用户名: 密码: 验证码:
用于质子交换膜燃料电池的膜材料制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃料电池(Fuel Cell)是一种新型的将化学能转化为电能的装置,被公认为是21世纪首选的清洁、高效的发电技术。其中,质子交换膜的开发受到科研工作者们越来越广泛的重视。本论文通过改变聚芳醚酮的结构以及掺杂入无机纳米粒子、碳纳米管等方法改善了质子交换膜在燃料电池中的性能。
     I.通过亲核取代缩聚反应,合成了一系列四甲基磺化间位聚醚醚酮酮,并对聚合物膜的性能进行了评价。
     II.通过亲核取代缩聚反应,合成了一系列双酚A磺化间位聚醚醚酮酮,并对聚合物膜的性能进行了评价。
     III.为了提高高磺化度SPEEK膜的甲醇阻醇性能,制备了一系列掺杂不同含量ETS-10粒子的SPEEK/ETS-10复合膜并对其性能进行了研究。
     IV.为了增强高磺化度SPEEK膜的力学性能,制备了一系列SPEEK/CNTs复合膜并对其性能进行了研究。
     V.利用两种新型的铂前驱体,合成了铂/银纳米管催化剂,用于燃料电池中,利用SEM和TEM分别对银纳米线和铂纳米管进行了表征,利用循环伏安测试了电学性能。
Proton exchange membrane fuel cells (PEMFCs) which convert chemical energy efficiently into electrical energy via oxidation and reduction reactions are receiving considerable attention as transport, stationary, and portable future power sources because of their low emissions and high energy conversion efficiency. The proton exchange membrane (PEM), which provides ionic pathways to transfer protons in PEMFCs as well as a separator between the electrodes for the reactant gases, protons, fuel and electrons, is the key component of the PEMFCs. Nafion, one of the perfluorosulfonic acid membranes, is the current state-of-the art PEM material, due to its good mechanical, thermal and chemical stability, in addition to high proton conductivity at moderate temperatures (< 90 oC) with relatively low ion exchange capacity (IEC). However, several drawbacks of Nafion, such as high cost, high methanol permeability, low humidity and a major reduction in conductivity at high temperatures, have led researchers to investigate promising alternatives. Presently, numerous research efforts are focusing on the sulfonated aromatic polymers because of their low cost, high proton conductivity, and their high thermal, chemical and mechanical stabilities.
     Poly(aryl ether ketone)s, the important engineering resins, are well known for their excellent high thermal stability, mechanical properties, and oxidation resistance. Sulfonated reaction could be accomplished in two ways: post-sulfonation of polymers and copolymerization using sulfonated monomers with non-sulfonated monomers. The latter affords some advantages over postsulfonation, because it can easily control the position and the content of sulfonated groups, thus further control ion-exchange capacity (IEC) and proton conductivity. Also this method avoids cross-linking and other side reactions. This method makes the sulfonic acid content of copolymers rather easy and facilitates detailed studies of the relationship beteween structure and property. Compared to post-sulfonatin, degree of polymerization of direct copolymerization is lower than that of post-sulfonation because of difference in reactive activeness. Several groups, including our own, use the approach of direct copolymerization of sulfonated monomers, which enables better control of morphology and the number of sulfonic acid functions, so as to synthesize a series of sulfonated copoly(aryl ether ketone)s and sulfonated copoly(aryl ether sulfone)s which differ from each other by the structure of the bisphenol monomers.
     In this thesis, we used following way to solve these problems and improved the PEM properties:
     (1) Synthesized a novel series of SPEEKKs with 3,3’,5,5’-tetramethyl-4,4’-biphenol (TMBP)
     (2) Synthesized a novel series of SPEEKKs with bisphenol A
     (3) Composite membranes for improving the methanol properties
     (4) Composite membranes for improving the mechanical properties
     (5) The Pt/Ag nanotubes catalyst were synthesized for fuel cell as an attempt.
     In chapter 2, a novel series of SPEEKKs with different degrees of sulfonation (Ds) were synthesized from 1,3-bis(3-sodium sulfonate-4-fluorobenzoyl)benzene (1,3-SFBB-Na), 1,3-bis(4-fluorobenzoyl)benzene (1,3-FBB) and 3,3’,5,5’-tetramethyl-4,4’-biphenol (TMBP) by aromatic nucleophilic polycondensation. FT-IR spectroscopy was used to confirm the chemical structures of the SPEEKKs. The Ds values were measured by both titration and 1H-NMR data and the results agree with the calculated ones, which clearly suggest that Ds can be readily manipulated by controlling the amount of sulfonated monomer added. The high intrinsic viscosities of the polymers mean that the polymers have high molecular weights. The thermal stabilities of the SPEEKKs in acid and sodium forms were characterized by thermogravimetric analysis (TGA). All the polymers in the sodium form have better thermal stability than those of the acid form. The second thermal degradation in both the sodium and the acid forms around 450 oC are assigned to the degradation of the polymer main chain, indicating that the incorporation of 3,3’,5,5’-tetramethyl-4,4’-biphenol did not decrease the thermal stability due to the strong–CH3 bonds, the SPEEKK polymers in acid form have high thermal stability. SPEEKK membranes were easily prepared with solution casting method. The water uptake continues to increase with Ds and temperature, and is especially high for SPEEKK-80, which was about 300 %. The swelling data of the SPEEKK-80 was not obtained at 80 oC because the membrane was unable to maintain a smooth morphology after several hours in water at 80 oC, although the water uptake data could still be obtained at this moment. The proton conductivity of membranes increased when Ds (or IEC) and temperature increased. SPEEKK-60, -70 and -80 membranes showed higher proton conductivities than 10-2 S cm-1 at 80 oC and 100% relative humidity, which is the lowest value of practical interest for use as PEM in fuel cells. The SPEEKK membranes exhibit increased methanol diffusion coefficients at 25 oC depending on the Ds. These membranes show low methanol diffusion in the range of 8.32×10-9 to 1.14×10-7 cm2s-1, which is much lower than that of Nafion (2×10-6 cm2s-1) at the same temperature. The mechanical properties data indicate that the SPEEKK membranes are strong and tough enough for use in PEMFC. Compared to Nafion, SPEEKK membranes show relatively better mechanical stability at ambient condition. And the results show the SPEEKK membranes are promising alternatives to Nafion membranes in DMFCs.
     In chapter 3, a novel series of SPEEKKs were prepared using BPA as the biphenol. Also we used 1,3-bis(3-sodium sulfonate-4-fluorobenzoyl)benzene (1,3-SFBB-Na), 1,3-bis(4-fluorobenzoyl)benzene (1,3-FBB). The SPEEKK with different sulfonated degrees were prepared by direct synthesis of sulfonated monomer method. The structures of SPEEKKs were characterized by FT-IR and 1H-NMR. 1H-NMR was used to identify the molecular structure of the sulfonated polymers and to evaluate the degree of sulfonation (Ds). The Ds calculated from 1H-NMR was well consistent with values From the TGA curves, we found that the temperatures of 10% weight loss (Td10%) for the sulfonated polymers were all greater than 340oC. This showed that the polymers had high thermal stability. The solubility properties resulted polymers show excellent solubility in aprotic dipolar solvents such as DMF, DMSO and NMP. The water uptake continued to increase with Ds and temperature and particularly sharply increased for SPEEKK-5. Water uptake of the polymers was lower than that of Nation 117. This may suggest the influence of the position of sulfonate groups in polymer on the microstructure of SPEEKK membranes. The water diffusion coefficient of SPEEKK membranes increases with the increment of Ds. The water diffusion of SPEEK-1 to SPEEKK-5 membranes calculated from the slope of the line is 2.987×10-9, 8.870×10-9, 1.764×10-8, 4.685×10-8, and 9.334×10-8m2s-1, respectively. From the results, the velocity of water loss enhance with increasing Ds. The proton conductivity of membranes increase when Ds (or IEC) and temperature increase. Except for SPEEKK-1 and SPEEKK-2, the other three SPEEKK membranes show higher proton conductivity than 10-2 S/cm at room temperature, which is the lowest value of practical interest for use as PEMs in fuel cells. SPEEKK membranes showed methanol diffusion at the range of 4.29×10-8 - 5.03×10-7 cm2/s, which is much lower than Nafion (2×10-6cm2/s) at the same temperature. SPEEKK membranes show relatively better mechanical stability compared with Nafion.
     In chapter 4, we prepared SPEEK/ETS-10 composite membranes introducing the inorganic ion exchange materials during the membranes synthesis. The performances of the SPEEK/ETS-10 composite membranes were showed in this chapter. The methanol permeability are 4.7004×10-7 cm~2/s 3.0526×10-7 cm~2/s 1.0335×10-7 cm~2/s, from SPEEK/ETS-10-5, -10 to -15, respectively, compared to 7.07×10-7 cm~2/s , the value of bare SPEEK membrane. The Young’s Modulus of the membranes was 1.07GPa, 1.04GPa and1.01GPa, while the Tensile Strength was 44MPa, 47MPa and42MPa, and the Maximum elongation were 23%,11%and11% ,respectively, indicated that the mechanical properties were good enough for use in DMFCs applications. The proton conductivities were 0.100S cm-1 for SPEEK/ETS-10-5 at 80oC, showed that the membranes had the potential using in the DMFC. All the results show the ETS-10 can be used in the composite membranes and the membranes are promising alternatives to Nafion in DMFCs. And the 5% percent is the better one in these membranes which need further researches.
