用户名: 密码: 验证码:
无机纳米粒子对聚丙烯微孔发泡行为的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
首先,本论文通过化学发泡注塑成型制备聚丙烯/纳米无机粒子复合发泡材料,系统研究了纳米无机粒子对聚丙烯发泡行为、发泡注塑成型工艺的影响。结果表明:加入纳米粒子后,发泡聚丙烯材料的泡孔直径明显变小、泡孔密度增大、泡孔尺寸分布变窄;同时与纯聚丙烯相比,加入纳米无机粒子后的聚丙烯/纳米无机粒子复合材料可以在一个较宽的注塑温度范围内获得高质量(泡孔平均直径小,泡孔密度大,泡孔尺寸分布均匀)的发泡材料。这主要是由于纳米粒子在发泡过程中主要起到两个方面的作用,一方面无机纳米粒子的加入降低了聚丙烯的结晶热,使聚丙烯在发泡成型冷却阶段的熔体强度不致下降太低,变相地提高了聚丙烯的熔体强度;另一方面无机纳米粒子具有异相成核作用,可以显著提高发泡材料的泡孔密度。
     其次,研究了无机纳米粒子对发泡聚丙烯力学性能的影响,结果表明当纳米无机粒子在聚丙烯中含量对应发泡材料的发泡质量最好获得的综合力学性能最佳。同时通过测试不同本征韧性的发泡材料的冲击性能,研究了发泡基材的本征韧性与微孔结构对聚丙烯微孔发泡材料的冲击性能的影响。结果表明发泡材料的冲击强度(α_k)不仅与微孔的作用有关——裂纹扩展面上材料的有效截面积减少导致的冲击强度降低(α_(k1)),以及微孔导致裂纹扩展阻力增加对冲击强度的贡献(α_(k2)),而且材料的本征韧性对发泡聚合物的冲击强度也有影响(α_(k0)),其微孔发泡聚合物的冲击强度可表述为:α_k=α_(k0)-α_(k1)+α_(k2)。
First, in this paper, polypropylene / inorganic nano-particles composite foam materials was prepared by a method of chemical foam injection molding, and the effects of inorganic nano-particles content on the foaming behavior of polypropylene and foam injection molding process was studied systematically. The results showed that after adding nano-particles, polypropylene foam material of the cell significantly smaller in diameter, larger in cell density, and narrower in pore size distribution; Compared with pure PP, the PP / nano-inorganic particle composites in a wide temperature range of injection molding could obtaining a high-quality (average diameter of the small cell, large cell density, narrow cell size distribution) foam material. This was mainly due to the process of nano-particles in the foam has played a major role in two aspects, on the one hand, the addition of inorganic nano-particles reduced the thermal crystallization of polypropylene, so that foam molding of PP in the melt strength of the cooling stage will not drop too low, the improved form of the melt strength polypropylene, so that smaller bubble diameter; on the other hand, nano-particles of inorganic foam with heterogeneous nucleation, can significantly improve the cell density of foam material.
     Second, by testing different intrinsic toughness of the foam impact on the performance of materials, the effect of intrinsic toughness of foam substrate and micro-porous structure of porous foam material on impact performance of the foam material was studied. The results show that the impact strength of foam material (α_k) is not only concerned with the role of micro-porous-Crack surface material to reduce the effective cross-sectional area resulting in lower impact strength (α_(k1)), as well as the micro-porous lead to increased resistance to crack growth the contribution of impact strength (α_(k2)), and intrinsic material toughness of foam substrate also affect the impact strength (α_(k0)), the porous polymer foam impact strength can be expressed as:α_k=α_(k0)-α_(k1)+α_(k2).
