51.
    [33] 周文松,李惠,欧进萍.无环氧树脂基碳纤维束自监测功能.复合材料学报[J].2005, 22(2):63~66.
    [34] 钱卫.预应力CFRP筋混凝土梁疲劳性能研究[D].上海:同济大学,2004.
    [35] 刘华杰.纤维塑料筋混凝土受弯构件试验研究与理论分析[D].上海:同济大学,2003.
    [36] 王晓辉.预应力FRP筋混凝土梁试验与理论研究[D].上海:同济大学,2005.
    [37] 余天起.预应力CFRP筋混凝土梁延性试验研究[D].上海:同济大学,2006.
    [1] L.C. Bank. Properties of FRP Reinforcement for Concrete [A]. Fiber-Reinforced-Plastic (FRP) Reinforcement for Concrete Structures: Properties and Applications [C]. A. Nanni, ed., Elsevier, Amsterdam. 1993, 42: 59~86.
    [2] Masaki Okazaki. Properties and Applications of Vinylon FRP Rod (CLATEC ROD) [A]. Fiber-Reinforced-Plastic (FRP) Reinforcement for Concrete Structures: Properties and Applications [C]. A. Nanni, ed., Elsevier, Amsterdam. 1993, 42: 223~247.
    [3] Luc R. Taerwe. FRP Developments and Applications in Europe [A]. Fiber-Reinforced-Plastic (FRP) Reinforcement for Concrete Structures: Properties and Applications [C]. A. Nanni, ed., Elsevier, Amsterdam. 1993, 42: 99~114.
    [4] Mahmoud M. Reda Taha and Nigel G. Shrive. New Concrete Anchors for Carbon Fiber Reinforced Polymer Tensioning Tendons-Part 1: State-of-the-Art Review/Design [J]. ACI Structural Journal. 2003, 100(10): 86~95.
    [5] Faza S. S., GangaRao HVS. Glass FRP Reinforcing Bars for Concrete [A]. Fiber-Reinforced-Plastic (FRP) Reinforcement for Concrete Structures: Properties and Applications [C]. A. Nanni, ed., Elsevier, Amsterdam. 1993, 42: 305-307.
    [6] ACI Committee 440. Guide for the Design and Construction of Concrete Structure Reinforced with FRP Bars [S]. Detroit, Michigan: American Concrete Institute. May, 2006.
    [7] Wu W. P.. Thermomechanical Properties of Fiber Reinforce Plastic (FRP) Bars [D]. PhD dissertation, West Virginia University, Morgantown, W. Va., 1990.
    [8] Mallick, P. K.. Fiber Reinforced Composites, Materials, Manufacturing, and Design [R]. Marcell Dekker, Inc., New York, 1988.
    [9] Ehsani M. R.. Glass-Fiber Reinforcing Bars. Alternative Materials for the Reinforcement and Prestressing of Concrete [M]. J. L. Clarke, Blackie Academic & Professional, London, 1993: 35-54.
    [10] Yamaguchi T., Kato Y, Nishimura T., and Uomoto T.. Creep Rupture of FRP Rods Made of Aramid, Carbon and Glass Fibers [A]. Proceedings of the Third International Symposium on Non-Metallic (FRP) Reinforcement for Concrete Structures (FRPRCS-3) [C]. Japan Concrete Institute, Sapporo, Japan, 1997, 2: 179-186.
    [11] Saadatmanesh H., and Tannous F. E.. Relaxation, Creep, and Fatigue Behavior of Carbon Fiber-Reinforced Plastic Tendons [J]. ACI Materials Journal. 1999, 96(2): 143-153.
    [12] Saadatmanesh H., and Tannous F. E.. Long-Term Behavior of Aramid Fiber-Reinforced Plastic Tendons [J]. ACI Materials Journal. 1999, 96(3): 297-305.
    [13] Budelmann H. and Rostasy F. S.. Creep Rupture Behavior of FRP Elements for Prestressed Concrete- Phenomenon, Results and Forecast Models [A]. Proceedings of ACI International Symposium on FRP Reinforcement for Concrete Structures [C]. Vancouver, B.C., Canada, March 1993: 87-100.