     In chapter 5, we prepared SPEEK/CNTs composite membranes by cast solution method. The carbon nanotubes included four different organic group functional carbon nanotubes, bare carbon nanotubes, -COOH functionalized, -SO3H functionalized, -NH2.functionalized carbon nanotubes. The purpose of this chapter is to see the role of CNTs played in composite membranes. FTIR was used to show the successful preparation of the composite membranes. TGA results showed that the thermal properties of the composite membranes were lower than pure SPEEK membranes. The SPEEK/CNTs composite membranes have better mechanical properties than SPEEK membrane, although the value didn’t change too much along with the content of CNTs. The composite membranes got by different CNTs were good enough for use in DMFCs applications. The water uptakes of the composite membranes were changed by mixing the CNTs with SPEEK. The water uptake of SPEEK/CS05 and SPEEK/CS10 were larger than other membranes because of the–SO3H group.The methanol permeabilities were lower than the value of Nafion membrane. The proton conductivities of the membranes didn’t change too much with different CNTs with a rule of SPEEK/C-SO3H>SPEEK/C-COOH>SPEEK/C-NH2. All the results show the composite membranes can be used in PEMFC. And the SPEEK/C-SO3H membrane is used for the future development.
     In Chapter 6, we successfully synthesized Pt nanotubes using two novel Pt precursors. SEM and TEM were used to get the pictures of Ag nanowires and Pt nanotubes. CV curves showed the Pt nanotubes have good electricity properties for the following research in fuel cell.
引文
[1]毛宗强.燃料电池[M].北京:化学工业出版社,2005.
    [2]张曾科.模糊数学在自动化技术中的应用[M].北京:清华大学出版社,1997.130.
    [3]凌佩弘.氢氧燃料电池的开发与利用[J].中国煤炭,1997, 23(1), 26-29+58.
    [4]徐洪峰,衣宝廉,韩明.固体聚合物电解质燃料电池[J].化学通报,1996,( 7),10-14.
    [5]马紫峰,黄碧纯,石玉美.质子交换膜燃料电池电催化剂研究及膜电极制备技术[J].电源技术,1999, 23(2), 43-47
    [6] Rikukawa M, Sanui K. Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers [J]. Progress in Polymer Science 2000, 25, 1463-1502.
    [7] Thomas S, Zalbowitz M. "Fuel Cells: Green Power" [M]. Department of Energy, 1999, LA-UR-99-3231.
    [8]衣宝廉.燃料电池高效、环境友好的发电方式[M].北京:化学工业出版社,2000.
    [9] Steele B C H, Heinzel A, Materials for fuel-cell technologies [J].Nature, 2001, 414, 345-352.
    [10] Appleby A J, Folkes F R. Fuel Cell Handbook Van Nostrand Reinhold [M].New York, 1989.
    [11] Winter M, Brodd R J. What Are Batteries, Fuel Cells, and Supercapacitors? [J].Chemical Reviews 2004, 104, 4245-4270.
    [12] Barbir F, Gomez T. Efficiency and economics of proton exchange membrane fuel cells [J]. International Journal of the Hydrogen Energy, 1997, 22, 1027-1037.
    [13] Thomas S, Zalbowitz M. Fuel Cells-Green Power [M]. Los Alamos National Laboratory, 1999.
    [14]杨辉,卢文庆.应用电化学[M].北京:科学技术出版社, 2001.
    [15] Halpert G, Frank H., Surampudi S. Batteries and Fuel Cell in Space. [J]. The Electrochemical Society interface Fall, 1999.
    [16] Hickner M A, Ghassemi H, Kim Y S, et al. Alternative Polymer Systems for Proton exchange membranes (PEMs).Chemical Reviews, 2004, 104, 4587-4612.
    [17]衣宝廉.燃料电池的原理、技术状态与展望[J].电池工业,2003,8(1),16-22.
    [18] Raymond,G.;Klaus,H. New Energy Generation [R] 2001,2,24.
    [19] Acres G J K. Recent advances in fuel cell technology and its applications [J]. Journal of Power Sources, 2001, 100, 60-66.
    [20] Melle F D. The global and urban environment: the need for clean power systems [J]. Journal of Power Sources,1998, 71, 7-11.
    [21]黄倬,屠海令,张冀强等.质子交换膜燃料电池的研究开发与应用[M].北京:冶金工业出版社, 2000
    [22] EG&G Technical Services, Fuel Cell Handbook (Seventh Edition) [M]. 2004
    [23] Larminie J, Dicks A, Fuel cell systems Explained [M]. John Wiley & Sons Ltd, England 2003.
    [24] Bockris J O M, Appleby, A J. Alkaline fuel cells [J]. Energy, 1986, 11, 95-135.
    [25] Hoogers G. Fuel Cell Technology Handbook [M]. CRC Press, New York, 2003
    [26] Appleby A J, Foulkes F R. Fuel Cell Handbook [M]. Van Nostrand Reinhold, New York, 1968
    [27] Liebhafsky H A, Cairns E J. Fuel Cells and Fuel Batteries [M]. John Wiley and Sons, Inc. New York, 1968
    [28] Srinivasan S, Dave B B, Dave K A. et al. Overview of Fuel Cell Technology. Fuel Cell Systems [J] L. J. M. J. Blomen and M.N. Mugerwa. New York, Plenum Press: 37-72. (1993).
    [29] Appleby A J. Ed. Fuel Cells: Trends in Research and Applications [M]. Hemisphere Publishing Corp: NewYork, 1987
    [30] Hirschenhofer J H, Stauffer D B, Engleman R R. Fuel Cells: A Handbook for the Department of Energy [M]. B/T Books: Orinda, CA, 1996; p1-1.
    [31] Brenscheidt T, Janowitz K, Salge H J, et al. Performance of ONSI PC25 PAFC cogeneration plant [J].International Journal of Hydrogen Energy 1998, 23, 53-56.
    [32] Minh, N .High Temperature Fuel Cells [J]. Chemtech ,1991, 21, 32-37
    [33] Prabhu, G.; Solaiyan, C.; Dheenadayalan, S., et al. Performance evaluation of a standard molten carbonate fuel cell at different operating conditions [C]. Proceeding of the Indian National Science Academy, Part A: Physical Sciences 2004, 70, 489-502
    [34] Mehta V , Cooper S C. Review and analysis of PEM fuel cell design and manufacturing [J]. Journal of Power Sources, 2003, 114, 32-53
    [35] Hickner M A, [D] Ph.D. Thesis, Virginia Polytechnic Institute and State University, Sept. (2003).
    [36] Dhathathreyan K S, Sridhar P, Sasikumar G, et al. Development of polymer electrolyte membrane fuel cell stacks [J]. International Journal of Hydrogen Energy, 1999, 24, 1107-1115.
    [37] Passalacqua E, Lufrano F, Squadrito G, et al. Nafion content in the catalyst layer of polymer electrolyte fuel cells: effects on structure and performance [J]. Electrochimica Acta 2001, 46, 799-805.
    [38] Korgesch K, Simader G. Fuel Cells and their Applications [M]. Wiley-VCH, Weinheim, 1996
    [39] Adjemian K T, Srinivasan S, Benziger J, et al. Investigation of PEMFC operation above 100°C employing perfluorosulfonic acid silicon oxide composite membranes [J]. Journal of Power Sources, 2002, 109, 356-364.
    [40]钟家轮.质子交换膜燃料电池的发展及展望[J].电池工业,1999,4(1),23-25.
    [41]张华民,明平文,邢丹敏.质子交换膜燃料电池的发展现状[J].当代化工,2001,30(1),7-11.
    [42] Harrison W L, Hickner M A, Kim Y S, et al. Poly (Arylene Ether Sulfone) Copolymers and Related Systems from Disulfonated Monomer Building Blocks: Synthesis, Characterization, and Performance - A Topical Review [J]. Fuel Cells, 2005, 5, 201-212.
    [43]杜春慧,陈建勇.质子交换膜燃料电池的应用研究[J].能源研究与信息,2002,18(1),48-53.
    [44]张华民.质子交换膜燃料电池技术的发展动向[J].当代化工,2002,31(3),125-127+150.
    [45] Savadogo O. Emerging Membranes for Electrochemical Systems: (I) Solid Polymer Electrolyte Membranes for Fuel Cell Systems. [J]. Journal of New Materials for Electrochemical Systems, 1(1), p. 47-66.
    [46] Appleby A J, Foulkes, F R .Fuel Cell Handbook [M]. Van Nostrand Reinhold, New York, 1989.
    [47] Hickner M A, Ghassemi H, Kim Y S, et al. Alternative Polymer Systems for Proton Exchange Membranes (PEMs) [J]. Chemical Reviews, 2004, 104, 4587-4612.
