用户名: 密码: 验证码:
红壤农田水量平衡和水分转换及作物的生产力
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
季节性干旱缺水严重制约着我国红壤区农业的持续发展。1999~2000年在中国科学院红壤生态实验站,利用大型称重式蒸渗仪、测坑小区和径流小区,配合时域反射仪、光合蒸腾仪、水势仪及动态气孔阻力计等仪器,设计高、中、低3种土壤水分处理,进行了花生和早晚稻试验。结合“五水”转换观点和SPAC理论,系统地研究了红壤农田水量平衡、水分转换和作物的生产能力。研究结果为有效利用红壤区水资源、合理调控农田水分和提高作物生产力提供了科学依据和实用技术。
     系统地阐明了赣中红壤农田年度和作物生长季节的水量平衡及各分量的特征。红壤区降水集中于3~7月,先于潜在蒸散高峰期的7~9月,农田向下排水集中于4~6月,形成深层蓄水,根系难以吸收,加剧了8~10月季节性水分亏缺对作物的危害。花生苗期和饱果期耗水少,花针期和结荚期耗水多,整个生育期必须有400 mm以上的水量才能满足需要。早稻本田期耗水量580 mm以上,生长期间降水总量能满足其需要,提出了“只排不灌”的高强度节水方式。晚稻本田期耗水量470 mm以上,生长期间的降水不足,必须灌水补充。
     证实了中等土壤水分可以提高作物水分利用效率(WUE)和获得较高产量。长期低土壤水分使花生株形矮小、分枝减少、单叶面积及叶面积指数变小、后期叶片脱落快并且早衰,但细根增多。中、低土壤水分明显提高了花生叶片水平的WUE;中等土壤水分下花生根冠比和出仁率提高,水分临界期灌水可高产,而低土壤水分下花生大幅度减产。水稻中等土壤水分下的产量、叶片及产量水平的WUE都提高,早稻主要是因为颖花数和结实率增加,晚稻是因为增加了颖花数。
     探明了SPAC中水流阻力主要以节点阻力存在,土-根阻力是决定作物水分状况的主要因素。花生植株体水势明显高于水稻对应部位的水势,红壤-作物-大气连续体水势绝对值大约以指数速率增加;水势差主要存在于土-根、茎-叶、叶-气界面,植株体阻力也主要以土-根和茎-叶节点阻力存在;叶-气界面阻力约占连续体内总阻力的90%以上,植株体阻力是土壤阻力的20~50倍。随着辐射增强,蒸腾速率变大,连续体内水流驱动力也增加。
     较好地解决了作物生长与土壤水分运动的反馈及耦合关系的模拟问题。针对目前一些土壤水分运动模型的不足,建立了一个土壤水分运动与作物生产关系的计算机模拟模型,较好地实现了作物生长、根系吸水、蒸腾、蒸发、降水、入渗等各过程之间的联系,预测值与实测值吻合较好。模型在Excel中编写代码,使用方便并具有扩充件。
The sustainable agriculture in Red Soil area of China is restricted severely by the seasonal drought and water shortage. During 1999-2000, the study was performed in the Ecological Experimental Station of Red Soil, Academia Sinica. Peanut or rice were planted in the large-scale weighing Lysimeter, pit plots, and standard runoff plots, where high, moderate, and low soil moisture levels were designed as 3 treatments, assembling with some instruments such as time domain reflectometry, portable photosynthesis system, dew point microvoltmeter, and porometer. Combining the "five waters" transition viewpoint and SPAC theory, the water balance, water transition, and crop productivity were studied. From the results, some scientific basis and practical techniques were provided for using water resource effectively, regulating farmland water rationally, and improving crop productivity.
    The characteristics of water balance and its components were expounded systematically both in years and in crop growing seasons. The precipitation was concentrated from March to July, earlier than the evapotranspiration peak-day, which was from July to September. The farmland downward water drainage was produced mainly during April to June, formed as deep soil layer water storage, which was difficult for crop root to absorb. And the hazard to crop, caused by the seasonal water shortage during August to October, was then intensified by it. The peanut physiological water-costing process presented as an unsymmetrical parabola, i.e., water amount consumed by peanut in seedling and pod-filling stages was less than that of in blooming and pod-setting stages. More than 400 mm water was demanded in the peanut full growth stage. More than 580 mm water was required by early rice after transplanting, and the total precipitation during the period was sufficient for the demand. The intensive water-saving pattern "drain o
    nly without irrigation" in early rice was then proposed. Later rice needed more than 470 mm water after transplanting, and the rainfall was far below the demand, so irrigation was crucial.
    It was approved that crop water use efficiency (WUE) was increased and the preferable yield was obtained in the moderate soil moisture. Under lasting low soil moisture, the peanut plant was short and small, tillers were reduced, leaf area and leaf area index were decreased, leaves were more easy to fall off and premature senility was showed in the late growth stage, but fine roots were increased. Under moderate soil water content, the peanut root/shoot ratio and kernel/pod ratio were increased, and high yield
    
    
    could be obtained if irrigation was performed during the water critical period. But the peanut yield was decreased by the large size in low soil moisture. The rice yield and WUE both in leaf and yield level were increased in moderate soil water content, for spikelets per panicle and filled spikelets were increased in the early rice, and spikelets per panicle were increased in the later rice.