    [14] Curtis P. T.. The Fatigue Behavior of Fibrous Composite Materials [J]. Journal of Strain Analysis. 1989, 24(4): 235-244.
    [15] M. Roylance and O. Roylance. Effect of Moisture on the Fatigue Resistance of An Aramid-Epoxy composite [J]. Organic Coatings and Plastics Chemistry, American Chemical Society, Washington, D.C., 1981,45: 784-788.
    [16] Mandell J. F.. Fatigue Behavior of Fiber-Resin Composites. Developments in Reinforced Plastics [J]. Applied Science Publishers, London, England, 1982, 2: 67-107.
    [17] Franke L.. Behavior and Design of High-Quality Glass-Fiber Composite Rods as Reinforcement for Prestressed Concrete Members [R]. International Symposium, CP/Ricem/i Bk, Prague, 1981.
    [18] Renee Cusson, Yunping Xi. The Behavior of Fiber-Reinforced Polymer Reinforcement in Low Temperature Environmental Climates [R]. Report No. CDOT-DTD-R-2003-4, University of Colorado Boulder, USA.
    [19] Steckel G. L., Hawkins G. F., and Bauer J. L.. Environmental Durability of Composites for Seismic Retrofit of Bridge Columns [A]. Proceedings of NIST Workshop on Standards develop for the Use of Fiber Reinforced Polymers for the Rehabilitation of Concrete and Masonry Structures [C] Tucson, Arizona, 1998, 18: 83~96.
    [20] Uomoto T. Durability Considerations for FRP Reinforcements [A]. Proceedings of the Fifth International Symposium (FRPRCS-5) [C].Thomas Telford, London, 2001: 17~32.
    [21] 谷木谦介.关于混凝土结构修复补强工程中碳纤维片的耐久性能[R].特希达碳纤维修复补强技术报告.2006.
    [22] 祁德庆,钱文军,薛伟辰.土木工程用FRP筋的耐久性研究进展[J].玻璃钢/复合材料.2006(2):47~50.
    [23] Tokyo Rope Mfg. Co., Ltd. Technical Data on CFCCTM [R]. Tokyo, 1993.
    [24] Gerritse A., Den Uijl J. A.. Long-term Behavior of Arapree [A]. Non-Metallic (FRP). Reinforcements for Concrete Structures, FRPCS-2 [C]. Ghent, Belgium, 1995: 57~66.
    [25] B. Benmokrane, H. Xu, and I. Nishizaki. Aramid and Carbon Fibre-reinforced Plastic Prestressed Ground Anchors and Their Field Applications [J]. Can. J. Civ. Eng. 1997, 24(6): 968~985.
    [26] 高丹盈,B.Benmokrane.纤维聚合物筋与混凝土粘结性能的影响因素[J].工业建筑.2001,31(2):9~14.
    [27] Pleimann L. G... Tension and Bond Pull-out Tests of Deformed Fiber Glass Rods [R]. Final report for Marshall-Vega Corporation, Marshal, Arkansas, Civ. Engorged. Dept., Univ. of Arkansas, Fayetteville, Ark, 1987: 5~11.
    [28] Faza S. S., GangaRao H. V. S.. Bending and Bond Behavior of Concrete Beams Reinforced with Plastic Rebars [R]. Transp. Res. Rec. 1290, Transportation Research Board, Washington, D. C., 1990:185~193.
    [29] Chaallal O., Benmokrana B., and Masmoudi R.. An Innovative Glass-fiber Composite Rebar for Concrete Structures [J]. Adv. Composite Mat. in Bridges and Structures, CSCE, 1992: 169~177.
    [30] B Tighiourart, B Benmokrane, and D Gao. Investigation of Bond in Concrete Member with Fibre Reinforced Polymer (FRP) Bars [J]. Construction and Building Materials. 1998, 12(8):453~462.