    [48] Srinivasan S. Fuel Cells for Extraterrestrial and Terrestrial Applications [J]. Journal of The Electrochemical Society, 1989, 1 36, 41C-48C.
    [49] Borroni-Bird C E. Fuel cell commercialization issues for light-duty vehicle applications [J] .Journal of Power Sources, 1996, 61, 33-48.
    [50] Klaiber T. Fuel cells for transport: can the promise be fulfilled? Technical requirements and demands from customers [J]. Journal of Power Sources, 1996, 61, 61-69.
    [51] Prater K B. Polymer electrolyte fuel cells: a review of recent developments [J]. Journal of Power Sources, 1994, 51, 129-144.
    [52] Eisenberg A, Yeager H L. Perfluorinated ionomer Membranes [C]. ACS Symposium Series #180,1982
    [53] Kerr J A, Bond Dissociation Energies by Kinetic Methods [J]. Chemical Reviews, 1996, 66, 465-500.
    [54] Fernandez R E. Polymer Data Handbook [M] (Oxford University Press, 1999) p.233
    [55] Mauritz K A, Moore R B. State of Understanding of Nafion [J]. Chemical Reviews, 2004, 104, 4535-4586.
    [56] Gierke T D, Hsu W Y. In Perfluorinated Ionomer Membranes [C] ; Eisenberg A, Yeager H L, (Eds) ACS Symposium Series ,180, Chapter 13, 1982; p 283
    [57] Pourcelly G, Gavach, C. In Proton Conductors, Solids, Membranes, and Gels-Materials and Devices [M]. Colomban, P, Eds.: Cambridge University Press: Cambridge, UK, 1992
    [58] Heitner H C. Recent advances in perfluorinated ionomer membranes: structure, properties and applications [J]. Journal of Membrane Science, 1996, 120, 1-33.
    [59] Steck A E. In Proceedings of the First International Symposium on New Materials for Fuel Cell Systems [C]. Savadogo O, Roberge P.R; Veziroglu T N (Eds) Montreal, 1995, p.74
    [60] Rikukawa M, Sanui, K. Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers [J] .Progress in Polymer Science, 2000, 25, 1463-1502.
    [61] Wakizoe M, Velev O A, Srinivasan S. Analysis of proton exchange membrane fuel cell performance with alternate membranes [J]. Electrochim. Acta 1995, 40, 335-344
    [62] Srinivasan S, Velev O A, Parthasarthy A, et al. High energy efficiency and high power density proton exchange membrane fuel cells - electrode kinetics and mass transport [J]. Journal of Power Sources, 1991, 36, 299-320.
    [63] Tant M R, Darst K P, Lee K D.et al. Multiphase polymers: blends and ionomers. In: L.A. Utracki and R.A. Weiss, Editors, ACS Symposium Series 395 [C]. ACS, Washington (1989), pp. 370–400.
    [64] Eisman G A. The application of Dow Chemical's perfluorinated membranes in proton-exchange membrane fuel cells [J]. Journal of Power Sources, 1990, 29, 389-398.
    [65] Srinivasan S. In Fuel Cell Seminar- Program and Abstracts , Long Beach, CA, 1988, p 324, b.Hamrock S., ACS: Advances in Materials for Proton Exchange Membrane Fuel Cell Systems [C] February2005, Asilomar CA
    [66] Tricoly V. Proton and Methanol Transport in Poly(perfluorosulfonate) Membranes Containing Cs+ and H+ Cations [J]. Journal of The Electrochemical Society, 1998, 145, 3798-3801.
    [67] Heinzel A, Barragan G. A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells [J] .Journal of Power Sources, 1999, 84, 70-74.
    [68] Bredas J L, Chance R R., Silbey R. Comparative theoretical study of the doping of conjugated polymers: Polarons in polyacetylene and polyparaphenylene [J]. Phys. Rev. 1982, 26, 5843-5854
    [69] Kobayashi H, Tomita H, Moriyama H, et al. New Metallic C60 Compound: NaxC60(THF)y [J]. Journal of American Chemical Society,1994, 116, 3153-3154.
    [70] Qi Z and Pickup P G. Novel Supported Catalysts: Platinum and Platinum Oxide Nanoparticles highly dispersed on Polypyrrole/Polystyrenesulphonate Particles [J]. Chemical Communication, 1998, 1, 15-16.
    [71] Kobayashi T, Rikukawa M, Sanui K, et al. Proton-conducting polymers derived from poly(ether-etherketone) and poly(4-phenoxybenzoyl-1,4-phenylene) [J]. Solid State Ionics 1998, 106, 219-225.
    [72] Chalk A J and Hay A S. J. Direct metalation of poly(2,6-dimethyl-1,4-phenylene ether) [J]. Journal of Polymer Science Part A, 1969, 7, 691-705.
    [73] Qi Z, Lefebvre M C and Pickup P G. Electron and proton transport in gas diffusion electrodes containing electronically conductive proton-exchange polymers [J]. Journal of Electroanalytical Chemistry, 1998, 459, 9-14.
    [74] Carrette L, Friedrich K A and Stimming U. Fuel Cells-Fundamentals and Applications [J] .Fuel Cells, 2001, 1, 5-39.
    [75] Watkins D S, In Fuel Cell Systems [M]. Blomen L J M J; Mugerwa M N, Plenum Press: NewYork,1993, p 493
    [76] Carette N, Tricoli V and Picchioni F. Ionomeric membranes based on partially sulfonated poly(styrene): synthesis, proton conduction and methanol permeation [J]. Journal of Membrane Science, 2000, 166,189-197.
    [77] Buchi F N, Grupta B, Haas O,et al. Study of radiation-grafted FEP-G-polystyrene membranes as polymer electrolytes in fuel cells [J]. Electrochim Acta, 1995, 40, 345-353.
    [78] Wei J, Stone C, Steck A E. U.S. Patent, 5,422,411 [P].
    [79] Basura V I, Chuy C, Beattie P D, et al. Effect of equivalent weight on electrochemical mass transport properties of oxygen in proton exchange membranes based on sulfonatedα,β,β-trifluorostyrene (BAM?) and sulfonated styrene-(ethylene-butylene)-styrene triblock (DAIS-analytical) copolymers [J]. Journal of Electroanalytical Chemistry, 2001, 501, 77-88.
    [80] Wakizoe M, Velev O A and Srinivasan S. Analysis of proton exchange membrane fuel cell performance with alternate membranes [J]. Electrochimica Acta , 1995, 40, 335-344.
    [81] Ehrenberg S G, Serpico J M, Wnek G E. et al. U.S. Patent, 5,468,574, 1995 [P]
    [82] Boland E D, Bowlin G L, Simpson D G, et al. Abstracts of Papers, 222nd ACS National Meeting [C] Chicago, IL, United States, August 26-30, 2001, 2001,PMSE-031.
    [83] Kim J, Kim B and Jun B. Proton conductivities and methanol permeabilities of membranes made from partially sulfonated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene copolymers [J]. Journal of Membrane Science, 2002, 207, 129-137.
    [84] Wnek G E, Rider J N, Serpico J M, et al. Proceedings of the 5rst international symposium on protonconducting membrane fuel cells. [C] The Electrochemical Society Proceedings, vol. 95–23, 1995. p. 247
    [85] Ding J, Chuy C and Holdcroft S.Enhanced Conductivity in Morphologically Controlled Proton Exchange Membranes: Synthesis of Macromonomers by SFRP and Their Incorporation into Graft Polymers [J]. Macromolecules, 2002, 35, 1348-1355.
    [86] Guzman-Garcia A G, Pintauro P N, Verbrugge M W, et al. Analysis of radiation-grafted membranes for fuel cell electrolytes [J]. Journal of Applied Electrochemistry, 1992, 22, 204-214.
    [87] Holmberg S, Lehtinen T, Nasman J, et al. Structure and properties of sulfonated poly [(vinylidene fluoride)–g-styrene] norous membranes porous membranes [J]. Journal of Materials Chemistry, 1996, 8, 1309-1317.
    [88] Flint S D and Slade R C T. Investigation of radiation-grafted PVDF-g-polystyrene-sulfonic-acid ion exchange membranes for use in hydrogen oxygen fuel cells [J]. Solid State Ionics, 1997, 97, 299-307.
    [89] Hubner G and Roduner E.EPR investigation of HO. radical initiated degradation reactions of sulfonated aromatics as model compounds for fuel cell proton conducting membranes [J]. Journal of Materials Chemistry ,1999, 9, 409
    [90] Sun Y M, Wu T C, Lee H C, et al. Sulfonated poly(phthalazinone ether ketone) for proton exchange membranes in direct methanol fuel cells [J]. Journal of Membrane Science ,2005, 265, 108-114.
    [91] Gao Y, Robertson G P, Guiver M D, et al. Sulfonated copoly(phthalazinone ether ketone nitrile)s as proton exchange membrane materials [J]. Journal of Membrane Science, 2006, 278, 26-34.
    [92] Li X F, Chen D J, Xu D ,et al. SPEEKK/polyaniline (PANI) composite membranes for direct methanol fuel cell usages [J]. Journal of Membrane Science, 2006, 275, 134-140.