    It was proved that the water flow resistances in SPAC existed largely as node resistances, and the resistance between soil and root was the major factor that determines the water status in crop. The water potentials in peanut plant were higher than that of in rice. The water potential differences were existed mainly in the interface of soil-root, stem-leaf, and leaf-air. And the resistances in plant were presented mostly as soil-root and stem-leaf node resistances. The water flow resistance in leaf-atmosphere interface account for more than 90 percent of the total resistance; and the resistance in plant was 20 to 50 times larger than soil. The water flow drive force was augmented with the increase of SPAC water flux, which was induced by the radiation.
    The problem of simulating the feedback and coupling relation between crop and soil water movement was solved in the study. After analyzing the disadvantage of some soil water movement models, a computer model was established to simulate soil water movement and crop growth. The complicated interrelatio
引文
1.于德芬,姚贤良。关于红壤有效水范围的探讨。见:王明珠,张桃林,何圆球主编,红壤生态系统研究(第二集)。南昌,江西科学技术出版社,1993,269-274
    2.万勇善,张高英。土壤水分对花生净光合速率的影响。山东农业大学学报,1992,23:31-35
    3.山东省花生研究所。花生栽培生理。上海,科学技术出版社,1990,15-17,149-154
    4.马渭俊,文化一。滇中高原红壤旱地水分平衡定位研究。土壤学报,1990,27:325-334
    5.王会肖,刘昌明。农田蒸散、土壤蒸发与水分有效利用。地理学报,1997,52:447-454
    6.王启柏,张高英,万勇善,李向东。花生根系在土壤中垂直分布特性的研究。中国油料,1995,17:18-21
    7.王宏,杨春虹。小麦气孔传导力和土壤基质势的关系。生态学报,1987,7:206-213
    8.王志琴,杨建昌,朱庆森。土壤水分对水稻光合速率与物质运转的影响。中国水稻科学,1996,10:235-240
    9.王昌金,曾莉,卢俊宇。土壤水分状况与水稻生长的关系。西南农业学报,1997,10:67-70
    10.王明珠,张佳宝,赵春生,谭清美,何圆球。低丘红壤区水资源的时空变异及综合利用开发。见:王明珠,张桃林,何圆球主编,红壤生态系统研究(第三集)。北京,中国农业科技出版社,1995,243-282
    11.邓向前。几种作物叶片水势的初步研究。华南农业大学学报,1991,12:62-67
    12.司徒松,张薇。稻田高产节水灌溉方式的研究。中国水稻科学,1991,5:127-132
    13.任理,李春友,李韵珠。层状粘性土壤水分动态新模型的应用。中国农业大学学报,1998,3:57-62
    14.刘多森,汪枞生。可能蒸散量动力学模型的改进及其对辨识土壤水分状况的意义。土壤学报,1996,33:21-26
    15.刘建栋,傅抱璞,于强。包容环境因子的Penman-Monteith公式进行蒸散计算的研究。南京大学学报,1998,34:359-364
    16.刘昌明。土壤-植物-大气系统水分运行的界面过程研究,地理学报,1997,52:366-373
    17.刘昌明,孙壑。水循环的生态学方面:土壤-植被-大气系统水分能量平衡研究进展。水科学进展,1999,10:251-258
    18.刘昌明,张喜英,由懋正。大型蒸渗仪与小型棵间蒸发器结合测定冬小麦蒸散的研究。水利学报,1998,10:36-39
    19.刘昌明,窦清晨。土壤-植物-大气连续体模型中的蒸散发计算。水科学进展,1992,3:255-263
    20.刘绍民。用Priestley-Taylor模式计算棉田实际蒸散量的研究。应用气象学报,1998,4:88-93
    21.刘绍民,刘志辉,傅玮东。作物农田蒸散计算模型的研究。生态学杂志。1998,17:66-69
    22.华北平原作物水分胁迫与干旱研究课题组。作物水分胁迫与干旱研究。郑州,河南科学技术出版社,1990
    23.吕军。作物生长田间水分平衡的系统模拟。水利学报,1998,1:45-50
    24.吕国安。节水灌溉条件下水稻对氮素的吸收利用及稻田氮量平衡研究。[博士学位论文]。武汉,华中农业大学,1998
    25.孙广玉,邹琦,程炳嵩。大豆光合速率和气孔导度对水分胁迫的响应。植物学报,1991,33:43-49
    26.宇振荣,翟志席。土壤水分对作物生长满足程度模拟模型。土壤学报,1995,32:458-463。
    27.朱庆森,邱泽森,姜长鉴。水稻各生育期不同土水势对产量的影响。中国农业科学,1994,27:15-22
    
    
    28.毕江涛,冯锐。土壤-植物-大气连续体水分热力学函数及植物不同部位水势特征的研究。农业系统科学与综合研究,1998,14:141-145
    29.何圆球。红壤丘陵区水分、养分循环特点与资源的合理利用。见:王明珠,张桃林,何圆球主编,红壤生态系统研究(第二集)。南昌,江西科学技术出版社,1993,216-223
    30.张书函,康绍忠,张富仓。6050X1型时域反射仪的测定原理与灵敏性。西北农业大学学报,1996,24:10-15
    31.张明农,江力。水稻光合生态特性的初探。安徽大学学报,1996,20:88-95
    32.张明炷,李远华,崔远来。非充分灌溉条件下水稻生长发育及生理机制研究。灌溉排水,1994,13:6-13
    33.张喜英。冬小麦、夏玉米叶水势、蒸腾和液态水流阻力的田间试验研究。地理学报,1997,52:543-549
    34.张斌。红壤季节性干旱机制及旱坡地水分循环特征研究。[博士学位论文]。南京,中国科学院南京土壤研究所,1996
    35.张斌,张桃林。不同耕作制度下红壤缓坡地水土流失及土壤水分研究。见:王明珠,张桃林,何圆球主编,红壤生态系统研究(第三集)。北京,中国农业科技出版社,1995,121-129
    36.张斌,张桃林,赵其国。干旱季节不同耕作制度下作物-红壤水势关系及其对干旱胁迫的响应。土壤学报,1999,36:101-110
    37.张斌,丁献文,张桃林,赵其国。干旱季节不同耕作制度下红壤-作物-大气连续体水流阻力变化规律。土壤学报,2001,38:17~31
    38.张薇,司徒松。稻田土壤水分优化调控技术研究。中国水稻科学,1995,9:211-216
    39.李永和。试论水稻灌溉节水的途径。灌溉排水,1997,16:45-47
    40.李寿声,沈菊琴。水稻水、肥生产函数及优化灌溉模式。水利学报,1997,10:18-24
    41.李远华,张明炷,谢李贵。非充分灌溉条件下水稻需水量的计算。水利学报,1995,2:64-68