    [31] Katz A. Bond to Concrete of FRP Rebars after Cyclic Loading [J]. Journal of Composites Construction. 2000, 4(3): 137~144.
    [32] Ehsani M R, Saadatmanesh H and Tao S. Design Recommendations for Bond of GFRP Rebars to Concrete [J]. Journal of Structural Engineering. 1996, 122(3): 247~252.
    [33] Brown V L and Bartholomew C L. FRP Reinforcing Bars in Reinforced Concrete Members [J]. ACI Material Journal. 1993, 90(1):34~39.
    [34] 薛伟辰.纤维塑料筋粘结锚同性能的试验研究[J].工业建筑.1999,29(12):5~7.
    [35] 王晓辉.预应力FRP筋混凝土梁试验与理论研究[D].上海:同济大学,2005.
    [36] Roman Okelo, Robert L Yuan. Bond Strength of Fiber Reinforced Polymer Rebars in Normal Strength Concrete [J]. Journal of Composites for Construction. 2005, 6:203~213.
    [37] 刘华杰.纤维塑料筋混凝土受弯构件试验研究与理论分析[D].上海:同济大学,2003.
    [38] 郑乔文.FRP筋混凝土梁设计理论研究[D].上海:同济大学,2006.
    [39] A Mattok, K Babaei. Application of Fiber Reinforced Plastic Rods as Prestressing Tendons in Concrete Structures [R]. Washington State Transportation Center (TRAC). University of Washington, Seattle, WA. 1989: 44~45.
    [40] Charles W Dolan. FRP Developments in the United States [A]. Fiber Reinforced Plastic (FRP) Reinforcement for Concrete Structures: Properties and Applications [C]. A Narmi, ed. Elsevier, Amsterdam. 1993, 42: 130~163.
    [41] A Nanni, C E Bakis, T O Dixon. Performance of FRP Tendon-Anchor Systems for Prestressed Concrete Structures [J]. PCI Journal. 1996, 41(1): 34~43.
    [42] Burong Zhang, Brahim Benmokrane. Design and Evaluation of a New Bond-Type Anchorage System for Fiber Reinforced Polymer Tendons [J]. Can. J. Civ. Eng. 2004, 31: 14~26.
    [43] Charles E Bakis, Steven M karnes. FRP Anchors for Unbounded FRP Tendons. [J] FRP Composites in Civil Engineering, J-G Teng ed. 2001:1263~1269.
    [44] Zhang B R, Benmokrane B, Chennouf A. Prediction of Tensile Capacity of Bond Anchorages for FRP Tendons [J]. Journal of Composites for Construction. 2000, 4(2):39~47.
    [45] E Y Sayed-Ahmed, N G Shrive. A New Steel Anchor System for Post-Tensioning Applications Using Carbon Fibre Reinforced Plastic Tendons [J]. Canadian Journal of Civil Engineering. 1998, 25:113~127.
    [46] Campbell T I, Shrive N G., Soudki K A, Al-Mayah A, Keatley J P, Reda M M. Design and Evaluation of a Wedge-Type Anchor for FRP Tendons [J]. Can. J. Civ. Eng. 2000, 27(5): 985~992.
    [47] Mahmoud M, Reda Taha, Nigel G Shrive. UHPC Anchors for Post Tensioning [J]. Concrete International. 2003: 35~40.
    [48] 薛伟辰.混凝土结构中新型配筋FRP的试验研究[R].河海大学博士后研究工作报告,1997.
    [49] 薛伟辰,康清梁.纤维塑料筋FRP在混凝土结构中的应用[J].工业建筑.1999,29(2):19~21.
    [50] 梅葵花,吕志涛,张继文,等.CFRP斜拉索锚具的静载试验研究[J].桥梁建设.2005(4):20~23.
    [51] 方志,梁栋.单根碳纤维(CFRP)预应力筋粘结式锚具的试验研究[J].南华大学学报(理工版).2004,18(1):35~37.
    [52] Rehm G, Franke L. Kunstharzgebundene Glasfaserstabe Als Bewehrung im Betonbau [J]. Die Bautechnik. 1974, 4:115~120.