引文
[1]Martini JE,Suh NP and Baldwin DF.Microcellular closed cell foams and their method of manufacture.U.S.Patent.4,473,665,1984-9-25
    [2]Colton,J S,Suh,N P.Microcellular foams of semi-crystaline polymeric materials.US Patent 5160674.1992-11-3
    [3]Cha,SW,Suh,N P,Baldwin,D F,Park,C B.Microcellular thermoplastic foamed with supercritical fluid.US.Patent.5158986.1992-10-27
    [4]Baldwin,DF,Suh,N P,Park,CB,Cha,S W.Supermicrocellular foamed materials.US.Patent.5334356.1994-08-02
    [5]Martini JE and Ellen J.Master's Thesis.Massachusetts Institute of Technology,1981
    [6]Kumar V,Vander Wel M,Weller J,et al.Experimental characterization of the tensile behavior of microcellular polycarbonate foams.Journal of Engineering Materials and Technology,Transactions of the ASME.1994,116(4):439-445
    [7]Williams JM and Wrobleski DA.Microstructures and properties of some microcellular foams.Journal of Materials Science.1989,24(11):4062-4067
    [8]Maxuana LM.,Park CB and Balatinecz JJ-Structures and mechanical properties of microcellular foamed polyvinyl chloride.Cellular Polymers.1998,17(1):1-16
    [9]Kumar V,Juntunen RP and Barlow C.Impact strength of high relative density solid state carbon dioxide blown crystallizable polyethylene terephthalate microcellular foams.Cellular Polymers.2000,19(1):25-37
    [10]Ozkul MIA Mark JE and Aubert JH.Elastic and plastic mechanical responses of microcellular foams.Journal of Applied Polymer Science.1993,48(5):767-774
    [11]Collias Dl.and Baird DG.Tensile toughness of microcellular foams of polystyrene,styrene-acrylonitrile copolymer,and polycarbonate,and the effect of dissolved gas on the tensile toughness of the same polymer matrices and microcelluiar foams Polymer Engineering and Science.1995,35(14):1167-1177
    [12]Seeler K A,and Kumar V,Fatigue of High Density Microcellular Polycarbonate",Journal of Reinforced Plastics and Composites,1993.Vol.12,359
    [13]Collias D I,Baird D G,Borggreve R J M,Impact Toughening of Polycarbonate by Microcellular Foaming Polymer,1994,35(18):35:3978-3983
    [14]Park C B,Baldwin D F,Suh N P,Polym.Effect of the pressure drop rate on cell nucleation in continuous processing of microcellular polymers,Polym.Eng.Sci,1995 vol.35,no.5,432-440.
    [15]肖纪美.聚合物合金的无机化学[M].第一版.北京:冶金工业出版社,1994.206.
    [16]The Freedonia Group,Inc.Foamed Plastics to 2005;Study 1436:Cleveland,OH,2001.
    [17]佚名.美国泡沫聚合物需求增加.聚合物市场,1996(23):14
    [18]Vipin Kumar.Microcellular Polymers:Novel Materials for the 21st Century.Progress in Rubber &Plastics Technology,1993,9(1):54-70.
    [19]Krueger DC and Reichel CJ. Chlorodifluoromethane as the primary blowing agent far rigid urethane foams using conventional low and high pressure foam mixing equipment.Folyurethanes world congress. 1991:220-224
    [20] Grunbauer HJM, Broos JAF, Thoen J A et al. Fine celled PFC-free rigid foam-new machinery with low boiling blowing agents. Journal of Reinforced Plastics and Composites. 1994, 13(4):361-370
    [21]Toensmeier PA. Blowing agents, CFC replacement becomes more promising.Modern Plastics. 1989, 66(9): 53-56
    [22] Grunbauer HJM, Thoen JA and Smits GF. Low boiling blowing agents for rigid polyurethane foams: A new concept for nucleation and expansion of CFC-1 I free foams. Polymeric materials science and engineering, proceedings of the ACS division of polymeric materials science and engineering. 1992, 67: 503-505
    [23] Singh SN, Burns SB, Costa JS and Bonapersona V. Method of increasing the solubility of hydrocarbons and HFCs in polyurethanes raw materials and the effects on the performance and processing characteristics of construction foams. Cellular Polymers. 1997, 16(6): 444-467
    [24] Hall PG and Stoeckli HF. Adsorption of nitrogen, n-butane and neo-pentane on chlorohydrocarbon polymers. Traps Faraday. 1969, 65 (564): 3334-3340
    [25]Hansen RH and Martin WM. Novel methods for the production of foamed polymers, II. nucleation of dissovled gas by finely divided metals. Journal of Polymer Science, Part B:polymer letters. 1965, 3:325-330
    
    [26] Hansen RH. Production of fine cells in the extrusion of foams. SPE Journal. 1962, 18(1): 77-82
    