    42.李维江。土壤干旱与复水对花生生理特性的影响。山东农业科学,1997,5:15-18
    43.李维江。土壤干旱对花生前期光合及干物质积累的影响。花生科技,1991,4:1-4
    44.杨邦杰,隋红建。土壤水热运动模型及其应用。北京,科学技术出版社,1997
    45.杨建昌,丁艳峰。节水灌溉对水稻产量形成的影响。江苏农学院学报,1992,13:7-12
    46.杨建昌,朱庆森,王志琴。土壤水分对水稻产量与生理特性的影响。作物学报,1995,21:110-114
    47.杨艳生,史德明,吕喜玺,梁音。第四纪红粘土流失区的产沙量分析。见:王明珠,张桃林,何圆球主编,红壤生态系统研究(第二集)。南昌,江西科学技术出版社,1993,330-344
    48.杨新民,张建丰,王文焰。大型蒸渗仪内土壤含水量剖面分布的量测技术研究。灌溉排水,1997,16:58-61
    49.邱泽森,朱庆森,刘建国。不同土壤水势下水稻的生理反应。江苏农学院学报,1993,14:7-11
    50.邵明安。论土壤-植物系统中水流电模拟时间常数的变性。科学通报,1991,24:1890-1893
    51.陈志诚,季耿善,赵文君。红壤生态站土壤类型及背景土壤图概述。见:石华主编,红壤生态系统研究(第一集)。北京,科学出版社,1992,33-58
    52.陈志雄。农田水量平衡。土壤学进展,1985,1:1-8。
    53.陈建耀,刘昌明,吴凯。利用大型蒸渗仪模拟土壤-植物-大气连续体水分蒸散。应用生态学报,1999,10:45-48
    54.陈家宙,陈明亮,何圆球。不同水分状况下红壤水稻的水量平衡和生产能力。华中农业大学学报,2000,19:554-558
    55.陈家宙,陈明亮,何圆球。土壤水分状况及环境条件对水稻蒸腾的影响。应用生态学报,2001a,12(1):63-67
    56.陈家宙,陈明亮,何圆球。各具特色的当代土壤水分测量技术。湖北农业科学,2001b,(3):25-28
    57.尚宗波,杨继武,殷红等。玉米生育综合动力模拟模式研究。中国农业气象,1999,20:1-5
    
    
    58.巫东堂,焦晓燕,韩雄。旱地麦田土壤水分预测模型研究。土壤学报,1996,33:105-110
    59.罗良国,许健民,罗启仕。北方稻田生态系统水分平衡和水分利用效率。应用生态学报,1996,7:371-376
    60.罗森堡。小气候—生物环境。何章起,施鲁怀译。北京,科学出版社,1982
    61.虎胆·吐马尔拜。作物在秸杆覆盖条件下土壤水分运动的实验分析与数值模拟。[博士学位论文)。武汉,武汉水利电力大学,1996
    62.郑志明,王兆骞,倪文。不同灌溉方式的水稻生理效应研究。农村水利与小水电,1992,6:10-14
    63.金千瑜,欧阳由男。我国发展节水型稻作的若干问题探讨。中国稻米,1999,1:9-12
    64.姚君平,罗瑶年,杨新道,周元富,宋满堂。早中熟花生不同生育阶段土壤水分亏缺对植株生育及产量的影响。花生科技,1985,2:1-8
    65.姚贤良。红壤水问题及其管理。土壤学报,1996,33:13-20
    66.荆家海,马书尚。大田玉米、高梁、芝麻、豇豆叶片水势、蒸腾速率、气孔阻力对环境因素的反应。西北植物学报,1990a,10:8-16
    67.荆家海,马书尚。玉米、早稻、豇豆、棉花叶片气体交换对水分胁迫的反应。作物学报,1990b,16:342-347
    68.贺湘逸。红壤坡地利用中的水分问题。见:杨炎生,信乃诠主编,中国红黄壤地区农业综合发展与对策。北京,中国农业科技出版社,1995,107-111
    69.赵其国,石华,吴志东。红黄壤地区农业资源综合发展战略与对策。见:石华主编,红壤生态系统研究(第一集)。北京,科学出版社,1992,1-13
    70.赵炳梓,徐富安。从农田气候生产潜力看红壤地区的水问题。见:张桃林,何圆球,杨艳生主编,红壤生态系统研究(第四集)。南昌,江西科学技术出版社,1997,139-146
    71.赵艳霞,王馥棠。土壤-水稻-大气连续体水分循环与作物生产关系的模拟模式研究。应用气象学报,1997,8:428-436
    72.唐登银。水平衡与水循环的试验研究。见:唐登银,谢贤群主编,农田水分与能量试验研究。北京,科学出版社,1990,1-9
    73.郭庆荣,张秉刚,钟继洪。土壤植物系统中植物根系吸收土壤水分研究进展。生态科学,1996,15:112-116
    74.郭庆荣,张秉刚,钟继洪。南亚热带丘陵红壤-龙眼-大气连续体水分运移力能变化及分布规律。生态科学,1997,16:65-68
    75.郭庆荣,张秉刚,钟继洪。坡地赤红壤-芒果-大气连续体水分运移力能关系的田间试验研究。生态科学,1998,17:93-97
    76.康绍忠,刘晓明,王振镒。冬小麦叶片水势、气孔阻力、蒸腾速率与环境因素的关系。灌溉排水,1991,10:1-6
    77.康绍忠,刘晓明,张国瑜。作物覆盖条件下田间水热运移的模拟研究。水利学报,1993,3:11-17
    78.康绍忠,刘晓明,高新科。土壤-植物-大气连续体水分传输的计算机模拟。水利学报,1992,3:1-12
    79.康绍忠,刘晓明,熊运章。土壤-植物-大气连续体水分传输理论及其应用。北京,水利电力出版社,1994
    80.黄明斌,张富仓,康绍忠。瞬变条件下土壤-植物系统中的水容效应及其应用研究。干旱地区农业研究,1999,17:45-49
    81.黄明斌,邵明安。土壤-植物系统中非稳态流研究进展。土壤学进展,1994,22:20-26
    82.黄明斌,邵明安。冬小麦叶水势-蒸腾速率关系的滞后效应。科学通报,1995,40:1137-1139
    83.黄明斌,邵明安。土壤-植物系统中水流阻力的变性。土壤学报,1996a,33:211-216
    84.黄明斌,邵明安。土壤-植物系统中稳态水流和瞬态水流阻力的差异性。土壤学报,1996b,33:360-365
    
    
    85.黄冠华。非饱和土壤水分动态的随机模拟及作物水分生产函数的研究。[博士学位论文]。武汉,武汉水利电力大学,1995
    86.黄洪峰。土壤-植物-大气相互作用原理及模拟研究。北京,气象出版社,1997
    87.龚元石,李子忠,李春友。应用时域反射仪测定作物需水量和作物系数。中国农业大学学报,1998a,3:61-67
    88.龚元石,李子忠,李春友。利用时域反射仪测定的土壤水分估算农田蒸散量。应用气象学报,1998b,9:73-78
    89.龚元石。Penman-Monteith公式与FAO-PPP-17Penman修正式计算参考作物蒸散量的比较。北京农业大学学报,1995,21:68-75
    90.龚元石。冬小麦和夏玉米农田土壤分层水分平衡模型。北京农业大学学报,1995,21:61-67
    91.傅全民,苏芳,张庚灵。花生群体光合速率发展动态和日变化。中国油料,1995,17:17-21
    92.彭世彰。节水灌溉下水稻需水规律。农田水利与小水电,1992,11:7-11
    93.彭世彰,俞双恩,张汉松等。水稻节水灌溉技术。北京:中国水利水电出版社,1998
    94.琚忠和,吴水助。赣中丘陵红壤水分平衡状况及改善途径。见:杨炎生,信乃诠主编,中国红黄壤地区农业综合发展与对策。北京,中国农业科技出版社,1995,143-147
    95.程维新,胡朝炳,张兴权。农田蒸发与作物耗水量研究。北京,气象出版社,1992
    96.蒋德安,徐银发。水稻光合速率、气孔度导和Rubisco活力的日变化。植物生理学报,1996,22:94-100
    97.雷志栋,杨诗秀,谢森传。土壤水动力学。北京,清华大学出版社,1988
    98.雷志栋,胡和平,杨诗秀。土壤水研究进展与评述。水科学进展,1999,10:309-318
    99.谭清美,张佳宝,王明珠。余江县降雨量分布特性及典型年稻田水量和平衡分析。土壤,1994,26:295-300
    100.薛慧勤,甘信民,孙明辉。干旱条件下花生水分利用效率与叶片碳同位素辨别力的相关性研究。中国油料作物学报,1999,21:27-31
