用户名: 密码: 验证码:
P(LLA-CL)复合纳米纤维的制备、表征及在生物医学领域的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然细胞外基质是由邻近细胞分泌的三种主要成分即蛋白纤维、蛋白聚糖和非纤维蛋白成分通过化学和物理的交联组成的,其中直径分布在几十到几百纳米的蛋白纤维,主要是胶原蛋白和弹性蛋白纤维通过相互的交织形成具有三维结构的网状结构为组织的生长提供支撑和弹性。聚合物纳米纤维在形态上类似于天然细胞外基质,可以为细胞的生长提供一个三维的空间和更多的黏附位点。本文利用静电纺丝制备聚合物纳米纤维以仿生天然细胞外基质作为生物医用材料用于组织工程支架、药物缓释等相关领域。本文内容涉及材料加工、机械设计、医疗器械领域,主要分为三个部分:
     (1)首次制备由天然材料壳聚糖和人工聚合材料P(LLA-CL)复合的纳米纤维仿生细胞外基质,并通过SEM、FTIR、XRD、接触角、机械性能测定分析该纳米纤维的物理、化学性能,并通过成纤维细胞和PIECs细胞在纤维膜上的黏附和增殖行为对其安全性进行了评估。实验发现纤维的直径随纺丝溶液的浓度和P(LLA-CL)所占比例的增加而递增;纤维膜的亲水性随着壳聚糖组分的逐渐增加依次增强;该纳米纤维膜能为成纤维细胞和PIECs细胞的生长提供一个适宜的三维的空间环境,有助于细胞的粘附和增殖。此后,为得到具三维结构的纳米纤维管状组织工程支架,本文设计了一套静电纺接收装置,可将电纺纤维成型为长度、厚度和管腔直径可控的管状支架。另外,通过对该装置的改进我们得到了由排列纤维组成的膜状织物,并发现通过调节织物中纤维的排列度可以调节断裂拉伸力学性能。
     (2)通过同轴共纺技术首次成功制备出了芯层载有肝素或肝素与明胶复合物的超细纤维及织物。通过TEM、SEM及Image J软件,我们对其形态及壳-芯结构进行了分析。肝素及其复合物可被完全包裹于P(LLA-CL)中,其含量及纤维形态与芯层供给速率相关。纤维内部细胞实验中发现对成纤维细胞的生长具有明显的抑制作用。
     (3)成功制备出以静电纺P(LLA-CL)纤维或同轴共纺载肝素P(LLA-CL)壳-芯纤维为覆膜的新型血管内支架。P(LLA-CL)纤维覆膜支架易被固定在传输器的球囊上,最大扩张压低于8个大气压,扩张后的回弹率分布在3.9%-6.1%,在液压P=16.0+0.3kPa时水的渗透量为3.23±1.62ml/cm2/min,动物实验发现对动脉瘤具有较好封堵效果,能够初步满足临床要求。
Native extracellular matrix (ECM) is a chemically and physically cross-linked complex network of three important classes of biomacromolecules secreted locally by cells. These are fibrous proteins, proteoglycans, and non-fibrous proteins. In a typical connective tissue, structural fibers such as collagen fibers and elastin fibers have diameters ranging from several ten to several hundred nanometers. The nanoscaled fibers entangle with each other to form a nonwoven mesh that provides tensile strength and elasticity for the tissues. The morphology of polymer nanofibers are similar to ECM, and can supply a 3-D environment and more acceptor sites for cell adherence and growth. In this study, electrospinning has been used to fabricate nanofibers as biomemitic ECM for excellent biomaterials. There are many research fields such as materials fabrication, mechanical design and medical device were involved as following in this paper.