    [93] Jia L, Xu X, Zhang H, et al. Sulfonation of polyetheretherketone and its effects on permeation behavior to nitrogen and water vapor [J]. Journal of Applied Polymer Science, 1996, 60, 1231-1237.
    [94] Jin X, Bishop M T, Ellis T S, et al. A sulphonated poly(aryl ether ether ketone) [J]. British Polymer Journal, 1985, 17,4-10.
    [95] Omran A and Rose J B. Synthesis and sulfonation of poly(phenylene ether ether sulfone)s containing methylated hydroquinone residues [J]. Polymer, 1996, 37, 1735-1743.
    [96] Lee J and Marvel C S. Polyaromatic ether-ketone sulfonamides prepared from polydiphenyl ether-ketones by chlorosulfonation and treatment with secondary amines [J]. Journal of Polymer Science Part A: Polymer Chemistry Edition,1984, 22, 295-301.
    [97] Dimitrova P G, Baradie D, Foscallo C, et al. Ionomeric membranes for proton exchange membrane fuel cell (PEMFC): sulfonated polysulfone associated with phosphatoantimonic acid [J]. Journal of Membrane Science, 2001, 185, 59-71.
    [98] Johnson B C, Ylgor I, Iqbal M, et al. Synthesis and characterization of sulfonated poly(acrylene ether sulfones) [J]. Journal of Polymer Science Part A: Polymer Chemistry Edition, 1984, 22, 721-737.
    [99] Noshay A, Robeson L M. Sulfonated polysulfone [J]. Journal of Applied Polymer Science, 1976, 20, 1885-1903.
    [100] Litter M I and Marvel C S. Polyaromatic ether-ketones and polyaromatic ether-ketone sulfonamides from 4-phenoxybenzoyl chloride and from 4,4 -dichloroformyldiphenyl ether [J]. Journal of Polymer Science Part A: Polymer Chemistry Edition 1985, 23, 2205-2223.
    [101] Zschocke P and Quellmalz D. Novel ion exchange membranes based on an aromatic polyethersulfone [J]. Journal of Membrane Science, 1985, 22, 325-332.
    [102] Turbak A F.Ind.Eng.Chem,[C] Prod,Res.Develop.,1962,1,275.
    [103] Bishop M T, Karasz F E, Russo P S, et al. Solubility and properties of a poly(aryl ether ketone) in strong acids [J]. Macromolecules, 1985, 18, 86-93.
    [104] Daoust D, Devaux J and Godard P. Mechanism and kinetics of poly(ether ether ketone) (PEEK) sulfonation in concentrated sulfuric acid at room temperature Part 1. Qualitative comparison between polymer and monomer model compound sulfonation [J]. Polymer International,2001, 50, 917-924
    [105] Gao Y, Robertson G P, Guiver M D, et al. Synthesis and characterization of sulfonated poly(phthalazinone ether ketone) for proton exchange membrane materials [J].Journal of Polymer Science Part A: Polymer Chemistry ,2003, 41, 497-507.
    [106] Daoust D, Devaux J and Godard P. Mechanism and kinetics of poly(ether ether ketone) (PEEK) sulfonation in concentrated sulfuric acid at room temperature Part 2. Quantitative interpretation of model compound sulfonation [J]. Polymer International, 2001, 50, 925-931.
    [107] Gilbert E E.Interscience [M]. New York, 1956.
    [108] Breck D W.Zeolite Molecular Sieves [M]. John Willey&Sons Inc., New York, 1974, P.636.
    [109] Kerres J, Cui W, Reichle S. New sulfonated engineering polymers via the metalation route. I. Sulfonated poly(ethersulfone) PSU Udel? via metalation-sulfination-oxidation [J]. Journal of Polymer Science Part A: Polymer Chemistry Edition, 1996, 34, 2421-2438.
    [110] Kim I C, Chol J G and Tak T M. Sulfonated polyethersulfone by heterogeneous method and its membrane performances [J]. Journal of Applied Polymer Science, 1999, 74, 2046-2055.
    [111] Trotta F, Drioli E , Moraglio G , et al. Sulfonation of polyetheretherketone by chlorosulfuric acid [J]. Journal of Applied Polymer Science, 1998, 70, 477-482.
    [112] Dai Y, Jian X ,Zhang S , et al. Thermostable ultrafiltration and nanofiltration membranes from sulfonated poly(phthalazinone ether sulfone ketone) [J]. Journal of Membrane Science, 2001, 188, 195-203.
    [113] Zhang S, Jian X and Dai Y. Preparation of sulfonated poly(phthalazinone ether sulfone ketone) composite nanofiltration membrane [J]. Journal of Membrane Science, 2005, 246,121-126.
    [114] Kerres J, Cui W, Eigenberger G, et al In Proceeding of the 11thHydrogen Conference, Stutgart, Germany, [C]. (1996), p 1951
    [115] Nolte R, Ledjeff K, Bauer M, et al. Partially sulfonated poly(arylene ether sulfone) - A versatile proton conducting membrane material for modern energy conversion technologies [J]. Journal of Membrane Science, 1993, 83, 211-220.
    [116] Bauer N, Jones D J, Roziere J, et al. Electrochemical characterisation of sulfonated polyetherketone membranes [J]. Journal of New Materials for Electrochemical Systems, 2000, 3, 93-98.
    [117] Zaidi S M J, Mikhailenko S D, Robertsen, G P, et al. Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications [J]. Journal of Membrane Science, 2000, 173, 17-34.
    [118] Kerres J, Zhang W and Cui W. New sulfonated engineering polymers via the metalation route. II. Sulfinated/sulfonated poly(ether sulfone) PSU Udel and its crosslinking[J]. Journal of Polymer Science Part A: Polymer Chemistry 1998, 36, 1441-1448.
    [119] Kerres J, Cui W and Junginger M. Development and characterization of crosslinked ionomer membranes based upon sulfinated and sulfonated PSU crosslinked PSU blend membranes by alkylation of sulfinate groups with dihalogenoalkanes [J].Journal of Membrane Science 1998, 139, 227-241.
    [120] Feger C, Khojasteh M M and McGrath J E. Polyimides: Materials, Chemistry and Characterization [M]. Elsevier Science, Amsterdam, 1989
    [121] Mittal K L. Polyimides: Synthesis, Characterization and Applications, Plenum Press, New York, 1984
    [122] Savadogo O, Emerging membranes for electrochemical systems: (I) solid polymer electrolyte membranes for fuel cell systems [J]. Journal of New Materials for Electrochemical Systems, 1998, 1, 47-66
    [123] Asano N, Aoki M, Suzuki S, et al. Aliphatic/Aromatic Polyimide Ionomers as a Proton Conductive Membrane for Fuel Cell Applications [J]. Journal of the American Chemistry Society, 2006, 128, 1762-1769.
    [124] Einsla B R, Gunduz N, McGrath J E, et al. Sulfonated naphthalene dianhydride based polyimide copolymers for proton-exchange-membrane fuel cells. I. Monomer and copolymer synthesis [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2004, 42, 862-874.
    [125] Miyatake K, Chikashige Y, Higuchi E, et al. Tuned Polymer Electrolyte Membranes Based on Aromatic Polyethers for Fuel Cell Applications [J]. Journal of the American Chemistry Society, 2007, 129, 3879-3887.
    [126] Guo X X, Fang J H, Watari T, et al. Novel Sulfonated Polyimides as Polyelectrolytes for Fuel Cell Application. 2. Synthesis and Proton Conductivity of Polyimides from 9,9-Bis(4-aminophenyl)fluorene-2,7-disulfonic Acid [J].Macromolecules, 2002, 35, 6707-6713.
    [127] Faure S, Mercier R, Aldebert P, et al. French Pat.9605707 [P].
    [128] Genies C, Mercier R, Sillion B, et al.Stability study of sulfonated phthalic and naphthalenic polyimide structures in aqueous medium [J]. Polymer, 2001, 42, 5097-5105.
    [129] Genies C, Mercier R, Sillion B, et al. Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes [J]. Polymer, 2001, 42, 359-373.
    [130] Zhou, W.; Watari, T.; Kita, H.; Okamoto, K.-I., Chem. Lett. 2002, 5, 534
    [131] Fang, J.; Guo, X.; Harada, S.; Watari, T.; Tanaka, K.; Kita, H.; Okamoto, K.-I., Novel Sulfonated Polyimides as Polyelectrolytes for Fuel Cell Application. 1. Synthesis, Proton Conductivity, and Water Stability of Polyimides from 4,4‘-Diaminodiphenyl Ether-2,2‘-disulfonic Acid [J].Macromolecules ,2002, 35, 9022-9028.
    [132] Yin Y, Fang J, Cui Y, et al. Synthesis, Proton Conductivity and Methanol Permeability of a Novel Sulfonated Polyimide from 3-(2′,4′-diaminophenoxy)Propane Sulfonic Acid [J].Polymer, 2003, 44, 4509-4518.
