用户名: 密码: 验证码:
腐殖质吸附Zn~(2+)的电化学效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
腐殖质是土壤与环境中广泛存在的一类重要的天然有机物质,它在提升土壤肥力、防治水土流失、固定与分解有毒物质、控制农田面源污染发生等方面都有重要应用。
     近年来,国内外对于腐殖质与金属离子的相互作用已有大量的研究,然而这些研究大都直接应用经典热力学和动力学的有关理论,使得腐殖质胶体与这些离子相互作用的机理至今仍存在争议,平衡常数的理论计算至今无法实现。其根本原因是人们忽略了腐殖质胶体颗粒的表面电场对离子吸附速率与平衡吸附量的影响。
     在胶体化学领域,胶体分散系的稳定与聚沉是重要的研究内容,它常用DLVO理论来描述。在研究胶体颗粒的生长动力学过程及凝聚体的分形结构时,逐渐形成了两种具有代表性的不可逆凝聚生长模型:一种是扩散控制簇团凝聚,另一种是反应控制簇团凝聚。光散射技术为实验室测定胶体凝聚过程的动态变化和凝聚体结构特征提供了有利的手段。
     本课题将基于目前的研究成果,采用可变电荷“腐殖质胶体”样品作为研究对象,一方面,在不同浓度背景电解质溶液中,进行Zn2+/Ca2+交换的实验研究,测定不同电场体系中Zn2+的吸附速率和平衡吸附量,以及对比不发生专性吸附的Mg2+与Ca2+交换的交换吸附实验,从而揭示表面电场对Zn2+的吸附速率和平衡吸附量的影响。另一方面,由于Zn2+在腐殖质表面产生专性吸附和静电吸附后,腐殖质的表面电场将大大减弱,在这种情况下腐殖质颗粒之间将在分子力作用下发生快速的分形聚合过程并形成分形聚合体,本课题采用动态静态光散射相结合的方式,来研究Zn2+吸附对腐殖质凝聚动力学和凝聚体结构的影响。本课题初步研究表明:
     (1)根据描述土壤离子扩散或吸附的严格的速率方程,腐殖酸对于Zn2+的吸附表现了一级动力学的特征。
     (2)本文通过研究在腐殖质颗粒表面发生专性吸附的Zn2+和非专性吸附的Mg2+,证明表面电场对颗粒表面离子的吸附速率及平衡吸附量有显著的影响。
     (3)通过Zn(NO3)2对腐殖质胶体凝聚动力学的研究,我们发现:①根据凝聚过程中光强的稳定与否,可以判断土壤胶体凝聚过程中碰撞的发生是由布朗运动支配还是由重力作用支配。②对不同浓度Zn(NO3)2溶液中胶体颗粒凝聚动力学过程的研究,发现:该体系下,凝聚体生长模型属于扩散控制簇团凝聚(DLCA)。③对不同浓度Zn(NO3)2溶液中胶体颗粒凝聚体结构特征的研究,发现:凝聚体具有较低的分形维数,从而对应有高的孔隙度和大的开放度。
Humus is an important kind of natural organic matter which is widespread in soil and environment. Humus plays an important role in improving soil fertility, controling erosion, fixing and decomposing toxic substance, and controling agricultural area source pollution,ect.
     In recent years, a large number of studies on the interaction between metal ions and humus have been done. However, most of these studies always apply the relevant theory of classical thermodynamics and dynamics directly, making the mutual mechanism between humus and ions indistinct and the equilibrium constants uncalculated so far. The fundamental reason is that people have ignored the influence induced by the electric field of humus colloidal on adsorption rate and adsorption equilibrium.
     In the field of colloidal chemistry, the stability and flocculation of colloidal dispersion system is an important research content, always using the DLVO theory to describe them. During the study of colloidal particles aggregation and the fractal structure, the two irreversible aggregation models were gradually formed:the one was diffusion limited cluster aggregation; the other was the reaction limited cluster aggregation. Light scattering techniques provide a favorable means for determining aggregation's dynamic change and structural features in laboratory.
     This project bases on the current research results, taking variable charge "humus colloid" as the research material. On the one hand, researching on the Zn2+/Ca2+ ions exchanged in different concentrations of background electrolyte and comparing the result of Mg2+/Ca2+ ions exchange experiment; we concluded that the surface electric field had an influence on the coefficient rates of adsorption and equilibrium adsorption capacities. On the other hand, as the ligand adsorption and electrostatic adsorption of Zn2+ on the humus surface, the surface field of humus would be greatly weakened. In this case, humus particles will aggregate rapidly and form the fractal polymer by the molecular force. The project studied the influence of Zn2+ adsorption on the kinetics aggregation and the structure of aggregation using the dynamic light scattering and static light scattering. The preliminary results indicated that:
     (1) According to the rigorous rate equation which is used to describe the ion diffusion /adsorption, the adsorption of Zn2+ to humus showed a first-order kinetics character.