     (1) Chitosan-P(LLA-CL) complex was electrospun into nanofibers as biomemitic ECM first time. In this study, SEM, FTIR, XRD, contact angle, and materials test machine were used to characterize the nanofiber. The cells of fibroblast and PIECs were seeded onto nanofiber mats for adherence and proliferation studies. A new collector with a rotary mandrel has been design and used to fabricate tubular scaffold or aligned nanofiber fibric. The results showed that chitosan-P(LLA-CL) complex nanofiber and its fibric have shown valuable potential application as biomaterials for tissue engineering scaffold, wound dressing, and so on.
     (2) Heparin contained core-shell fibers and fibric were fabricated using coaxial electrospinning technique. Through TEM, SEM test and Image J software, the morphology and diameter of core-shell fiber were investigated. In cell culturing test, heparin contained fibers have shown obvious inhibit affect on proliferation of fibroblast. Due to the special structure, this kind of fibers are very useful in application as heparin release and tissue engineering scaffold.
     (3) A new type of covered stent was successfully developed with electropinning technique and the rotary mandrel collector in our study. Electrospun fibers covered stent could be well fixed on the balloon of delivery device, and showed good mechanical properties and morphology in dilation process. After expanding, the fiber fabric on stent could maintain their morphology well and be fixed in artery. As a new type of covered stent with low recoil and infiltration, electropun fibers covered stent showed potential application in clinical treatment of aneurysm..
引文
[1]Boretos JW,Eden M.Contemporaty Biomaterials,Material and Host Response,Clinical Applications,William Andrew Publishing,1984
    [2]朊建明、邹俭鹏、黄伯云,生物材料学,北京:科学出版社,2004
    [3]Lysaght MT,Solliven KF,Tsri JH.An cconomic survey of the tissue engineering industry proceed,Intl.Symp.Control.Rel.Bioact.Mater.,1998,25:107-108
    [4]Langer R,Vacanti JP.Tissue engineering,Science,1993,250(5110):920-926
    [5]Stock UA,Vacanti JP.Tissue engineering:Current state and prospects,Annu Rev Med,2001,52:443-451
    [6]Mikos AG,Thorsen AJ,Czerwonka LA,et al.Preparation and characterization of poly(L-lactic acid)foams,Polymer,1994,35(5):1068-1077
    [7]Nazarov R,Jin HJ and Kaplan DL,Porous 3-D scaffolds from regenerated silk fibroin.Biomacromolecules,2004,5(3):718-726.
    [8]Whang K,Thomas Ch,Healy KE.A Novel methods to fabricate bioabsorbable scaffolds.Polymer,1995,36(4):837-842
    [9]Harris LD,Kim BS,Mooney DJ.Open pore biodegradable matrices formed with gas foaming,Biomed.Mater.Res.1998,42(3):396-402
    [10]Yang F,Murugan R,Ramakrishna S,et al.Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering,Biomaterials,2004,25(10):1891-1900
    [11]Silva GA,Czeisler C,Niece KL,et al.Selective differentiation of neural progenitor cells by high-epitope density nanofibers,Science,2004,303(27):1352-1355
    [12]何创龙,夏烈文,罗彦凤,王远亮,快速成形技术在骨组织工程领域的应用进展,生物医学工程学杂志,2004,21(5),871-875
    [13]Zhang YZ,Lim,CT,Ramakrishna S,Huang ZM,Recent development of polymer nanofibers for biomedical and biotechnological applications,Journal of Materials Science:Materials in Medicine,2005,16(10),933-946