    [133] Gebel G, Aldebert P and Pineri M. Swelling Study of Perfluorosulphonated Ionomer Membranes [J].Polymer, 1993, 34, 333-339.
    [134] Vallejo E, Pourcelly G, Gavach C,et al. Sulfonated Polyimides as Proton Conductor Exchange Membranes.Physicochemical Properties and Separation H+/Mz+ by Electrodialysis Comparison with a Perfluorosulfonic Membrane [J]. Journal of Membrane Science, 1999, 160, 127-137.
    [135] Gunduz N and McGrath J E. [J].Polymer Preprints 2000, 41, 180
    [136] Gunduz N. Synthesis and Characterization of Sulfonated Polyimides as Proton Exchange Membranes Fuel Cells, Ph.D. Thesis, Virginia Polytechnic Institute and State University, 2001.
    [137] Einsla B R, Hong Y T, Kim Y S, et al. Sulfonated Naphthalene Dianhydride based Polyimide Copolymers for Proton-Exchange-membrane Fuel Cells. I. Monomer and Copolymer Synthesis [J]. Journal of Polymer Science, Part A; Polymer Chemistry 2004, 42, 862-874.
    [138] Einsla B R, Kim Y S, Hickner M A, et al. Sulfonated Naphthalene Dianhydride based Polyimide Copolymers for Proton-exchange-membrane Fuel Cells II. Membrane Properties and Fuel Cell Performance [J]. Journal of Membrane Science, 2005, 255, 141-148.
    [139] Gunduz N, McGrath J E.[J]. Polymer Preprints 2000, 41, 1565
    [140] Ueda M, Toyota H, Ochi T, et al. Synthesis and characterization of aromatic poly(ether sulfone)s containing pendant sodium sulfonate groups [J]. Journal of Polymer Science, Part A; Polymer Chemistry Edition, 1993, 31, 853-858.
    [141] Wiles K B, Bhanu V A, Wang F, et al. [J]. Polymer Preprints, 2002, 43(2), 993.
    [142] Wiles K B, Bhanu V A, McGrath J E, et al. [J].Polymer Preprints,2002,44(1),1089.
    [143] Shobha H K, Smalley G R, McGrath J E, et al. [J]. Polymer Preprints, 2000, 41(1), 180.
    [144] Wang F, Hickner M, McGrath J E, et al. Direct Polymerization of Sulfonated Poly(arylene ether sulfone) Random (statistical) Copolymers: Candidates for New Proton Exchange Membranes [J]. Journal of Membrane Science 2002, 197, 231-242.
    [145] Wang F, Hickner M, Ji Q, et al. Synthesis of highly sulfonated poly(arylene ether sulfone) random (statistical) copolymers via direct polymerization [J]. Macromolecular Symposia 2001, 175, 387-396.
    [146] Hashimoto S, Furukawa I and Ueyama K J. [J]. Macromolecular Science Chemistry, 1977, A11, 2167.
    [147] Smith C D, Grubbs H J, Webster H F, et al. [J]. High Perfor. Polym., 1991,4,211.
    [148] Shobha H K, Smalley G R, Sankarapandian M, et al. [J]. Polymer Preprints, 2000, 41(1), 180.
    [149] Liu Y, Ph D. Thesis, [D] Virginia Polytechnic Institute and State University 1998
    [150] Wang F, Mecham J B, Harrison W, et al. [J]. Polymer Preprints, 2000, 40, 180
    [151] Wiles K B, Bhanu V A, Wang F, et al. [J]. Polymer Preprints, 2003, 44, 1089,
    [152] Wiles K B, Wang F, and McGrath I E. Directly Copolymerized Poly(arylene sulfide sulfone) Disulfonated Copolymers for PEM-based Fuel Cell Systems. I. Synthesis and Characterization [J]. Journal of Polymer Science, Part A: Polymer Chemistry, 2005, 43, 2964-2976.
    [153] Glipa X, Haddad M, Jones D J, et al. Synthesis and Characterisation of Sulfonated Polybenzimidazole Highly Proton Conducting Polymer [J]. Solid State Ionics, 1997, 97, 323-331.
    [154] Gieselman M B, Reynolds J R. Water-soluble Polybenzimidazole-based Polyelectrolytes [J]. Macromolecules, 1992, 25, 4832-4834.
    [155] Bonner W H. U. S. patent, [P]. 3065205, 1962.
    [156] Berezin, et al. Br patent, [P]. 3219679, 1965.
    [157] Goodman I, et al. Br patent, [P]. 871227, 1964.
    [158] Wang F, Chen T L, Xu J P. Sodium Sulfonate-functionalized Poly(ether ether ketone)s [J].Macromolecular Chemistry and Physics 1998,199,1421-1426.
    [159] Wang F, Li J, Chen T L.et al. Synthesis of Poly(ether ether ketone) with High Content of Sodium Sulfonate Groups and Its Membrane Characteristics [J].Polymer,1999,40,795-799.
    [160] Liu S Z, Wang F, Chen T L, et al. Synthesis of Poly(ether ether ketone)s with High Content of Sodium Sulfonate Groups as Gas Dehumidification Membrane Materials [J].Macromolecular Rapid Communications,2001,22,579-582.
    [161] Jiang H Y, Chen T L, et al. Synthesis and Polymerization of Some Macrocyclic (arylene ether sulfone) Containing Cardo Groups and Macrocyclic (arylene ether ketone sulfone) oligomers [J]. Polymer, 1998, 39, 6079-6083.
    [162] Gao Y, Robertson G P, and Guiver M D. Synthesis of Poly(arylene ether ether ketone ketone) Copolymers Containing Pendant Sulfonic Acid Groups Bonded to Naphthalene as Proton Exchange Membrane Materials [J]. Macromolecules, 2004, 37, 6748-6754.
    [163] Xing P X, Robertson G P, and Guiver M D. Sulfonated Poly(aryl ether ketone)s Containing Naphthalene Moieties Obtained by Direct Copolymerization as Novel Polymers for Proton Exchange Membranes [J]. Journal of Polymer Science, Part A; Polymer Chemistry, 2004, 42, 2866-2876.
    [164] Kim D K, Liu B J, and Guiver M D. Influence of Silica Content in Sulfonated Poly(arylene ether ether ketone ketone) (SPAEEKK) Hybrid Membranes on Properties for Fuel Cell Application [J].Polymer,2006, 47, 7871-7880.
    [165] Gao Y, Robertson G P, Guiver M D, et al. Low-swelling Proton-conducting Copoly(aryl ether nitrile)s Containing Naphthalene Structure with Sulfonic Acid Groups Meta to the Ether Linkage [J]. Polymer, 2006, 47, 808–816.
    [166] Gao Y, Robertson G P, Guiver M D, et al. Synthesis of Copoly(aryl ether ether nitrile)s Containing Sulfonic Acid Groups for PEM Application [J]. Macromolecules, 2005, 38, 3237-3245.
    [167] Li X F, Wang Z, Lu H, et al. Electrochemical Properties of Sulfonated PEEK used for Ion Exchange Membranes [J]. Journal of Membrane Science, 2005, 254, 147-155.
    [168] Li X F, Zhao C J, Lu H, et al. Direct Synthesis of Sulfonated Poly(ether ether ketone ketone)s (SPEEKKs) Proton Exchange Membranes for Fuel Cell Application [J].Polymer, 2005, 46, 5820-5827.
    [169] Li X F, Liu C P, Lu H, et al. Preparation and Characterization of Sulfonated Poly(ether ether ketone ketone) Proton Exchange Membranes for Fuel Cell Application [J].Journal of Membrane Science, 2005, 255, 149-155.
    [170]刘晨光,那辉,赵成吉等,一种新型磺化聚醚醚酮的合成、表征和性能,高等学校化学学报,2004, 25, 2359-2362.
    [171]李先锋,那辉,陆辉,一种新型的用于质子交换膜燃料电池的磺化聚醚醚酮酮,高等学校化学学报,2004, 25, 1563-1566.
    [172] Gil M, Ji X L, Li X F, et al. Direct Synthesis of Sulfonated Aromatic Poly(ether ether ketone) Proton Exchange Membranes for Fuel Cell Applications [J]. Journal of Membrane Science, 2004, 234, 75-81.
    [173] Li X F, Na H, Lu H. Novel Sulfonated Poly(ether ether ketone ketone) Derived from Bisphenol S [J]. Journal of Applied Polymer Science, 2004, 94, 1569-1574.
    [174] Li X F, Zhang G, Xu D, et al. Morphology study of sulfonated poly(ether ether ketone ketone)s (SPEEKK) membranes: The relationship between morphology and transport properties of SPEEKK membranes [J]. Journal of Power Sources, 2007, 165, 701-707.
    [175] Xing P X, Robertson G P, Guiver M D, et al. Sulfonated Poly(aryl ether ketone)s Containing the Hexafluoroisopropylidene Diphenyl Moiety Prepared by Direct Copolymerization, as Proton Exchange Membranes for Fuel Cell Application [J]. Macromolecules, 2004, 37, 7960-7967.