    101.薛慧勤,孙兰珍。水分胁迫对不同抗旱性花生品种生理特性的影响。干旱地区农业研究,1997,15:82-85
    102.Adiku S G K, Braddock R D, Rose C W. Modeling the effect of varying soil water on root growth dynamics of annual crops. Plant Soil, 1996, 185:125-135
    103.Allen L H, Valle R R Jr, Jones J W, Jones P H. Soybean leaf water potential responses to carbon dioxide and drought. Agron J, 1998, 90:375-383
    104.Annandale J G, Stockle C O. Fluctuation of evapotranspiration crop coefficients with climate: A sensitivity analysis. Irrig Sci, 1994, 15:1-7
    105.Annandale J G, Campbell G S, Olivier F C, Jovanovic N Z. Predicting crop water uptake under full and deficit irrigation: An example using pea (Pisum sativum L cv Puget). Irrig Sci, 2000, 19:65-72
    106.Arora V K, Gajri P R. Performance of simplified water balance models under maize in a semiarid subtropical environment. Agric Water Manage, 1996, 31:51-64
    107.Baker J M, Spaans E J A. Measuring Water exchange between soil and atmosphere with TDR-Microlysimetry. Soil Sci, 1994, 158:22-30
    108.Bathke G R, Cassel D K, Hargrove W L, Porter P M. Modification of soil physical properties and root growth response. Soil Sci, 1992, 154:316-329
    109.Baumhardt R L, Lascano R J. Water budget and yield of dryland cotton intercropped with terminated winter wheat. Agron J, 1999, 91:922-927
    110.Baumhardt R L, Romkens M J M, Whisler F D, Parlange J Y. Modeling infiltration into a sealing soil. Water Resour Res, 1990, 26:2497-2505
    111.Brown R H, Byrd G T. Transpiration efficiency, specific leaf weight, and mineral concentration in peanut and pearl millet. Crop Sci, 1996, 36:475-480
    112.Buller O, Manges H L, Stone L R, Williams J R. Modeled crop water use and soil water drainage. Agri Water Manage, 1991, 19:117-134
    
    
    113.Carlson T N, Robert R G, Thomas J S. An interpretation of methodologies for indirect measurement of soil water content. Agric For Meteorol, 1995, 77:191-205
    114.Celestino R, Stefania De P, Massimo F. Plant and soil resistance to water flow in faba bean (Vicia faba L major Harz). Plant soil, 1999, 210:219-231
    115.Clemente R S, Jong R D, Hayhone H N, Reynolds W D, Hares M. Testing and comparison of three unsaturated soil water flow models. Agric Water Manage, 1994, 25:135-152
    116.Dean T J, Bell J P, Baty A J B. Soil moisture measurement by an improved capacitance technique, Part Ⅰ. Sensor design and performance. J Hydro, 1987, 93:67-78
    117.De Jager J M. Accuracy of vegetation evaporation ratio formulae for estimating final wheat yield. Water S A 1994, 20:307-315
    118.De Souza P I, Egli D B, Bneening W P. Water stress during seed filling and leaf senescence in soybean. Agron 3, 1997, 89:807-812
    119.Dugas W A, Meyer W S, Barrs H D, Fleetwood R J. Effects of soil type on soybean crop water use in weighing lysimeters: Ⅱ Root growth, soil water extraction, and water-table contributions. Irrig Sci, 1990, 11:77-81
    120.Dwyer L M, Stewart D W, Balchin D. Rooting characteristics of com, soybeans and barley as a function of available water and soil physical characteristics. Can J Soil Sci, 1988, 68:121-132
    121.Eastham J, Gregory P J. The influence of crop management on the water balance of lupin and wheat crops on a layered soil in a Mediterranean climate. Plant Soil, 2000, 221:239-251
    122.Erkki A. Modeling non-uniform soil water uptake by a single plant root. Plant Soil, 1996, 186:237-243
    123.Evett S R, Lascano R J. ENWATBALBAS: A mechanistic evapotranspiration model written in compiled BASIC. Agron J, 1993, 85:763-772