    [14]Lannutti J,Reneker D,Ma T,et al.Electrospinning for tissue engineering scaffolds,Materials Science and Engineering:C,2007,27(3):504-509
    [15]Nalwa HS,Handbook of nanostructured Biomaterials and Their Applications in Nanobiotechnology,American Scientific Publishers,2005
    [16]Stevens MM,George JH.Exploring and Engineering the Cell Surface Interface,Science,2005,310:1135-1138
    [17]Ramakrishna S,et al.An Introduction to Electrospinning and Nanofibers,World Scientific,2005
    [18]Nair LS,Bhattacharyya S,Laurencin CT.Development of novel tissue engineering scaffolds via electrospinning,Expert.Opin.Biol.Ther.,2004,4:659-668
    [19]Formhals A.Process and apparatus for preparing artificial threads,US Patent,1975504,1934
    [20]Rosenberg,MD.Cell guidance by alterations in monomolecular films,Science,1963,139:411-412
    [21]Laurencin,CT,Ambrosio,AMA,Borden MD,et al.Tissue engineering:Orthopedic applications,Annu Rev Biomed Eng.,1999,1:19-46
    [22]Stevens M M,George J L H.Exploring and Engineering the Cell Surface Interface,Science,2005,310:1135-1138
    [23]Li WJ,Laurencin CT,Caterson EJ,,et al.Electrospun nanofibrous structure:a novel scaffold for tissue engineering,Journal of Biomedical Materials Research,2002,60(4):613-621
    [24]Yoshimoto H,Shin YM,Terai H,et al.A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering,Biomaterials,2003,24:2077-2082
    [25]Boland ED,Matthews JA,Pawlowski KJ,et al.Electrospinning collagen and elastin:preliminary vascular tissue engineering.Front.Biosci.,2004,1(9):1422-1432
    [26]Stitzel,JD,Pawlowski K,Wnek GE,et al.Arterial smooth muscle cell proliferation on a novel biomimicking,biodegradable vascular graft scaffold,J.Biomater.Appl.,2001,16:22-33
    [27]Xu CY,Yang F,Wang S,et al.In vitro study of human vascular endothelial cell function on materials with various surface roughness,J.Biomed.Mater.Res.,2004,71A(1):154-161
    [28]Bini TB,Gao SJ,Tan TC,et al.Electrospun poly(L-lactide-co-glycolide)biodegradable polymer nanofibre tubes for peripheral nerve regeneration,Nanotechnology,2004,15:1459-1464
    [29]Zong X,Bien H,Chung CY,et al.Electrospun non-woven membranes as scaffolds for heart tissue constructs,Polymer Preprints,2003,44(2):96-97
    [30]Shin M,Ishii O,Sueda T,et al.Contractile cardiac grafts using a novel nanofibrous mesh.Biomaterials.2004,25(17):3717-3723
    [31]Zhang YZ,Venugopa JR,Huang ZM,Lim CT,Ramakrishna S.Characterization of the surface biocompatibility of the electrospun PCL-Collagen nanofibers using fibroblasts,Biomacromolecules,2005,6(5):2583-2589
    [32]Espy PG,McManus MC,Bowlin GL,et al.Electrospun elastin scaffolds for use in bladder tissue engineering,J.Urology.Suppl.S.APR.,2004,171(4):457-457
    [33]Li WJ,Danielson KG,Alexander PG,et al.Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(epsilon - caprolactone)scaffolds,Journal of Biomedical Materials Research,2003,67A(4):1105-1114
    [34]Li WJ,Tuli R,Okafor C,et al.A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells,Biomaterials,2005,26(6):599-609
    [35]Shields KJ,Beckman MJ,Bowlin GL,et al.Mechanical properties and cellular proliferation of electrospun collagen type II,Tissue Eng.,2004,10(9-10):1510-1517