     (2) By compared the the specific adsorption of Zn2+ and the non-specific adsorption of Mg2+, we found the electric field force had a significant effect on adsorption rate and the equilibrium adsorption capacity.
     (3) Studying on the aggregation kinetics of humus colloidal induced by Zn2+, we found that:①stability of the light intensity in an aggregation process is a basis for judging whether the collision is dominated by Brown force or gravity;②in different concentration of Zn(NO3)2 systems, humus colloidal aggregation exhibited a diffusion-limited cluster aggregation (DLCA) character;③in different concentrations of electrolyte, the structure of humus aggregates had the smaller fractal dimension, then had bigger porosity and open approach space.
引文
[1]Schnitzor M.,Khan S.U.,Humic Substances in the Environment[M].New York:Marcel Dekker, 1972.
    [2]Griffith S.M., Schnitzer M.,Analytical characteristics of humic and fulvic acids extracted from tropical volcanic soil[J].Soil Sci. Soc.. Proc.,1975,(39):861-867.
    [3]刘湛,成应向,向仁军.腐殖质类物质的形态、结构及功能研究进展[J].科技咨询,2006,(22):27.
    [4]蒋平,荣湘民,张富强,等.不同秸秆还土方式对旱地土壤培肥和玉米产量的影响[J].土壤肥料,2004(3):7-9.
    [5]关连珠.普通土壤学[M].北京:中国农业大学出版社.2007.
    [6]于天仁,季国亮,丁菖璞.可变电荷的土壤电化学[M].北京:科学出版社,1996:35-38,190-207.
    [7]于天仁.我国电化学的建立和发展[M].土壤,1999(5):231-235.
    [8]于天仁.我国农业持续发展和生态环境中重大土壤问题的化学机理研究建议[M].土壤,2001(3):119-122.
    [9]于天仁,季国亮.加强土壤电化学研究占领土壤科学前沿[M].土壤,1994(4):3-6.
    [10]Ikai A., Osterberg R..Atomic force microscopy of humic acids[J].Scanning Microsc..1996, (10):994-997.
    [1]Osterberg R.,Mortensen K..Fractal dimension of humic acids in a small-angle neutron scattering study[J].Eur.Biophysics,1992,21:163-167.
    [12]Bower C. A., Gshwend F.B..Ethylene glycol icretention by soils as a measure of surface area and inter-layer swelling.Soil Sci.Soc.Amer.Proc.,1952,16:342-345.
    [3]M.Th.van Genuchten,P.J.Wierenga.Mass transfer studies in sorbing porous media I.Analytical solutions.Soil Sci.Soc.Am.J.,1976,40:473-480.
    [4]李航.土壤界面电化学性质测定的动力学方法研究[D].重庆:西南农业大学,2000.
    [5]郑忠.胶体科学导论[M].北京:高等教育出版社.1989.
    [6]Low P.F.土壤物理化学[M].北京:农业出版社.1981,112-120.
    [7]Sparks D.L.土壤物理化学[M].北京:天则出版社.1986,55-69.
    [8]于天仁.土壤化学原理[M].北京:科学出版社.1987,89-111.
    [9]Z.Z.Zhang, Sparks D.L.,Scrivner N.C..Characterization and modeling of the Al-oxide/aqueous solution interface. I:Measurement of electrostatic potential at the origin of the diffuse layer using negative adsorption of Na+ ions [J] Journal of Colloid and Interface Science.1994,162: 244-251.
    [20]Li Hang,Qing Changle,Wei Shiqiang,et al.An approach to the method for determination of surface potential on soil/liquid interface [J] Journal of Colloid and Interface Science,2004, (275):172-176.
    [21]Buckingham E.Contributions to our knowledge of the aeration of soils. U.S. Department of Agriculture Soils Bulletin 25.,1904.Washington, D.C.:USDA. J.
    [22]Conkling B.L., Blanchar R.W..Estimation of calcium diffusion problems related to soil by conductometric techniques[M].Soil Science Society of America Journal,1986,50(6):1455-1549.
    [23]张芹.土壤颗粒表面电场对铵传输与硝化的影响[D].重庆:西南大学,2008.
    [24]李航,薛家骅.土壤中离子扩散的基本方程与实验验证[J].土壤学报,1998,35(3):321-327.