    [27] Blyler LL and Kwei TK. Flow behavior of polyethylene melts containing dissolved gases. Journal of Polymer Science, Part C: polymer symposia. 1971, 35: 165-176
    [28] Desphande Ns and Barigou M. Performance characteristics of novel mechanical foam breakers in a stirred tank reactor. Journal of Chemical Technology and Biotechnology. 1999, 74(10): 979-987
    [29]Djelveh G, Gros JB and Cornet JF. Foaming process analysis for a stirred column with a narrow annular region. Chemical Engineering Science. 1998,53(1):3157-3160
    
    [30] Blander M. Bubble nucleation in liquids. Advances in Colloid and InterfaceScience1979, 10: 1-32
    [31] Ramesh NS, Rasmussen DH and Campbell microcellular foams assisted by the survival of GA.Heterogeneous nucleation of microvoids in polymerslow glass transition particles, Part 1: mathematical modeling and numerical simulation. Polymer Engineering and Science. 1994,34(22):1685-1697
    [32] Stewart CW. Nucleation and growth of bubbles in elastomers. Journal of polymer Science, Part A-2: Polymer Physics. 1970, 8(6): 937-955
    [33]Blander M. Bubble nucleation in liquids. Advances in Colloid and Interface Science. 1979, 10:1-32
    [34] Ramesh NS, Rasmussen DH and Campbell GA. Heterogeneous nucleation of microcellular foams assisted by the survival of microvoids in polymers containing low glass transition particles, Part 1:mathematical modeling and numerical simulation. Polymer Engineering and Science. 1994, 34(22):168 5-1697 Frenkel J.Kinetic theory of liquids.New York.1955
    [35]Gerum E,Straub J and Grigul U.Superheating in nucleate boiling calculated by the heterogeneous nucleation theory-International Journal of Heat and Mass Transfer.1979,22(4):S 17-524
    [36]Skripov VP.Metastable Liquids.John Wiley&Sons.New York,1974
    [37]Gabrielli C,Huet F and Keddam M.Characterization of electrolytic bubble evolution by spectral analysis.Application to a corroding electrode.Journal of Applied Electrochemistry.1984,15(4):503-508
    [38]Golorin VS,Kolchugin BA and Zakharova EA Investigation of the mechanism of nucleate boiling of ethyl alcohol and benzene by means of high-speed motion-picture photography.Heat Transfer—Soviet Research.1978,10(4):79-98
    [39]Skripov V,Baidakov V,F,makov G,et al.Superheated liquids:Thermophysical properties,homogeneous nucleation and explosive boiling-up.American Society of Mechanical Engineers.1977:77-87
    [40]Katz JL and Wiedersich H.Effect of insoluble gas molecules on nucleation of voids in materials supersaturated with both vacancies and intexstitials.Journal of Nuclear Matea-ials.1973,46(1):41-45
    [41]胡英.近代化工热力学—应用研究的新进展.科学技术文献出版社[M],1994:48
    [42]徐祖耀.相变原理.科学出版社[M],1988
    [43]Blander M and Katz JL.Bubble nucleation in liquids.AIChE Journal,1975,21(5):833-848
    [44]徐济鉴,贾斗南编,鲁钟琪主审.沸腾传热与气液两相流.原子能出版社[M],1993:362
    [45]Abraham EF.Homogeneous Nucleation.Academic Press.New York.1974:125-127
    [46]Petty DG,Blythe PA and Shih CJ.Near-equilibrium heterogeneous nucleation.Letters in Applied and Engineering Sciences.1977,5(1):1-12
    [47]Ward C A,Johnson WR,Venter RD,et al.Heterogeneous bubble nucleation and conditions for growth in a liquid-gas system of constant mass and volume.Journal of Applied Polymer sics.1983,54(4):1833-1843
    [48]筏义人,徐德恒等著.高分子表面的基础和应用.化学工业出版社,1990
    [49]戴干策.聚合物加工中的传递现象.中国石化出版社,1999
    [50]Faridi N,Dey,SK and Chawda A Measurement of solubility of gases in semi-crystalline polymers,Annual Technical Conference-ANTEC,Conference Proceedings,1997,2:2221-2226
    [51]尚金山,郑菊英.高分子化学及物理学.兵器工业出版社[M],1990
    [52]Akiba 1 and Masuoka H.Measurements of Henry's constants for hydrocarbon vapors in polystyrene and poly(phenylene sulfide) powders by gas chromaxography.Journal of Chemical Engineering of Japan.1998,31(3):313-319
    [53]滕建新.发泡聚合物动态成核机理的研究,华南理工大学博士学位论文,2005
    [54]吴舜英,徐敬一.发泡聚合物成型.第二版.北京:化学工业出版社,1999
    [55]Masami Okamoto,Pham HoAi Nam,Pralay Maiti,Tadao Kotaka,Takashi Nakayama,Mitsuko Tkada,Masahiro Ohshima,Arimitsu Usuki,Naoki Hasegawa,and Hirotaka Okamoto.Biaxial Flow-Induced Alignment of Silicate Layers in Polypropylene/Clay Nanocomposite Foam[J].Nano letters, 2001,1:503-505.