    [36]Matthews JA,Boland ED,Wnek GE,et al.Electrospinning of collagen type Ⅱ:a feasibility study,Journal of Bioactive and Compatible Polymers,2003,18:125-134
    [37]Yoshimoto H,Shin YM,Terai H,et al.A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering,Biomaterials,2003,24:2077-2082
    [38]Shin M,Yoshimoto H,Vacanti JP.In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold,Tissue Eng.,2004,10(1-2):33-41
    [39]Mo XM,Xu CY,Kotaki M,et al.Electrospun P(LLA-CL)nanofibers:a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation,Biomaterials,2004,25(10):1883-1890
    [40]Xu CY,Inai R,Kotaki M,et al.Aligned biodegradable nanofibrous structure:a potential scaffold for blood vessel engineering,Biomaterials,2004,25:877-886
    [41]Ma Z,Kotaki M,Yong T,et al.Surface engineering of electrospun polyethylene terephthalate(PET)nanofibers towards development of a new material for blood vessel engineering,Biomaterials,2005,26(15):2527-2536
    [42]Yang F,Murugan R,Wang S,et al.Electrospinning of nano/micro scale poly(l-lactic acid)aligned fibers and their potential in neural tissue engineering.Biomaterials,2005,26(15):2603-2610
    [43]Liu G,Qiao L,Guo A.Diblock copolymer nanofibers,Macromolecules,1996,29:5508-5510
    [44]Morales AM,Lieber CM.Laser ablation method for the synthesis of crystalline semiconductor nanowires,Science,1998,279:208-211
    [45]Jang J,Lim B,Lee J,et al.Fabrication of a novel polypyrrole/poly(methyl-methacrylate)coaxial nanocable using mesoporous silica as a nanoreactor,Chemical Communications,2001,1:83-84
    [46]Bognitzki M,Hou H,Ishaque M,et al.Polymer,metal,and hybrid nano- and mesotubes by coating degradable polymer template fibers(TUFT Process),Advanced Materials,2000,12(9):637-640
    [47]Dong H,Nyame V,MacDiarmid AG,et al.Polyaniline/poly(methyl methacrylate)coaxial fibers:The fabrication and effects of the solution properties on the morphology of electrospun core fibers,J Polym Sci:Part B:Polym Phys.2004,42(21):3934-3942
    [48]Larsen G,Spretz R,Velarde OR.Templating of inorganic and organic solids with electrospun fibres for the synthesis of large-pore materials with near-cylindrical pores,J Mater Chem,2004,14(10):1533-1539
    [49]Li D,Xia Y.Direct fabrication of composite and ceramic hollow nanofibers by electrospinning.Nano Lett,2004,4(5):933-938
    [50]Zhang Y Z,Huang Z M,Xu X,et al.Preparation of core-shell structured PCL-r-Gelatin bi-component nanofibers by coaxial electrospinning.Chem Mater,2004,16(18):3406-3409
    [51]何创龙,黄争鸣,张彦中等,静电纺丝法制备组织工程纳/微米纤维支架,自然科学进展,2005,22(6):1-8
    [52]Zhang YZ,Ouyang HW,Lim CT,et al.Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds,J.Biomed.Mater.Res.Part.B.:Appl.Biomater.,2005,72B:156-165
    [53]Ma ZW,Kotaki M,Inai R,Ramakrishna S.Potential of nanofiber matrix as tissue engineering scaffolds,Tissue.Eng.,2005,11(1-2):101-109
    [54]Ohkawa K,Cha D,Kim H,Nishida A,and Yamamoto H.Electrospinning of chitosan.Macromol.Rapid Commun.,2004,25:1600-1605
    [55]Bhattaai N,Edmondson D,Veiseh O,Matsen AF,Zhang MQ.Electrospun chitosan-based nanofibers and theircellular compatibility,Biomaterials,2005,26:6176-8184