    [25]Yan Jin,M. Fliry.Fate and Transport of viruses in poros media[J].Advances in Agronomy, 2002:77:39-102.
    [26]陈怀满.土壤中化学物质的行为与环境质量[M].北京:科学出版社,2002.
    [27]徐明岗.pH对黄棕壤Cu2+和Zn2+吸附等温线的影响[J].土壤学报,1998,29(2):65-66.
    [28]杨邦杰,隋红建.土壤水热运动模型及其应用[M].北京:中国科学技术出版社.1997.
    [29]S. G. Chen,R.E. Franklin,A. D. Johnson.Clay film effects on ion transport in soil[M].Soil Sci. 1997,162,91-96.
    [30]李韵珠,李保国.土壤溶质运移[M].北京:科学出版社,1998.
    [31]P.Somasundaran,B. Markovic,S. Krishnakumar,et al.Handbook of surface and colloid chemistry [M].New York:CRC Press LLC,1997.
    [32]Li Hang, Qin Changle, Wei Shiqiang.et al.Discussion on the position of the shear plane[J]. J. Coll. Inter.Sci.,2003:258,40-44.
    [33]M. T. H. van Genuchten,P. J. Wierenga.Two-site/twopregion models for pesticide transport and degradation:theoretical development and analytical solutions[[M].Soil Sci. Soc. Ame.J., 1989,53:1303-1310.
    [34]杨兴伦.紫色土表面电荷性质的初步研究[D].重庆:西南农业大学,2004.
    [35]Li Hang,Wu Laosheng.A generalized linear equation for non-linear diffusion in external fields and non-ideal systems[J].New Journal of Physics,2007,9:(357).
    [36]Li Hang,Wu Laosheng,Zhu Hualing,et al.Ion Diffusion in the Time-Dependent Potential of the Dynamic Electric Double Layer[M].J.Phys.Chem.C.,2009,113(30):13241-13248.
    [37]Li Rui,Li Hang.Wu Laosheng,et al.Kinetic studies of cation diffusion/adsorption in charged soil as considering the strong and weak electrostatic forces in DDL[J].SSSAJ.2009.
    [38]胡纪华,杨兆禧,郑忠.胶体界面化学[M].广州:华南理工大学出版社,1997:254-330.
    [39]熊毅,陈家坊.土壤胶体(第三册)[M].北京:科学出版社,1990:124-156.
    [40]陈守吉,凌复华译.大自然的分形几何学[M].上海:上海远东出版社,1998.
    [41]王东升,汤鸿霄.分形理论在混凝研究中的应用与展望[J].工业水处理,2001,21(7):16-19.
    [42]王东升,汤鸿霄,栾兆坤.分形理论及其研究方法[J].环境科学学报,2001,21(增刊):10-16.
    [43]李剑超,褚君达,林广发,等.絮凝过程的分形研究进展[J].福建农林大学学报(自然科学版),2002,31(1):128-131.
    [44]Tisdall J M, Oades J M.Organic matter and water stable aggregates in soils[M].J Soil Sci., 1982,33:141-163.
    [45]Vold M.J.Computer simulation of floe formation in a colloidal suspension[M].Journal Colloid Interface Sci.,1963,18:684-695.
    [46]Sutherland D.N..Cornments on Vold's simulation of floe formation[J].JC&IS,1966,22: 300-303.
    [47]Sutherland D.N.,A theoretical model of floc structure[J].Colloid Interface Sci,1967,25: 373-380.
    [48]Goodarz N.I..Floc simulation:Protate spheroidal particles[J].Colloid Interface Sci.,1970,70(2): 306-319.
    [49]Goodarz N.I.Floc simulation:effect of particle size distribution[J].JC&JS,1975,52(1):29-40.
    [50]张济忠.分形[M].北京:清华大学出版社,1995.9:166-167.
    [51]Lin M Y,Lindsay H M,Weitz D A,et al.Universality in colloid aggregation[J].Nature,1989a, 339:360-362.
    [52]Lin M Y,Lindsay H M,Weitz D A,et al.Universality of fractal aggregates as probed by light scattering[J].Proc. R. Soc. Lond. A,1989b,423:71-87.
    [53]Lin M Y,Lindsay H M,Weitz D A,et al.Universal diffusion-limited colloid aggregation[J].J. Phys.:Condens. Matter 2,1990a,2:3093~3113.
    [54]Lin M Y,Lindsay H M,Weitz D A,et al.Universal reaction-limited colloid aggregation[J]. Physical review A,1990b,41:2005-2020.
    [55]Janine L B,Yao D Y,Graeme J J,et al.A light scattering study of the fractal aggregation behavior of a model colloidal system[J].Langmuir,1997,13:6413-6420.