    [53] Mutsuyoshi H., Uehara K., and Machida A.. Mechanical Properties and Design Method of Concrete Beams Reinforced with Carbon Fiber Reinforced Plastics [J]. Transaction of the Japan Concrete Institute, Japan Concrete Institute, Tokyo, Japan, 1990, 12:231~238.
    [54] A. Yonekura, E. Tajawa and H. Nakayama. Flexural and shear behaviour of concrete beams using FRP rods as prestressing tendons [A]. Fiber reinforced plastic reinforcement of concrete structures, proceedings of the ACI International Symposium [C]. 1993:525~548
    [55] Woff R. and Miesseler H.J.. Experience with glass fiber composite bars as prestressing elements for engineering structures [J]. ASME Composite Material Technology, 1993, 53: 95~101.
    [56] Tanigaki M., Okamoto T., Tamura T., Matsubara S. and Nomura S.. Study of braided aramid fibre rods for reinforcing concrete [A]. Proceedings of the 13th IABSE Congress [C]. Helsinki, 1988, 15~20.
    [57] Tanigaki M., Nomura S., Okamoto T., and Endo K.. Flexural Behaviour of Partially Prestressed Concrete Beams Reinforced with Braided Aramid Fiber Rods [J]. Translation of the Japan Concrete Institute. 1989, 11: 215~222.
    [58] T. Katou and N. Hayashida. Testing and Applications of Prestressed Concrete Beams with CFRP Tendons [A]. Fiber Reinforced Plastic Reinforcement for Concrete Structures: Properties and Applications [C]. 1993, 42: 249~265.
    [59] X.W.Zou,韩小雷,季静,周玉.芳纶纤维增强塑料预应力高强混凝土梁弯曲特性及延性探讨[J].建筑结构.2002(10):53~55.
    [60] T. Katou and N. Hayashida. Flexural Characteristics of Prestressed Concrete Beams with CFRP Tendons [A]. ACI Special Publication [C]. 1993, 138: 419~440.
    [61] 薛伟辰.有粘结预应力纤维塑料混凝土梁的试验研究[J].工业建筑.1999,29(2):11~13.
    [62] 薛伟辰.现代预应力结构设计[M].北京:中国建筑工业出版社.2003.
    [63] 张鹏,邓宇,韦树英,朱健.无粘结预应力碳纤维塑料筋混凝土梁的试验研究[J].工业建筑.2004,4(8):31~33.
    [64] Mohamed Saafi, Houssam. Flexural Capacity of Prestressed Concrete Beams Reinforced with Aramid Fiber Reinforced Polymer Rectangular Tendons [J]. Construction and Building Materials. 1998, 12 (5): 245~249.
    [65] Houssam Toutanji, Mohamed Saafi. Performance of Concrete Beams Prestressed with Aramid Fiber-reinfprced Polymer Tendons [J]. Composite Structures. 1999, 44(1): 63~70.
    [66] C. J. Burgoyne. Should FRP Tendons Be bBonded to Concrete? [A] Chapter in Non-metallic Reinforcement and Prestressing [C]. American Concrete Institute, 1993: 367~380.
    [67] J. M. Lees and C. J. Burgoyne. Experimental Study of Influence of Bond on Flexural Behaviour of Concrete Beams Pretensioned with Aramid Fiber Reinforced Plastics [J]. ACI Structural Journal. 1999, 96(3): 377~385.
    [68] J. M. Lees and C. J. Burgoyne. Influence of Bond on Rotation Capacity of Concrete Pretensioned with AFRP [A]. 2nd International Conference on Advanced Composite Materials in Bridges and Structures [C]. Montreal, 1996: 901~908.
    [69] J. M. Lees and C. J. Burgoyne. Rigid Body Analysis of Concrete Beams Pretensioned with Partially Bonded AFRP Tendons [A]. FRPRCS-3 [C]. Sapporo&Japan, 1997: 759~766.