    [56]Chen ZG,Mo XM,Qing FL.Electrospinning of collagen-chitosan complex,Materials Letters,2007,61(16):3490-3494
    [57]He W,Yong T,Teo WE,Ma ZW,Ramakrishna S.Fabrication and Endothelialization of Collagen-Blended Biodegradable Polymer Nanofibers:Potential Vascular Graft for Blood Vessel Tissue Engineering,TISSUE ENG,2005,11(9-10):1574-1588
    [58]Huang ZM,Zhang YZ,Ramakrishna S,Lim CT.Electrospinning and mechanical characterization of gelatin nanofibers,Polymer,2004,45:5361-5368
    [59]Zong XH,Kim K,Fang DF,et al.Structure and process relationship of electrospun bioabsorbable nanofiber membranes,Polymer,2002,43:4403-4412
    [60]Ko EP,Jung SY;Lee SJ,Min BM,Park WH.Biomimetic nanofibrous scaffolds:Preparation and characterization of chitin/silk fibroin blend nanofibers,International Journal of Biological Macromolecules,2006,38:165-173
    [61]Pakakrong S,Pitt S.Stability Improvement of Electrospun Chitosan Nanofibrous Membranes in Neutral or Weak Basic Aqueous Solutions,Biomacromolecules,2006,7(10):2710-2714
    [62]Li MY,Mondrinos MJ,Gandhi MR,Ko FK,et al.Electrospun protein fibers as matrices for tissue engineering,Biomaterials,2005,26(30):5999-6008
    [63]Sionkowska A,Wisniewski M,Skopinska J,Kennedyb CJ,Wess TJ.Molecular interactions in collagen and chitosan blends,Biomaterials,2004,25(5):795-801
    [64]Hasegwa M,Isogai A,Onabe F,Usuda M.Dissolving States of Cellulose and Chitosan in Trifluoroacetic Acid,J.Appl.Polym.Sci.,1992,45:1857-1863
    [65]Choi JS,Lee SW,Jeong L,Bae SH,et al.Effect of organosoluble salts on the nanofibrous structure of electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate),Int.J.Biol.Macromol.,2004,34(4):249-256
    [66]姚康德、尹玉姬,组织工程相关生物材料,北京:化学工业出版社,2003
    [67]Ross R.The pathogenesis of atherosclerosis:a perspective for the 1990s,Nature,1993,362:801-808
    [68]American Heart Association,American Heart Association Heart Disease and Stroke Statistics-2003 Update,Dallas,Tex.:American Heart Association,2002
    [69]Eagle K,Guyton RA,Davidoff R,et al.Guidelines for coronary artery bypass graft surgery,J.Am.Coll.Cardiol.,1999,34:1262-1347
    [70]Nerem R,Seliktar D,Vascular tissue engineering,Annu.Rev.Biomed.Eng.,2001,3:225-243
    [71]Williams SK.Tissue Engineered vascular grafts:From bench to clinical use,FASEB J.,2002,14(4):A305
    [72]Weinberg CB,and Bell E.A blood vessel model constructed from collagen and cultured vascular cells,Science,1986,231:397-400
    [73]Kanda,K.,Matsuda,T.,Oka,T.Mechanical stress induced cellular orientation and phenotypic modulation of 3-D cultured smooth muscle cells,ASAIO J.,1993,39:M686-690
    [74]L'Heureux N,Germain L,Labbe R,Auger FA.In vitro construction of a human blood vessel from cultured vascular cells:a morphological study,J.Vasc.Surg., 1993,17:499-509
    [75]Hirai J,Kanda K,Oka T,Matsuda T.Highly oriented,tubular hybrid vascular tissue for a low pressure circulatory system,ASAIO J.,1994,40:383-388
    [76]Kanda K,Matsuda T.Mechanical stress-induced orientation and ultrastructural change of smooth muscle cells cultured in three-dimensional collagen lattices,Cell Transplant,1994,3:481-492
    [77]Tranquillo,R.T.,Girton,T.S.,Bromberek,B.A.,Triebes,T.G,Mooradian,D.L.Magnetically orientated tissue-equivalent tubes:application to a circumferentially orientated mediaequivalent.Biomaterials,1996,17:349-357