    [176] Gierke T D, Munn G E, Wilson F C. The Morphology in Nafion Perfluorinated Membrane Products, as Determined by wide- and small -angle x-ray Studies [J]. Journal of Polymer Science Part B: Polymer Physics Edition, 1981, 19, 1687-1704.
    [177] Roche E J, Pineri M, Duplessix R, Levelut A M.Small-angle Scattering Studies of Nafion Membrane [J]. Journal of Polymer Science Part B: Polymer Physics Edition, 1981, 19, 1-11.
    [178] Yeager H L and Steek A. Cation and Water Diffusion in Nafion Ion Exchange Membranes: Influence of Polymer Structure [J]. Journal of the Electrochemical Society, 1981, 128, 1880-1884.
    [179] Gebel G. Small-Angle Scattering Study of Water-Swollen Perfluorinated Ionomer Membranes [J]. Macromolecules 1997, 30, 7914-7920.
    [180] Gebel G, Moore R B, Small-Angle Scattering Study of Short Pendant Chain Perfuorosulfonated Ionomer Membranes [J]. Macromolecules 2000, 33, 4850-4855.
    [181] Gebel G. Structural Evolution of Water Swollen Perfluorosulfonated Ionomers from Dry Membrane to Solution [J]. Polymer, 2000, 41, 5829-5838.
    [182] Eisenberg A. Clustering of Ions in Organic Polymers. A Theoretical Approach [J]. Macromolecules, 1970, 3, 147-154.
    [183] Fujimura M, Hashimoto T J, Kawai H. Small-angle x-ray Scattering Study of Perfluorinated Ionomer Membranes. 1. Origin of two scattering maxima [J]. Macromolecules, 1981, 14, 1309-1315.
    [184] Fujimura M, Hashimoto T J, Kawai H. Small-angle x-ray Scattering Study of Perfluorinated Ionomer Membranes. 2. Models for Ionic Scattering Maximum [J]. Macromolecules, 1982, 15, 136-144.
    [185] Sauer B B, Mclean R S. Solid Polymer Electrolytes Based on Ionic Graft Polymers: Effect of Graft Chain Length on Nano-Structured, Ionic Networks [J]. Advanced Functional Materials, 2002, 12, 389-394.
    [186] Sauer B B, Mclean R S. AFM and X-ray Studies of Crystal and Ionic Domain Morphology in Poly(ethylene-co-methacrylic acid) Ionomers [J]. Macromolecules, 2000, 33, 7939-7949.
    [187] Yang Y S, Shi Z Q, Holdcroft S. Synthesis of Sulfonated Polysulfone-block-PVDF Copolymers: Enhancement of Proton Conductivity in Low Ion Exchange Capacity Membranes [J]. Macromolecules, 2004, 37, 1678-1681.
    [188] Kreuer K D. On the Development of Proton Conducting Polymer Membranes for Hydrogen and Methanol Fuel Cells [J]. Journal of Membrane Science, 2001, 185, 29-39.
    [189] Ramani V, Kunz H R, Fenton J M. Investigation of Nafion (R)/HPA Composite Membranes for High Temperature/low Relative Humidity PEMFC Operation [J]. Journal of Membrane Science, 2004, 232, 31-44.
    [190] Ramani V, Kunz H R, Fenton J M. Polymer Blends based on Sulfonated Poly(ether ketone ketone) and Poly(ether sulfone) as Proton Exchange Membranes for Fuel Cells [J]. Journal of Membrane Science, 2005, 266, 110-114.
    [191] Damay F, Klein L C. Transport properties of Nafion (TM) composite membranes for proton-exchange membranes fuel cells [J]. Solid State Ionics, 2003, 162-163, 261-267.
    [192] Costamagna P, Yang C, Bocarsly AB, et al. Nafion (R) 115/zirconium Phosphate Composite Membranes for Operation of PEMFCs above 100 Degrees C. [J]. Electrochimica Acta, 2002, 47, 1023-1033.
    [193] Stait P, Minutoli M, Hocevar S. Membranes Based on Phosphotungstic Acid and Polybenzimidazole for Fuel Cell Application [J]. Journal of Power Sources, 2000, 90, 231-235.
    [194] Li L, Xu L, Wang Y X. Novel Proton Conducting Composite Membranes for Direct Methanol Fuel Cell [J]. Materials Letters, 2003, 57, 1406-1410.
    [195] He R H,Li Q F,Xiao G,et al. Proton Conductivity of Phosphoric Acid doped Polybenzimidazole and Its Composites with Inorganic Proton Conductors [J]. Journal of Membrane Science, 2003, 226, 169-184.
    [196] Vernon D R, Meng F Q,et al. Synthesis, Characterization, and Conductivity Measurements of Hybrid Membranes Containing a Mono-lacunary Heteropolyacid for PEM Fuel Cell Applications [J]. Journal of Power Sources, 2005, 139, 141-151.
    [197] Ramani V, Kunz H R, Fenton J M. Stabilized Heteropolyacid/Nafion? Composite Membranes for Elevated Temperature/low Relative Humidity PEFC Operation [J]. Electrochimica Acta, 2005, 50, 1181-1187.
    [198] Shao Z G, Joghee P, Hsing I M. Preparation and Characterization of Hybrid Nafion-Silica Membrane doped with Phosphotungstic Acid for High Temperature Operation of Proton Exchange Membrane Fuel Cells [J]. Journal of Membrane Science, 2004, 229, 43-51.
    [199] Jung D H, Cho S Y, Peck D H, et al. Performance Evaluation of a Nafion/silicon Oxide Hybrid Membrane for Direct Methanol Fuel Cell [J]. Journal of Power Sources, 2002, 106, 173-177.
    [200] Staiti P,Arico A S, Baglio V, et al. Hybrid Nafion–silica Membranes Doped with Heteropolyacids for Application in Direct Methanol Fuel Cells [J]. Solid State Ionics, 2001, 145, 101-107.
    [201] Rikukawa M, Sanui K. [J]. Proton-conducting Polymer Electrolyte Membranes based on Hydrocarbon Polymer, Progress in Polymer Science, 2000, 25, 1463-1502.
    [202] Qiao J L, Yoshimoto N, Ishikawa M, et al. Acetic Acid-doPed Poly(ethylene oxide)-modified Poly(methacrylate):a New Proton Conducting Polymeric Gel Electrolyte [J]. Electrochimica Aeta, 2002, 47, 3441-3446.
    [203] Lassegues J C, Grondin J, Hemandez M, et al. Proton Conducting Polymer Blends and Hybrid Organic Inorganic Materials [J]. Solid State Ionics 2001, 145, 37-45.
    [204] Staiti P, Minutoli M, Hocevar S. Membranes based on Phosphotungstic Acid and Polbenzimidazole for Fuel Cell Application [J]. Journal of Power Sources 2000, 90, 231-235.
    [205] Hitoshi N, Itaru H. Proton-conducting Hybrid Solid Electrolytes for Intermediate Temperature Fuel Cells [J].Solid State Ionic 2002, 148, 607-610.
    [206] Genova-Dimitrova P, Baradie B, Foscallo D,et al. Ionomeric Membranes for Proton Exchange Membrane Fuel Cell (PEMFC): Sulfonated Polysulfone Associated with PhosPhatoantimonic Acid [J]. Journal of Membrane Science 2001, 185, 59-71.
    [207] Honma I, Hirakawa S, Yamada K. Synthesis of Organic/inorganic Nanocomposites Protonic Conducting Membrane Through sol-gel Processes [J]. Solid State Ionics, 1999, 118, 29-36.
    [208] Honma I, Takada Y, Bae J M. Protonic Conducting Properties of Sol-gel Derived organic/inorganic Nanocomposite Membranes Doped with Acidic Functional Molecules [J]. Solid State Ionics, 1999, 120, 255-264.
    [209] Kerres J A.Blended and Cross-linked Ionomer Membranes for Application in Membrane Fuel Cells [J]. Fuel Cells 2005, 5, 231-247.
    [210] Kerres J, Ulrich A, Hein M, et al. Cross-linked Polyaryl Blend Membranes for Polylmer Electrolyte Fuel Cells [J] .Fuel Cells 2004, 4, 105-112.
    [211] Jorissen L, Gogel V, Kerres J, et al. New Membrane for Direct Methanol Fuel Cells [J]. Journal of Power Sources 2002, 105, 267-273.
    [212] Kerres J, Zhang W, Ulrieh A, et al. Synthesis and Characterization of Polyaryl Blend Membranes having Different Composition, Different Covalent and/or Ironical cross-linking Density, and their Application to DMFC [J]. Desalination, 2002, 147, 173-178.
    [213] Kerres J, Zhang W, Jorissen L, et al. Application of different Types of Polyaryl-Blend Membranes in DMFC [J].Journal of New Materials for Electrochemical Systems, 2002, 5, 97-107.
    [214] Zhang W, Tang C-M, Kerres J. Development and Characterization of Sulfonated-unmodified and Sulfonated-aminated PSU Udel? Blend Membranes [J]. Separation and Purification Technology, 2001, 22-23, 209-221.
    [215] Walker M, Baumgartner K-M, Kaiser M, et al. Proton-conducting Polymers with Reduced Methanol Permeation [J]. Journal of Polymer Science 1999, 74, 67-73.