    [70] J. M. Lees and C. J. Burgoyne. Design Guidelines for Concrete Beams Prestressed with Partially-bonded FRP Tendons [A]. FRPRCS-4 [C]. Baltimore, 1999: 807~815.
    [71] J. M. Lees and C. J. Burgoyne. Analysis of Concrete Beams with Partially Bonded Composite Reinforcement [J]. ACI Structural Journal. 2000, 97(2): 252~258.
    [72] N. S. Rizkalla. Partial Bonding and Partial Prestressing Using Stainless Steel Reinforcement for Members Prestressed with FRP [D]. M. Sc. Thesis, Department of civil engineering, Queen's University, Canada, 2000.
    [73] N. S. Rizkalla, Z. Fang, T. I. Campbell. Partially Bonded Partially restressed Beams with Hybrid FRP/stainless Steel Reinforcements [A]. FRPRCS-5 [C]. Cambridge, 2001: 741~750.
    [74] P. T. Dorian. Deformability and Ductility of Partially-Prestressed Concrete Beams Containing CFRP/stainless Steel Reinforcements [D]. M .Sc .Thesis, Department of civil engineering, Queen's University, Canada, 2002.
    [75] 方忐,T.I.Campbell.不锈钢和CFRP混和配筋预应力混凝土梁的延性和变形性能[J].工程力学,2005,22(3):190~197.
    [76] 杨剑,方志.配置CFRP预应力筋混凝土T梁受力性能研究[J].工业建筑增刊.2004:255~257.
    [77] 方志,杨剑.预应力CFRP混凝土T梁受力性能试验研究[J].建筑结构学报.2005,26(5):66~73+111.
    [78] 房贞政.无粘结与部分预应力结构[M].北京:人民交通出版社,1999.
    [79] Baker, A. L. L.. Plastic Theory of Design for Ordinary Reinforced and Prestressed Concrete Including Moment Redistribution in Continuous Members [J]. Magazine of Concrete Research. 1949, 1(2): 57~66.
    [80] Alkhairi, F. M.. On the Behavior of Concrete Beams Prestressed with Unbonded Internal and External Tendons [D]. Ph.D. Thesis, University of Michigan, Ann Arbor, Mich., 1991.
    [81] Gangkatharan, J.. Strength of Partially Unbonded Prestressed Concrete Beams [D]. M .Sc .Thesis, Department of civil engineering, Queen's University, Canada, 2003.
    [82] K. Kordina and J. Hegger. Zur Ermittlung der Biegebruch-Trafaehigkeit bei Vorspannung ohne Verbund [J]. Beton-und Stahlbetonbau. 1987, 82(4): 85~90.
    [83] 无粘结预应力混凝土结构设计规程(JGJ/T 92-93)[S].北京:中国建筑工业出版社,2005.
    [84] Mattock A. M., Yamazaki J., Kattula B. T.. Comparative Study of Prestressed Concrete Beams with and without Bonded [J]. ACI Structural Journal. 1971, 68(2): 116~125.
    [85] Mojtahedi S., Gamble W. L.. Ultimate Steel Stresses in Unbonded Prestressed Concrete [J]. Journal of the Structural Division, ASCE. 1978, (6): 1159~1165.
    [86] ACI Committee 318. Building Code Requirement for Structural Concrete [S]. Detroit (ACI318M05), Michigan: American Concrete Institute, 2005.
    [87] 陆洲导,张士铎.无粘结部分预应力混凝土梁正截面强度的研究[J].土木工程学报.1992,25(6):1~9.
    [88] Panell F. N.. Ultimate Moment of Resistance of Unbonded Prestressed Concrete Beams [J]. Magazine of Concrete Research. 1969, 21 (66): 43~54.
    [89] Tam A. and Panell F. N.. Ultimate Moment of Resistance of Unbonded Prestressed Concrete Beams [J]. Magazine of Concrete Research. 1976, 28(97): 203~208.