    124.Fares A, Alva A K. Estimation of citrus evapotranspiration by soil water mass balance. Soil Sci, 1999, 164:302-310
    125.Gabrielle B, Menasseri S, Houot S. Analysis and field evaluation of the Cerds models water balance component. Soil Sci Soc Am J, 1995, 59:1403-1412
    126.Gaskin G J, Miller J D. Measurement of soil water content using a simplified impedance measuring technique. J Agric Engine Res, 1996, 63:153-160
    127.Gerwitz A, Page E R. An empirical mathematical model to describe plant root systems. J Appl Ecol,1985, 11:773-781
    128.Ghulam Z H, Muhammad N B. A water balance model to estimate groundwater recharge in Rechna doab, Pakistan. Irrig and Drainage Sys, 1996, 10:297-317
    129.Govindarajan M, Rao M R, Mathura M N, Nair P K R. Soil-water and root dynamics under Hedgerow intercropping in semiarid Kenya. Agron J, 1996, 88:515-520
    130.Hebbar K B, Sashidhar V R, Udayakumar M, Devendra R, Nageswara R R C. A comparative assessment of water use efficiency in groundnut (Arachis hypogaea) grown in containers and in the field under water-limited conditions, J Agric Sci, 1994, 122:429-434
    131.Heitholt J J. Water use efficiency and dry matter distribution in nitrogen-and water-stressed winter wheat. Agron J, 1989, 81:464-469
    132.Helms T C, Deckard E, Goos R J, Enz J W. Soil moisture, temperature, and drying Influence on soybean emergence. Agron J, 1996a, 88:662-667
    133.Helms T. C, Deckard E, Goos R J, Enz J W. Soybean seedling emergence influenced by days of soil water stress and soil temperature. Agron J, 1996b, 88:657-661
    134.Herkelrath W N, Hamburg S P, Murphy F. Automatic real-time monitoring of soil moisture in a remote field area time domain reflectometry. Water Resour Res, 1991, 27:857-864
    135.Hirasawa T, Ishihara K. On the resistance to water transport in crop plant for estimating water uptake ability under intense transpiration. Jpn J crop Sci, 1991, 60:174-183
    136.Hirasawa T, Gotou T, Ishihara K. On the resistance to water transport from the roots to the leaves at different position on a stem in rice plant. Jpn J crop Sci, 1991, 61:153-158
    137.Howell T A , Tolk J A, Schneider A D, Evett S R. Evapotranspiration, yield, and water use efficiency of corn hybrids differing in maturity. Agron J, 1998, 90:3-9
    
    
    138.Hukkeri S B, Sharma A K. Water use efficiency of transplanted and direct-sown rice under different water management practices. Indian J Agric Sci, 1980, 50:240-243
    139.James F K, Claudio O S, Robert G E. Accuracy of canopy temperature energy balance for determining daily evapotranspiration. Irrig Sci, 1996, 16:149-157
    140.Jovanovic N Z, Annandale J G, Mhlauli N C. Field water balance and SWB parameter determination in six winter vegetable species. Water S A, 1999, 25:191-196
    141.Kaufmann M R. Leaf conductance as a function of photosynthetic proton flux density and absolute humidity difference from leaf to air. Plant Physiol 1982a, 69:1018-1022
    142.Kaufmann M R. Evaluation of season, temperature and water stress effects on stomata using a leaf conductance model. Plant Physiol 1982b, 69:1023-1026
    143.Kenneth J B, James W J, Nigel B P. Potential uses and limitations of crop models. Agron J, 1996, 88:704-716
    144.Kerr G, Pochop L, Fornstrom K J, Krall J M, Brown D. Soil water and ET estimates for a wide range of rainfed and irrigated conditions. Agri Water Manage, 1993, 24:147-159
    145.Khepar S D, Yadav A K, Sondhi S K, Siag M. Water balance model for paddy fields under intermittent irrigation practices. Irrig Sci, 2000, 19:199-208