    [216] Tatsuya Watari, Hongyuan Wang, Katsunari Kuwahara, et al. Water vapor sorption and diffusion properties of sulfonated polyimide membranes [J]. Journal of membrane science. 2003, 219, 137-147.
    [217] Kerres J, Ullrich A, Meier F, et al. Synthesis and characterization of novel acid-base polymer blends for application in membrane fuel cells [J]. Solid state ionics.1999, 125, 171-175.
    [218] Jung B, Kim B, Yang J M,et al. Transport of methanol and protons through partially sulfonated polymer blend membranes for direct methanol fuel cell [J]. Journal of Membrane Science.2004, 245, 61-69.
    [219] Kim Y S, Hicknerc M A, Dong L M, et al. Sulfonated poly(arylene ether sulfone) copolymer proton exchange membranes: composition and morphology effects on the methanol permeability [J]. Journal of Membrane Science, 2004, 243, 317-326.
    [220]黄化民,有机化学,长春吉林大学出版社, 1992.8
    [221]常建华,董绮功,波谱原理及解析,北京:科学出版社, 2001, 140-141.
    [222] Zhao C J; Liu C G; Na H, Novel sulfonated poly(arly ether ketone)s derived from methylhydroquinone., [J]. Abstracts of papers of the american chemical society 2004, 227, U378-U378
    [223] Shen L P, Xiao G Y, Yan D Y,et al. Sulfonated poly(arylene thioether ketone ketone sulfone)s for proton exchange membranes with high oxidative stability [J]. E-Polymers. 2005 APR 30, 031.
    [224] Robertson G P; Mikhailenko S D; Wang K P, et al. Casting solvent interactions with sulfonated poly(ether ether ketone) during proton exchange membrane fabrication [J]. Journal of membrane science, 2003, 219, 113-121.
    [225] Noshay A, Robertson L M, Sulfonated polysulfone [J]. Journal of applied polymer science 20 (1976), pp. 1885–1903.
    [226] Jia L, Xu X, Zhang H, et al. Permeation of nitrogen and water vapor through sulfonated polyetherethersulfone membrane [J]. Journal of Polymer Science Part B Polymer Physics.1997, 35, 2133.
    [227] Eikerling M, Kornyshev A A, Kuznetsov A M, et al. Mechanisms of proton conductance in polymer electrolyte membranes [J]. Journal of Physical Chemistry. B 2001, 105, 3646-3662.
    [228] C.M. Chuy-sam. Influence of morphology on the electrochemical properties of proton exchange membranes, [D]. PhD thesis, Simon Fraser University.2004.
    [229] Nishikawa M, Nakashio N, Shiraishi T, et al. Tritium trapping capacity on metal surface [J]. Journal of nuclear materials.2000, 277, 99-105.
    [230] Kerres J A. Development of ionomer membranes for fuel cells [J]. Journal of membrane science. 2001, 185, Sl, 3-27.
    [231]卢婷利,燃料电池质子交换膜的研究西北工业大学硕士论文. 2001 TM911.4
    [232] Kreuer K D. On the complexity of proton conduction phenomena [J]. Solid state ionics.2000, 136, 149-160.
    [233] Karlsson L E, Jannasch P. Polysulfone ionomers for proton-conducting fuel cell membranes: sulfoalkylated polysulfones [J]. Journal of membrane science Journal of membrane science. 2004, 230, 61-70.
    [234] Freger V, Korin E, Wisniak J, et al. Diffusion of water and ethanol in ion-exchange membranes: limits of the geometric approach [J]. Journal of memebrane science.1999, 160, 213-224.
    [235] Shen L P, Xiao G Y, Yan D Y, et al [J]. E-Polymers Apr 30 (2005) 031.
    [236] Ogawa T, Marvel C S. Polyaromatic Ether-ketones and Ether-keto-sulfones having various Hydrophilic Groups [J]. Journal of Polymer Science: Polymer Chemistry Edition, 1985, 23, 1231-1241.
    [237] Sivashinsky N, Tanny G B. Ionic heter ogeneities in sulfonated polysulfone films [J] Journal of Applied Polymer Science, 1983, 28, 3235-3245.
    [238] Chen T L, Yuan Y G, Zhang M H, et al. sulfonation of a new polyetheretherketone prepared from phenolphthalein [J]. Chinese Journal of Polymer Science, 1990, 8(3), 217-223.
    [239] Hsu W Y, Gierke T D, Elastic theory for ionic clustering in perfluorinated ionomers. [J]. Macromolecules, 1982, 15, 101-105.
    [240] Yin, Y.; Fang, J. H.; Watari, T.; et al. Synthesis and properties of highly sulfonated proton conducting polyimides from bis(3-sulfopropoxy)benzidine diamines [J]. Journal of materials chemistry., 2004, 14, 1062-1070
    [241] Kuznicki Large-pored crystalline titanium molecular sieve zeolites [P]. US patent 4853202,1989
    [242] Anderson M W, Terasaki O, Ohsuna T, et al. Structure of the microporous titanosilicate ETS-10. [J]. Nature 1994, 367, 347-351
    [243] Removal of heavy metals, especially lead, from aqueous systems containing competing ions utilizing wide-pored molecular sieves of the ETS-10 type [P]. US patent 4994191
    [244] Calza P, Paze C, Pelizzetti E, et al. Shape-selective photocatalytic transformation of phenols in an aqueous medium [J]. Chemical communications 2001, 20, 2130-2131
    [245]一种微孔钛硅沸石ETS-10的合成方法[P].中国专利公开号CN1724360A岳斌周琰江磊2006
    [246] Krishnan N N, Kim H J, Prasanna M. et al, Synthesis and characterization of sulfonated poly(ether sulfone) copolymer membranes for fuel cell applications [J]. Journal of power sources. 2006, 158, 1246-1250.
    [247] Kim D S, Park H B, Rhim J W, et al, Proton conductivity and methanol transport behavior of cross-linked PVA/PAA/silica hybrid membranes.[J]. Solid State Ionics, 2005, 176, 117-126.
    [248] Zawodzinski, T. A.; Springer, T. E.; Davey, J., et al. A comparative study od water uptake by and transport through ionomeric fuel cell [J]. Journal of the Electrochemical Society. 1993, 140, 1981-1985
    [249] Nishikawa M, Nakashio N, Shiraishi T, et al. Tritium trapping capacity on metal surface [J]. Journal of nuclear matrematreials, 2000, 277, 99-105.
    [250] Smitha B, Sridhar S, Khan A A, et al. Chitosan-poly(vinyl pyrrolidone) blends as membranes for direct methanol fuel cell applications.[J]. Journal of power sources, 2006, 159, 846-854.
    [251] Kreuer K D, Paddison S J, Spohr E. et al, Transport in proton conductors for fuel-cell applications: Simulations, elementary reactions, and phenomenology. [J]. Chemical reviews, 2004, 104, 4637-4678.
    [252] Sundar S, Jang W, Lee C,et al. Crosslinked sulfonated polyimide networks as polymer electrolyte membranes in fuel cells.[J]. Journal of polymer xcience part B-Polymer physics, 2005, 43, 2370-2379.
    [253] Elabd Y A, Napadensky E, Sloan J M,et al. Triblock copolymer ionomer membranes Part I. Methanol and proton transport [J]. Journal of membrane science,2003, 217, 227-242.
    [254] Xue S, Yin G P, Proton exchange membranes based on modified sulfonated poly(ether ether ketone) membranes with chemically in situ polymerized polypyrrole [J]. Electrochim Acta.,2006, 52, 847-853.
    [255] Iijima S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354, 56-58
    [256] Wong E W, Sheehan P E,Lieber C M. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes [J]. Science,1997, 277, 1971-1975.
    [257] Berber S, Kyum K, Tomanek D. Unusually high thermal conductivity of carbon nanotubes [J]. Physieal Review Letters,2000, 84, 4613-4619
    [258] Yi W, Lu L, Zhang D L, et al. Linear specific heat of carbon nanotubes [J]. Physical Review B,1999,59(14),R9015一R9018
    [259] Ebbesen T W, Lezee H J, Hiura H, et al.Electrical conductivity of individual carbon nanotubes [J]. Nature,1996, 382, 54-56
    [260]胡文平,刘云圻,曾鹏举等.纳米碳管[J].化学通报,2000, 63, 2-6
    [261]朱绍文,贾志杰,李钟泽.碳纳米管及其应用前景[J].科技导报, 1999, l2, 7-9
    [262]杨全红,刘敏,成会明.纳米碳管的孔结构,相关物性和应用[J].材料研究学报,2001, 15, 375-386
    [263] Ajayan P M, StePhan O, Colliex C, et al. Aligned carbon nanotubes formed by cutting a polymer resin-nanotube composite [J]. Science, 1994, 265(26),1212-1214.