    [90] Harajli. M.H.. Effect of Span-Depth Ratio on the Ultimate Steel Stress in Unbonded Prestressed Concrete Members [J]. ACI Structural Journal. 1990, 97(3): 305~312.
    [91] 杜进生,赖国麟.使用荷载下无粘结部分预应力混凝土梁的应力分析[J].土木工程学报.1998,31(1):72~75.
    [92] 杜进生,刘西拉.基于结构变形的无粘结预应力筋应力变化研究[J].土木工程学报.2003,36(8):12~19.
    [93] 王景全,刘钊,吕志涛.基于挠度的体外与体内无粘结预应力筋应力增量[J].东南大学学报(自然科学版).2005,35(6):915~919.
    [94] I-Kuang Fang, Shih-Tzung Yen, Chwen-Shyuan Wang, and Keh-Luen Hong. Cyclic Behavior of Moderately Deep HSC Beams [J]. Journal of Structural Engineering. 1993, 119(9): 2573~2592.
    [95] I-Kuang Fang, Chwen-Shyuan Wang and Keh-Luen Hong. Cyclic Behavior of High-strength Concrete Short Beams with Lower Amount of Flexural Reinforcement [J]. ACI Structural Journal. 1994, 91(1): 10~18.
    [96] 刘之春.部分预应力砼梁抗震性能的试验研究[D].东南大学硕士学位论文.南京,1994.
    [97] Yan Xiao和 Rui Ma. Seismic Behavior of High Strength Concrete Beams [J]. The Structural Design of Tall Building. 1998(7): 73~90.
    [98] 程斌.高性能混凝土框架抗震及性能设计研究[D].上海:同济大学,2003.
    [99] 唐昌辉.无粘结预应力混凝土梁和型钢混凝土柱的试验与研究[D].长沙:湖南大学,2004.
    [100] 王仪.预应力混凝土框架梁能量耗散—损伤积累特性的研究[D].扬州:扬州大学,2004.
    [101] 袁建力,钱仲慧,王仪,徐宜利.预应力混凝土梁在地震作用下的损伤-破坏模型[J].建筑结构学报.2006,27(5):72~78.
    [102] 余天起.预应力CFRP筋混凝土梁延性性能试验研究[D].上海:同济大学,2006.
    [103] L.R.Taerwe,S.Watthys.FRP for Concrete Construction:Activities in Europe[J].Concrete International.1999,21(10):33~36.
    [104] 曹锐.FRP在欧洲混凝土建筑中的应用[J].建筑科技情报.2001(1):44~46.
    [105] L. R. Taerwe, H. Lambotte and H. J. Miesseler. Loading Tests on Concrete Beams Prestressed with Glass Fiber Tendons [J]. PCI Journal. 1992, 37(4): 84~97.
    [106] 曾宪桃,车惠民.复合材料FRP在桥梁工程中的应用及其前景[J].桥梁建设.2000,2:66~70.
    [107] Hiroshi Fukuyama. FRP Composites in Japan [J]. Concrete International. 1999, 10:29~32.
    [108] Sami Rizkalla, Pierre Labossiere. Structural Engineering with FRP in Canada [J]. Concrete International. 1999, 10: 25~28.
    [109] Grace N. F., Navarre F., Nacey R. B., Bonus W., Collavino L.. Design-construction of Bridge Street Bridge-first CFRP Bridge in the United States [J]. PCI Journal, 2002, 47(5): 20~35.
    [110] Koichi Minosaku. Using FRP Materials in Prestressed Concrete Structures [J]. Concrete International. 1992, 8:41~44.
    [111] 吕志涛,梅葵花.国内首座CFRP索斜拉桥的研究[J].土木工程学报.2007,40(1):54~59.
    [112] T. Katou, N. Hayashida. Testing and Applications of Prestressed Concrete Beams with CFRP Tendons [A]. Fiber-Reinforced-Plastic (FRP) Reinforcement for Concrete Structures: Properties and Applications [C]. A. Nanni, ed. Elsevier 1993: 249~265.
    [113] M. A. Erki, S. H. Rizkalla. FRP Reinforcement for Concrete Structures [J]. Concrete International. 1993, 15(6): 48~53.