    [56]Xiangmin Han,Changchun Zeng,L.James Lee,Kurt W.Koelling,and David L.Tomasko.Extrusion of Polystyrene Nanocomposite Foams With Supercritical COP[J].Polymer Engineering And Science,2003,43:1261-1275.
    [57]Mingjun Yuan,Lih-Sheng Turng,Shaoqin Gong,Daniel Caulfied,Chris Hunt,and Rick Spindler.Study of Injection Molded Microcellular Polyamide-6 Nanocomposites[J].Polymer Engineering And Science,2004,44:673-686.
    [58]Xia Cao,L.James Lee,Tommy Widya,and Christopher Macosko.Polyurethane/clay nanocomposites foams:processing,structure and properities[J].Polymer,2005,46:775-783.
    [59]Yonglai Yang,Mool C.Gupta,Kenneth L.Dudley,and Roland W.Lawrence.Conductive Carbon Nanofiber Polymer Foam Structure[J].Advance materials,2005,17:1999-2003.
    [60]Pham Hoai Nam,Pralay Maiti,Masami Okamoto,and Tadao Kotaka.Foam Processing and Cellular Structure of Polypropylene/Clay Nanocomposites[J].Polymer Engineering And Science,2002,42:9.
    [61]Yingwei Di,Salvatore Iannace,Ernesto Di Maio,and Luigi Nicolais.Poly(lactic acid)/Organoclay Nanocomposites:Thermal,Rheological Properties and Foam Processing[J].Journal of Polymer Science:Part B:Polymer Physics,2005,43:689-698
    [62]Changchun Zeng,Xiangmin Han,L.James Lee,Kurt W.Koelling,and David L.Tomasko.Polymer-Clay Nanocomposite Foams Prepared Using Carbon Dioxide[J].Advanced materials,2003,15:1743-1747.
    [63]Young- Wook Chang,Dongsuk Lee and Seong- Youl Bae.Preparation of polyethylene- octane elastomer/clay nanocomposite and microcellular foam-processed in supercritical carbon dioxide[J].Polymer International,2006,55:184-189.
    [64]Youhei Fujimoto,Suprakas Sinha Ray,Masami Okamoto,Akinobu Ogami,Kazunbu Yamada,and Kazue Ueda.Well-Controlled Biodegradable Nanocomposite Foams:From Microcellular to Nanocellular[J].Macro mol.Rapid Commune,2003,24:457-461.
    [65]Kentaro Taki,Tatsunri Yanagimoto,Eita Funami,Masami Okamoto,and Masahiro Ohshima,Visual Observation of CO_2 Foaming of Polypropylene-Clay Nanocomposites[J].Polymer Engineering And Science,2004,44:1004-1011.
    [66]Masaki Mitsunaga,Yasuhito Ito,Suprakas Sinha Ray,Masami Okamoto,and Katsuhiko Hironaka.Intercalated Polycarbonate/Clay Nanocomposites:Nanostructure Control and Foam Processing[J].Macro mol.Mater.Eng,2003,288:543-548.
    [67]张纯,罗筑,于杰,等.二次开模注射成型微孔发泡PP工艺及其性能研究[J].中国塑料,2005,19(8):67-70.
    [68]廖永灵,何力,李良,何颖,房春燕,薛兵.温度对微孔发泡PP材料冲击性能的影响[J].塑粒工业,2007,11:46-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700