    146.Kramer P J. Water relations of plants. New York: Academic Press, 1983
    147.Kustas W P, Nornan J M. Use of remote sensing for evapotranspiration monitoring over land surfaces. Hydrol Sci J, 1996, 41: 495-516
    148.Lafilie F. Modeling water flow, nitrogen transport and root uptake including physical non-equilibrium and optimization of the root water potential. Fert Res, 1991, 27:215-231
    149.Lafolie F, Bruckler L, Ozier-Lafontaine H, Tournebize R, Mollier A. Modeling soil-root water transport and competition for single and mixed crops. Plant Soil, 1999, 210:127-143
    150.Lapitan R L, Baumhardt R L, Hicks S K, Heilman J L. Soil and plant water evaporation from strip-tilled cotton: Measurement and simulation. Agron J, 1994, 86:987-994
    151.Lapitan R L, Parton W J. Seasonal variabilities in the distribution of the microclimatic factors and evapotranspiration in a short grass steppe. Agric For Meteorol, 1996, 79:113-130
    152.Lascano R J, Baumhardt R L. Effects of crop residue on soil and plant water evaporation in a dryland cotton system. Theor Appl Climatol, 1996, 54:69-84
    153.Lascano R J, van Bavel C H M. Root water uptake and soil water distribution: Test of an availability concept. Soil Sci Soc Am J, 1984, 48:233-236
    154.Lascano R J, van Bavel C H M. Simulation and measurement of evaporation from a bare soil. Soil Sci Soc Am J, 1986, 50:1127-1132
    155.Lauriano J A, Lidon F C, Carvalho C A. Drought effects on membrane lipids and photosynthetic activity in different peanut cultivars. Photosynthetica, 2000, 38:7-12,
    156.Li K Y, Boisvert J B, Jong R De An exponential root-water-uptake model. Can J Soil Sci, 1998, 79:333-343
    157.Lin J N, Kao C H. Water stress, ammonium, and leaf senescence in detached rice leaves. Plant Growth Regulation, 1998, 25(3): 165-169
    158.Maraux F, Lafolie F. Modeling soil water balance of a maize-sorghum sequence. Soil Sci Soc Am J, 1998, 62:75-82
    159.Maraux F, Lafolie F, Bruckler L. Comparison between mechanistic and functional models for estimating soil water balance: deterministic and stochastic approaches Agric Water Manage, 1998, 38(1): 1-20
    160.Meismer C A, Karnok K J. Peanut root response to drought stress. Agron J, 1992, 84:159-165
    161.Mishra H S, Rathore T R, Pant R C. Effect of intermittent irrigation on ground water table contribution, irrigation requirement and yield of rice in mollisols of Tarai region. Agric Water Manage, 1990, 18:231-241
    162.Mishra H S, Rathore T R, Pant R C. Root growth, water potential, and yield of irrigated rice. Irrig Sci, 1997, 17:69-75
    163.Moran M S, Jackson R D. Assessing the spatial distribution of evapotranspiration using remotely sensed inputs. J Environ Qual, 1991, 20:725-737
    
    
    164.Moreshet S, Brdges D C, Nesmith D S, Huang B R. Effects of water deficit stress on competitive interaction of peanut and sicklepod. Agron J, 1996, 88:636-344
    165.Moreshet S, Marcel F, Yehezkel C, Yefet C, Matthias L. Water transport characteristics of cotton as affected by drip irrigation layout. Agron J, 1996, 88:717-722
    166.Muthiah S, Longer D E, Harris W M. Staging soybean seedling growth from germination to emergence. Crop Sci, 1994, 34:289-291
    167.Nagaswara R, Wright G C. Stability of the relationship discrimination across environments in peanut. Crop Sci, 1994, 34:98-103
    168.Nagaswara R. Effect of water deficit at different growth phase of peanut. Agron J, 1985, 77:782-786