    [78]Barocas VH,Girton TS,Tranquillo RT.Engineered alignment in media equivalents:magnetic prealignment and mandrel compaction,J.Biomech.Eng.,1998,120:660-666
    [79]Girton TS,Oegema TR,Tranquillo RT.Exploiting glycation to stiffen and strengthen tissue equivalents for tissue engineering,J.Biomed.Mater.Res.,1999,47:87-92
    [80]Girton TS,Oegema TR,Grassl ED,et al.Mechanismsof stiffening and strengthening in media-equivalents fabricated using glycation,J.Biomech.Eng.,2000,122(3):216-223
    [81]Wilson GJ,Courtman DW,Klement P,et al.Acellular matrix:A biomaterials approach for coronary artery bypass and heart valve replacement,Ann.Thoracic Surg.,1995,60:353-358
    [82]Roeder R,Wolfe J,Lianakis N,et al.Compliance,Elastic Modulus,and Burst Pressure of Small-intestine Submucosa(SIS),Small Diameter Vascular Grafts.,J.Biomed.Mater.Res.,1999,47:65-70
    [83]Huynh T,Abraham G,Murray J,et al.Remodeling of an acellular collagen graft into a physiologically responsive neovessel.Nat.Biotechnol,1999,17:1083-1086
    [84]Nerem R,Seliktar D.Vascular tissue engineering,Annu.Rev.Biomed.Eng.,2001,3:225-243
    [85]Niklason LE.Replacement arteries made to order,Science,1999,286:1493-1494
    [86]Niklason LE,Abbott W,Gao J,Klagges B,et al.Morphological and mechanical characteristics of engineered bovine arteries,J.Vasc.Surg.,2001,33(3):628-638
    [87]Niklason LE,Gao,J,Abbott WM,Hirschi KK,et al.Functional arteries grown in vitro,Science,1999,284:489-493
    [88]夏平光,侯春林,王万宏,几丁糖抑制人成纤维细胞增殖的实验研究,中国修复重建外科杂志,2007,21(8),833-836
    [89]Ayres CE,Jha S,Meredith H,Bowman JR,et al.,Measuring fiber alignment in electrospun scaffolds:a user's guide to the 2-D FFT approach.Journal of Biomaterials Science,Polymer Edition,In press
    [90]Raymond TB,Mark AT,Dwaine FE,Stephen EZ.Drug delivery:sustained delivery of proteins for novel therapeutic products,Science,1998,281:1161-1162.
    [91]Theresa MA,Pieter RC.Drug delivery systems:entering the mainstream,Science,2004,303:1828-1822.
    [92]Huang ZM,He CL,Yang AZ,et al.Encapsulating drugs in biodegradable ultrafine fibers through co-axial electrospinning,Journal of Biomedical Materials Research,2006,77A(1):169-179
    [93]Ignatious F,Baldoni JM.Electrospun pharmaceutical compositions,WO:0154667,2001
    [94]何创龙,黄争鸣,韩晓建等,壳-芯电纺超细纤维作为药物释放载体的研究,高技术通讯,2006,16(9):934-938
    [95]Huang ZM,He CL,Yang AZ,et al.Encapsulating drug in biodegradable ultrafine fibers through coaxial electrospinning,J Biomed Mater Res Part A,2006,77A(1):169-179
    [96]廖劲松,郭勇,低分子肝素研究进展,广东药学院学报,2004,20(2):175-178,
    [97]张治云,凌沛学,王凤山等,低分子肝素临床应用的研究进展,中国生化药物杂志,2006,27(4):253-255
    [98]Emma LV,Lisbeth G,Kian NC,et al.Controlled release of heparin from poly(e-caprolactone)electrospun fibers,Biomaterials,27(9):2042-2050
    [99]张海霞,李明华,覆膜支架—颅内动脉瘤血管内治疗的新策略,介入放射学杂志,2004,13(1),83-85
    [100]张一,聂红林,一种动脉覆膜支架,中国专利,CN2582641Y 2003
    [101]Van Nieuwenhove Y,Van den Brande P,Van Tussenbroek F,Debing E,Von Kemp K.Iatrogenic carotid artery pseudoaneurysm treated by an autologous vein-covered stent,Eur.J.Vasc.Endovasc.Surg.,1998,16(3):262-265

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700