    [114] Dolan C W, Bakis C E and Nanni A. Design Recommendations for Concrete Structures Prestressed with FRP Tendons [R]. Report No. ACI 440R-96, Detroit Michigan, 1996.
    [1] 混凝土结构设计规范(GB 50010-2002)[S].北京:中国建筑工业出版社,2002.
    [2] 建筑抗震设计规范(GB 50011-2001)[S].北京:中国建筑工业出版社,2001.
    [3] 朱伯龙,张琨联.建筑结构抗震设计原理[M].上海:同济大学出版社,1994.
    [4] 薛伟辰.非金属锚杆界面粘结强度试验研究[J].岩土工程学报,2005,27(2):106~109.
    [5] 建筑抗震试验方法规程(JGJ101-96)[S]..北京:中国建筑工业出版社,1997.
    [6] 朱伯龙.结构抗震试验[M].北京:地震出版社,1989.
    [7] 程斌,薛伟辰,李杰.预应力与非预应力高性能混凝土梁抗震性能试验研究与有限元分析[J].建筑结构学报.2004,25(1):1~16
    [8] 薛伟辰,程斌.纤维增韧混凝土梁抗震性能研究[A].第九届全国纤维水泥与纤维混凝土学术会议[C].郑州,中国,2002,10.
    [9] 程斌.高性能混凝土框架梁抗震及性能设计研究[D].上海:同济人学.2003,2.
    [10] 黄珏.钢筋混凝土异型柱框架两层半子结构试验及抗震性能研究[D].上海:同济大学.2003,3.
    [11] 朱伯龙,张琨联.建筑结构抗震设计原理[M].上海:同济大学出版社,1994.
    [12] 建筑抗震试验方法规程(JGJ101-96)[S].北京:中国建筑工业出版社,1997.
    [1] 徐芝纶.弹性力学上、下册[M].北京:高等教育山版社.1992.
    [2] 夸克工作室.有限元分析教学范本,FEMLAB与MATHEMATICA[M].北京:清华大学出版社,2003.
    [3] 李国平.预应力混凝土结构设计原理[M].北京:人民交通出版社,1999.
    [4] 江见鲸.钢筋混凝土结构非线性有限元分析[M].陕西:陕西科学技术出版社,1994.
    [5] 刘涛等.精通ANSYS[M].北京:人民交通出版社,1995.
    [6] 郝文化.ANSYS土木工程应用实例[M].中国水利水电出版社.2005.
    [7] 张鹏.FRP筋混凝土梁受力性能的试验研究及理论分析[D].南宁:广西大学,2006.
    [8] N.S. Rizkalla. Partial Bonding and Partial Prestressing Using Stainless Steel Reinforcement for Members Prestressed with FRP [D]. M. Sc. Thesis, Department of civil engineering, Queen's University, Canada, 2000.
    [1] 薛伟辰.现代预应力结构设计[M].北京:中国建筑工业出版社,2003.
    [2] JSCE. Recommendation for Design and Construction of Concrete Structures Using Continuous Fiber Reinforcing Materials [S]. Concrete Engineering Series 23, Research Committee on Continuous Fiber Reinforcing Materials. Tokyo, Japan, 1997.
    [3] 混凝土结构设计规范(GB50010-2002)[S].北京:中国建筑工业出版社,2003.
    [4] ACI Committee 318. Building Code Requirement for Structural Concrete [S]. Detroit (ACI318M05), Michigan: American Concrete Institute, 2005.
    [5] 杜拱辰.现代预应力混凝土结构[M].北京:中国建筑工业出版社,1986.
    [6] 余天起.预应力CFRP筋混凝土梁延性性能试验研究[D].上海:同济大学,2006.
    [7] D.P. Tung. Deformability and Ductility of Partially-Prestressed Concrete Beams Containing CFRP/stainless Steel Reinforcements [D]. M.Sc.Thesis, Department of civil engineering, Queen's University, Canada, 2002.