    169.Nautiyal P C, Ravindra V, Joshi Y C. Gas exchange and leaf water relations in two peanut cultivars of different drought tolerance. Biologia Plantarum, 1995, 37:371-374
    170.Nautiyal P C, Ravindra V, Joshi Y C. Net photosynthetic rate in peanut (Arachis hypogaea L): Influence of leaf position, time of day, and reproductive-sink. Photosynthetica, 1999, 36(1/2):129-138
    171.NeSmith D S, Ritchie J T. Effects of soil water-deficits during tassel emergence on development and yield component of maize (Zea mays) Field. Crops Res 1992, 28:251-256
    172.Odhiambo L O, Murty V V N. Modeling water balance components in relation to field layout in lowland field. I: Model development. Agric Water Manage, 1996, 30:185-199
    173.Passioural J B. Water transport in and to the root. Annu Rev Plant Physiol Plant Mol Bio, 1988, 39:245-265
    174.Peterschmitt J M, Perrier A. Evapotranspiration and canopy temperature of rice and groundnut in southeast coastal India corp coefficient approach and relationship between evapotranspiration and canopy temperature, Agric For Meteorol 1991, 56:273-298
    175.Priestley C H B, Taylor R J. On the assessment of surface heat flux and evaporation using large-scale parameters. Month Weather Rev, 1972, 100(2): 81-92
    176.Prueger J H, Hatfield J L, Aase J K, Pikul Jr J L. Bowen-Ratio comparisons with lysimeter Evapotranspiration. Agron J, 1997, 85:730-736
    177.Qiu G Y, Momii K, Yano, T. Estimation of plant transpiration by imitation leaf temperature I: Theoretical consideration and field verification. Trans Jpn Soc Irrig Drain Reclam Eng, 1996, 64:401-410
    178.Qiu G Y, Ben-Asher J, Yano T, Momii K. Estimation of soil evaporation using the differential temperature method. Soil Sci Soc Am J, 1999, 63:1608-1614
    179.Qiu G Y, Momii K, Yano T, Lascano R J. Experimental verification of a mechanistic model to partition evapotranspiration into soil water and plant evaporation. Agric For Metorol, 1999, 93:79-93
    180.Roberts G, Roberts A M. Computing the water balance of a small agricultural catchment in southern England by consideration of different land-use types. Ⅱ: Evaporative losses from different vegetation types. Agric Water Manage, 1992, 21:155-166
    181.Ross P J. Efficient numerical methods for infiltration using Richards' equation. Water Resource Res, 1989, 26:279-290
    182.Rouse W R. A water balance model for a subarctic sedge fen and its application to climatic change. Climatic Change, 1998, 38(2): 207-234
    183.Sandhu B S, Khera K L, Prihar S A, Singh B. Irrigation needs and yield of rice on a sandy loam soil as affected by continuous and intermittent submergence. India J Agric Sci, 1980, 50:492-496
    184.Sarkar S, Kar S. Estimation of water uptake pattern of groundnut (Arachis hypogaea L). Agric Water Management, 1992, 21:137-143
    185.Savage M J, Ritchie J T, Bland W L, Dugas W A. Lower Limit of soil water Availability. Agron J, 1996, 88:644-651
    186.Schneider A D, Howell T A, Steiner J L. An evapotranspiration research facility using monolithic lysimeters from three soils. Appl Eng Agric 1993, 9:227-235
    187.Scott A S, Robert J L, Daniel B K. Determining cotton water use in a semiarid climate with the
    
    GossyM cotton simulation model. Agron or, 1996, 88:740-745
    188.Scott H J. Relationships between normalized leaf water potential and crop water stress index values for acala cotton. Agric Water Manage, 1991, 20:109-118
    189.Shanholtz V O, Youngs T M. A soil water balance model for no-tillage and conventional till systems. Agric Water Manage, 1994, 26:155-168