    [264] Musa I, Baxendale G A J, Amaratunga, et al. Eccleston, Properties of regioregular poly(3-octylthiophene)/multi-wall carbon nanotube composites [J]. Synthesis Metals, 1999, 102, 1250-1257
    [265] Shaffer M S P, Windle A H Fabrication and characterization of carbon nanotube/poly (vinyl alcohol) composites [J]. Advanced Materials, 1999, 11, 937-941
    [266] Sandler J, Shaffer M S P, Prasse T ,et al. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties [J]. Polymer, 1999, 40(21), 5967-5971
    [267] Gong X H, Liu J, Baskaran S, et al. Surfactant-Assisted Processing of Carbon Nanotube/Polymer Composites [J]. Chemical Materials, 2000, 12(4), 1049-1053
    [268] Jin A X, Pramoda K P, Xu G Q, et al. Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly(methyl methacrylate) [J]. Chemical Physics Letters, 2001, 337, 43-47
    [269] Jia Z J,Wang Z Y ,Xu C L,et al. Study on poly(methyl methacrylate)/carbon nanotube composites [J]. Material Science and Engineering, 1999, 271, 395-400
    [270]余颖,刘冰,王卫军. PA6/碳纳米管复合材料的力学性能与结构塑料工业[J]. 2002, 30(6), 15-19
    [271]夏军宝,陈卫祥,李飞等.碳纳米管/PTFE基复合材料摩擦学性能的研究[J].浙江大学学报(工学版),2003, 37(4), 471-474
    [272] Meineke O, KaemPfer D, Weickmann H,et al. Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/ butadiene/styrene [J]. Polymer, 2004, 45, 739-748
    [273] P?tschke P, Bhattacharyya A R, Janke A, et al. Morphology and electrical resistivity of melt mixed blends of polyethylene and carbon nanotube filled polycarbonate [J]. Polymer, 2003, 44, 8061-8069
    [274]王新鹏,梁琳俐,赵辉鹏.UHMWPE/CNTs复合纤维的结晶行为研究[J].合成技术及应用,2005, 20(3), 16-20
    [275]王新鹏,梁琳俐,王燕.UHMWPE/CNTs冻胶体系的流变行为研究合成技术及应用[J]. 2005, 20(2), 11-15
    [276] Lee J H, Paik U, Choi J Y, et al. Dispersion stability of Single-walled carbon nanotubes using Nafion in Bisolvent [J]. Journal of Physical Chemistry C, 2007, 111, 2477-2483.
    [277] Girishkumar G, Rettker M, Underhile R, et al.Single-Wall Carbon Nanotube-Based Proton Exchange Membrane Assembly for Hydrogen Fuel Cells [J]. Langmuir, 2005, 21, 8487-8489.
    [278] Yakobson B I, Brabec C J, Bernholc J.Nanomechanics of Carbon Tubes: Instabilities beyond Linear Response [J]. Physical Review Letters 1996, 76, 2511-2514.
    [279] Landi B J, Raffaelle R P, Heben M J, et al.Single Wall Carbon Nanotube?Nafion Composite Actuators[J]. Nano Letter., 2002, 2, 1329-1332.
    [280] Lee D Y, Lee M H, Kim K J, et al.Effect of Multiwalled Carbon Nanotube (M-CNT) Loading on M-CNT Distribution Behavior and the Related Electromechanical Properties ofthe M-CNT Dispersed Ionomeric Nanocomposites[J]. Surface & Coatings Technology,2005, 200, 1920-1925.
    [281] Levitsky I A,Kanelos P T, Woodbury D S, et al.Photoactuation from a Carbon Nanotube Nafion Bilayer Composite [J]. Journal of Physical Chemistry B, 2006, 110, 9421-9425.
    [282] Chen H W, Wu R J, Chan K H, et al.The application of CNT/Nafion composite material to low humidity sensing measurement [J]. Sensors and Actuators B, 2005, 104, 80-84.
    [283] Kannan R, Kakade B A, Pillai V K. Angew. Polymer Electrolyte Fuel Cells Using Nafion-Based CompositeMembranes with Functionalized Carbon Nanotubes [J]. Angew Chem Int Ed Engl, 2008, 47, 2653–2656
    [284] Fu T Z, Zhao C J, Zhong S L, et al.SPEEK/epoxy resin composite membranes in situ polymerization for direct methanol fell cell usages [J]. Journal of Power Sources 2007,165 ,708–716
    [285] Zhong S L, Cui X J, Cai H L, et al. Preliminary evaluation of sulfonated poly(ether ether ketone)/monoethanolamine/adipic acid composite [J]. Journal of Polymer Science: Part B: Polymer Physics, 2007,Vol. 45, 2871–2879
    [286] Cai H L, Shao K, Zhong S L, et al. Properties of composite membranes based on sulfonated poly(ether ether ketone)s (SPEEK)/phenoxy resin (PHR) for direct methanol fuel cells usages [J]. Journal of Membrane Science, 2007, 297, 162–173
    [287]王亚琴,张宏伟.燃料电池用含氟质子交换膜的研究现状[J].材料导报, 2005, 19(3), 93-96
    [288] O’Hayre R, Cha S W, Colella W, et al Fuel cell fundamentals [M] John Wiley & Sons Ltd. And Publishing House of Electronics Industry, 2007
    [289] Stamenkovic V R, Fowler B, Mun B S, et al, Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability [J]. Science 2007, 315, 493-497.
    [290] Park I S, Lee K S, Jung D S, et al. Electrocatalytic activity of carbon-supported Pt–Au nanoparticles for methanol electro-oxidation [J]. Electrochimica Acta 2007, 52, 5599-5605.
    [291] Stamenkovic V R, Mun B S, Mayrhofer K J J, et al. Changing the Activity of Electrocatalysts for Oxygen Reduction by Tuning the surface Electronic Structure [J]. Angewandte Chemie-International Edition in English 2006, 45, 2897-2901.
    [292] Zhao D, Xu B Q. Enhancement of Pt utilization in electrocatalysts by using gold nanoparticles [J]. Angewandte Chemie-International Edition in English 2006, 45, 4955-4959.
    [293] Zhao D, Xu B Q. Platinum covering of gold nanoparticles for utilization enhancement of Pt in electrocatalysts [J]. Physical Chemistry Chemical Physics 2006, 8, 5106-5114.
    [294] Zhao D. Ph. D. Thesis [D] Tsinghua University, June 2007.
    [295] Zhao D, Bing Y, Xu B Q. Proper alloying of Pt with underlying Ag nanoparticles leads to dramatic activity enhancement of Pt electrocatalyst [J]. Electrochem. Commun. 2008, 10, 884-887.
    [296] Paulus U A, Wokaun A, Scherer G G, Oxygen Reduction on Carbon-Supported Pt?Ni and Pt?Co Alloy Catalysts [J]. The Journal of physical chemistry B, 2002, 106, 4181-4191
    [297] Chen Z W, Waje M, Li W Z, et al. Supportless Pt and PtPd Nanotubes as Electrocatalysts for Oxygen-Reduction Reactions [J]. Angewandte Chemie-International Edition in English 2007, 46, 4060-4063
    [298] Sun Y G, Tao Z L, Chen J, et al. Ag Nanowires Coated with Ag/Pd Alloy Sheaths and Their Use as Substrates for Reversible Absorption and Desorption of Hydrogen [J]. Journal of the American Chemical Society, 2004, 126, 5940-5941
    [299] Sun Y G, Wiley B, Li Z Y, et al. Synthesis and Optical Properties of Nanorattles and Multiple-Walled Nanoshells/Nanotubes Made of Metal Alloys [J]. Journal of the American Chemical Society, 2004, 126, 9399-9406
    [300] Sun Y G, Yin Y D, Mayers B, et al. Uniform Silver Nanowires Synthesis by Reducing AgNO3 with Ethylene Glycol in the Presence of Seeds and Poly(Vinyl Pyrrolidone) [J]. Chem. Mater. 2002, 14, 4736-4745
    [301] Xia Y N, Yang P D, Sun Y G, et al. One-Dimensional Nanostructures: Synthesis, Characterization, and Applications [J]. Advanced Materials. 2003, 15, 353-389.
    [302] Sun Y G, Mayers B, Xia Y N, Metal Nanostructures with Hollow Interiors [J]. Advanced Materials. 2003, 15, 641-646 ;
    [303] Sun Y G, Mayers B, Xia Y N. Template-Engaged Replacement Reaction: A One-Step Approach to the Large-Scale Synthesis of Metal Nanostructures with Hollow Interiors [J]. Nano Letter. 2002, 2, 481-485.
    [304] Mayers B, Jiang X C, Sunderland D, et al, Hollow Nanostructures of Platinum with Controllable Dimensions Can Be Synthesized by Templating Against Selenium Nanowires and Colloids [J]. Journal of the American Chemical Society, 2003, 125, 13364-13365
    [305] Paulus U A, Schmidt T J, Gasteiger H A, et al. Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study [J]. Journal of Electroanalytical Chemistry 2001, 495,134-145.
    [306] Higuchi E, Uchida H, Watanabe M, Effect of loading level in platinum-dispersed carbon black electrocatalysts on oxygen reduction activity evaluated by rotating disk electrode [J]. Journal of Electroanalytical Chemistry 2005, 583, 69-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700