    [8] 方志,杨剑.预应力CFRP混凝土T梁受力性能试验研究[J].建筑结构学报.2005,26(5):66~73:111.
    [9] Fang Z. and Campbell T. I. Nonlinearly and Ductility Analysis of Prestressed Concrete Beams Reinforced with Hybrid FRP and Stainless Steel [R]. Department of Civil Engineering, Queen's University, Kingston, Canada, 2000.
    [10] Dolan, C. W., and Burke, C. R.. Flexural Strength and Design of FRP Prestressed Beams [A]. Proceedings of the Second International Conference on Advanced Composite Materials in Bridges and Structures (ACMBS2) [C]. Montreal, Quebec, Canada, 1996: 383~390.
    [1] R. Park and T. Paulay. Reinforced Concrete Structures [M]. John Wiley & Sons, New York, 1975.
    [2] 冯鹏,叶列平,黄羽立.受弯构件的变形性与新的性能指标的研究[J].工程力学.2005,22(6):28~36.
    [3] Mufti A A, Newhook J P, Tadros G. Deformability versus Ductility in Concrete Beams with FRP Reinforcement [A]. Proceedings of 2nd International Conference on Advanced Composite Materials in Bridges and Structures [C]. Montreal, Quebec: CSCE, 1996. 189~199.
    [4] Abdelrahaman A. A., Tadro G., Rozkalla S. H.. Test Model for the First Canadian Smart Highway Bridge [J]. ACI Structural Journal. 1995, 92(4): 451~458.
    [5] 徐绩青.延性系数确定方法的探讨[J].水运工程.2004(9):14~17.
    [6] Tann D. B., Delpak R., Davies P.. Ductility and Deformability of Fiber-reinforced Polymer Strengthened Reinforced Concrete Beams [A]. Proceedings of the Institution of Civil Engineers: Structures & Buildings [C]. 2004, 157(1): 19~30.
    [7] Naaman A. E., Jeong S. M.. Structural Ductility of Concrete Beams Prestressed with FRP Tendons [A]. Proceedings of 2nd International RILEM Symposium (FRPRCS-2) [C]. London: E & FN Spon, 1995. 379~401.
    [8] ACI Committee 440. Guide for the Design and Construction of Concrete Reinforced with FRP Bars [S]. Michigan: American Concrete Institute, 2000.
    [9] Jaeger L. G., Mufti A. A., Macneill D. W.. Experimental Verification of J-factor for Steel and GFRP Reinforcement in Concrete T-beam [A]. Proceedings of Annual Conference of the Canadian Society for Civil Engineering [C]. Sherbrooke, Quebec: CSCE, 1997: 91~100.
    [10] Patrick X. W. Zou. Flexural Behavior and Deformability of Fiber Reinforced Polymer Prestressed Concrete Beams [J]. Journal of Composites for Construction, ASCE. 2003, 7(4): 275~284.
    [11] Van ERP G. M.. Robustness of Fibre Composite Structures Loaded in Flexure [A]. Proceedings of International Conference on FRP Composites in Civil Engineering [C]. Hong Kong: Elsevier, 2001.1421~1426.
    [12] 王晓辉.预应力FRP筋混凝土梁试验与理论研究[D].上海:同济大学,2005.
    [13] 余天起.预应力CFRP筋混凝土梁延性性能试验研究[D].上海:同济大学,2006.
    [14] 方志,杨剑.预应力CFRP混凝土T梁受力性能试验研究[J].建筑结构学报.2005,26(5):66~73+111.
    [15] P. T. Dorian. Deformability and Ductility of Partially-Prestressed Concrete Beams Containing CFRP/stainless Steel Reinforcements [D]. M.Sc.Thesis, Department of civil engineering, Queen's University, Canada, 2002.
    [16] B. W. Jo, G. H. Tae, and B. Y. Kwon. Ductility Evaluation of Prestressed Concrete Beams with CFRP Tendons [J]. Journal of Reinforced Plastics and Composites. 2004, 23(8): 843~859.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700