    190.Sinclair T R, Bennett J M, Muchow R C. Relative sensitivity of grain yield and biomass accumulation to drought in field grown maize. Crop Sci 1990, 30:690-693
    191.Sinclair T R, Hammond L C, Harrison J. Extractable soil water and transpiration rate of soybean on sandy soils. Agron J, 1998, 90(3): 363-368
    192.Sinclair T R, Ludlow M M. Influence of soil water supply on the plant water balance of four tropical grain legumes. Aust J Plant Physiol, 1986, 13:329-341
    193.Singh C B, Auhla T S, Sandhu B S. Effects of transplanting date and irrigation regime on growth, yield and water use in rice (Oryza satuva) in northern India. Indian J Agric Sci, 1996, 66:137-141
    194.Smith M. Report on the expert consultation on revision of FAO methodologies for crop water requires. FAO, Rome, 1991
    195.Smith R E, Corradini C, Melone F. A conceptual model for infiltration and redistribution in crusted soils. Water Resources Res, 1999, 35:1385-1393
    196.Steudle E. Water transport across root. Plant Soil, 1994,167:79-90
    197.Steudle E, Peterson A. How does water get through roots? J Exper Bot, 1998, 49:775-788
    198.Stockle C O, Jara J. Modeling transpiration and soil water content from a com (Zea mays L) field:20 min vs daytime integration step. Agric For Meteorol, 1998, 92:119-130
    199.Tardieu F, Bruckler L, Larolie F. Root clumping may affect the root water potential and the resistance to soil root water transport. Plant Soil, 1992, 140:291-301
    200.Thomas R S, No'am G S. Crop modeling: from infancy to maturity. Agron J, 1996, 88:698-704
    201.Tolk J A, Howell T A, Evett S R. Evapotranspiration and yield of corn grown on three high plains soils. Agron J, 1998, 90:447-454
    202.Tripathi R P, Kushwaha H S, Mishra R K. Irrigation requirements of rice under shallow water table condition. Agric Water Manage, 1986, 12:127-136
    203.Vandewiele G L, NiLar W. Monthly water balance models for 55 basins in 10 countries. Hydro Sci J, 1998, 43:687-699
    204.Wallace J S, Jackson N N, Ong C K. Modeling soil evaporation in an agroforestry system in Kenya. Agric For Meteorol, 1999, 94(3/4): 189-202
    205.Wright G C. WUE a important index for drought resistance of peanut and other leguminous plants. In: Selections for WUE in grain legumes, ACIAR Technical Report, 1994, 27:46-47
    206.Wright G C, Rao R C N, Farquhar G D. Water use efficiency and carbon isotope discrimination in peanut under water deficit conditions. Crop Sci, 1994, 34:92-97
    207.Wright J L. New evapotranspiration crop coefficients. J Irrig Drain Div, Proceedings of the ASAE 108, IRI, 1982:57-74
    208.Xu C Y, Singh V P. A review on monthly water balance models for water resources investigations. Water Res Manage, 1998, 12(1): 20-50
    209.Xu C Y. Application of water balance models to different climatic regions in China for water resources assessment. Water Res Manage, 1997, 11(1): 51-67
    210.Xu C Y. Estimation of parameters of a conceptual water balance model for ungauged catchments. Water Res Manage, 1999, 13(5): 353-368
    211.Yamanaka T, Takeda A, Shimada J. Evaporation beneath the soil surface: some observational evidence and numerical experiment. Hydro Proce, 1998, 12:2193-2203
    212.Yamanaka T, Yonetani T. Dynamics of the evaporation zone in dry sand soils. J Hydro (Amsterdam), 1999, 217(1/2): 135-148
    213.Young M H, Wierenga P J, Mancino C F. Monitoring near-surface soil water storage in turfgrass using time domain reflectometry and weighing lysimetry. Soil Sci Soc Am J, 1997, 61:1138-1146

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700