    [56]Weitz D A,Huang J S,Lin M Y,Sung J. Limits of the fractal dimension for irreversible kinetic aggregation of gold colooids[J].Physical review letters,1985,54:1416-1419.
    [57]Hermawan M,Buahell QBickert G,Amal R.Characterisation of short-range structure of silica aggregates-implication to sediment compaction[J].Int. J. Miner. Process,2004,73:65-81.
    [58]Bezot P,Hesse-Bezot C.Kinetics of clustering of carbon black suspensions by light scattering techniques[J].Physica A,1999,271:9-22.
    [59]Derrendinger L.,Sposito G.Flocculation kinetics and cluster morphology in illite/NaCl suspensions[J].J.Colloid Interface Sci.,2000,222:1-11.
    [60]Lin J L,Chin C J M,Huang C,et al.Coagulation behavior of All aggregates[J].Water research, 2008,42:4281-4290.
    [61]Adachi Y,Karube J. Application of a scaling law to the analysis of allophane aggregates [J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,1999,151:43-47.
    [62]Adachi Y,Kogaa S,Kobayashi M,et al.Study of colloidal stability of allophone didpersion by dynamic light scattering[J].Colloids Surf.A:Physicochem. Eng.Aspects,2005,265:149-154.
    [63]高凌,崔彦红.对锌营养与人体健康的新认知[J].国外医学卫生学分册,2009,(36):299-300.
    [64]王富芳,李路,刘尚义.作物必须微量元素及其生理功能[J].作物杂志,1994,(4):342-361.
    [65]Vader J S,van Ginkel C G,Sperling F M G M,et al.Degradation of ethinyl estradiol by nitrifying activated sludge[J].Chemosphere,2000.41:1239-1243.
    [66]Desbrow C,Rouledge E J,Brighty G C,et al.Identification of estrogenic chemicals in STW effluent 1.Chemical fractionation and in vitro biological screening[J]. Environ.Sci.Technol., 1998,32:1549-1558.
    [67]Coleman H M,Eggins B R,Byme J A,et al.Photocatalytic degradation of oestradiol on immobilized TiO2[J].Applied Catalysis B:Environmental,2000,24:1-5.
    [68]Mclaren R G, Grawford D V.Studies on soil copper.2.The specific adsorption of copper by soils[J].J.Soil Sci.,1973,24:443-452.
    [69]于天仁,季国亮,丁昌璞.可变电荷土壤的电化学[M].北京:科学出版社,1996.
    [70]Mckenzie R M.The adsorption of lead and other heavy metals on oxides of manganese and iron[J].J.Soil Res.1980,18:61-73.
    [71]Forbes EA,Posner AM,Quirk J P.The specific adsorption of divalent Cd,Co,Cu,Pb and Zn on goethite[J].J.Soil Sci.,1976,27:154-166.
    [72]徐明岗,季国亮.恒电荷土壤及可变电荷土壤与离子间相互作用的研究Ⅲ Cu2+和Zn2+的特征[J].土壤学报,2005,429(2):225-231.
    [73]Ikai A,R Osterberg.Atomic force microscopy of humic acids[J].Scanning Micros.,1996,10: 947-951.
    [74]Ayse Erzan, Nurfer Gungor.Fractal Geometry and Size Distribution of Clay Particles[J]. Journal of Colloid and Interface Science,1995,176:301-307.
    [75]曾祥华,徐秀莲,王锋,等.新团簇形成的动力学研究[J].物理化学学报,2002,18(1):26-29.
    [76]J. B. Dixon土壤中粘粒的作用[J].土壤学进展,1992,20(3):33-36.
    [77]Stefano di Stasio.Cluster-Cluster Aggregation Kinetics and Primary Particle Growth of Soot Nano particles in Flame by Light Scattering and Numerical Simulations[J] Journal of colloid and Interface Science 2002.247:33-46.
    [78]黄昌勇.土壤学[M].北京:中国农业大学出版社,2005.
    [79]Li Hang,Wu Laosheng,Zhu Hualing,et al.Ion Diffusion in the Time-Dependent Potential of the Dynamic Electric Double Layer[J].J.Phys.Chem.C.,2009,113(30):13241-13248.
    [80]王乃宁.颗粒粒径的光学测量技术及应用[M].北京:原子能出版社,2000.
    [81]肖彦春,窦森.土壤腐殖质个组分红外光谱研究[J].分析化学研究报告,2007,35(11):1596-1600.
    [82]徐小中,薛锦华,印军荣.不同类型土壤腐殖质组分的研究[J].江苏环境科技,2006,19(2):8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700