用户名: 密码: 验证码:
河流藻类叶绿素a浓度短时间尺度预测方法研究和应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
饮用水源地(地表水)的水体富营养化是影响水源地水质的主要原因。国内外针对水体富营养化研究多针对藻类“水华”进行预测。近年研究表明,藻类“水华”并非藻类生物量的短时爆发,而是藻体上浮和聚集的一种物理迁移过程,且在“水华”发生之前,水体藻类浓度已远超过水质管理标准。可见,与“罕见”的“水华”事件预测相比,短时连续预测对饮用水源地安全管理更具实用性。对此,本文提出了一种短时预测方法,实现对河流的藻类叶绿素a连续预测。其预测原理是:以短期藻类生长相似与基于事例推理(Case-based Reasoning,简称CBR)方法的假设一致性为基础,将按拉格朗日法划分的流体单元作为藻体生长单元,根据CBR方法的四阶段(“4R”)要求构建相似要素,包括:相似因子、相似系数、相似判据、相似误差以及多元相似综合指数。根据相似预测原理,在同期历史数据中寻找与当前藻类生长相似的历史时段,并将该历史时段的延伸部分作为当前预测结果。本文依托于近期历史数据,根据拉朗格日法构建了河流藻类叶绿素a单日12时预测机理模型,采用L-M率定方法确定最优参数组合和率定时段,获得最优参数率定值,将该模型在预测时段内的计算结果作为预测值。本文采用非线性系统混沌分析理论分析了时叶绿素a观测序列,对主要混沌特征量,包括:嵌入维数、时间延迟、关联维数以及最大Lyapunov指数进行了分析。采用C-C方法同时估计嵌入维数和时间延迟,采用G-P算法估计关联维数,采用Rosenstein方法估计最大Lyapunov指数,并根据最大Lypunov指数对时间序列的最大可预测时长进行估计。
     根据相似预测原理分别对德国易北河5月1日至8月9日期间(2000、2001年)未来24-72小时的时叶绿素a浓度序列进行预测。在通过数据预处理和权重设置提高预测精度的基础上,采用了叶绿素a浓度多阈值分段评价原则,进行了三日河流营养化等级时变化预测,准确率达85%。国内外目前类似的研究仅采用叶绿素a日均浓度且以单阈值(“水华”预测)作为评判标准,其预测准确率约为83%,预测时长为2.5-3天。通过对比表明该预测模型在营养化等级预估精度及实时性上均具有优势。
     传统生长机理模型采用的先验参数无法反映藻类在时间和空间上生长异质性的特点,因此,本文采用变量参数建模思想构建了河流藻类生长机理预测模型,并采用易北河2000年5月-8月间的时观测序列进行了单日12时预测验证。验证结果表明,通过选择合理的率定参数组合(率定最优的5参数组合)和率定时段(7天),其预测效果要远好于机理模型在先验参数条件下的预测结果,在高精度预测方面(相对误差小于士10%)甚至优于采用相似原理进行的连续预测结果。该方法为采用机理模型进行河流短期藻类预测提供了一种新的解决方案。
     河流藻类生长的高度非线性和藻类数据的采样稀疏使藻类实时预测难度增加,其可预测时长问题也鲜有研究报道。本文采用了混沌分析理论对易北河1997-2001年的3-9月的时叶绿素a观测序列进行了分析。分析结果显示河流藻类叶绿素a时间序列具有低维混沌特性,关联维数D=2.75-4.02。采用同样混沌分析方法证实了易北河同时段的径流量序列也具有混沌特征(λ1=0.0125),该结论与国内一些针对河流径流量的研究结果相近。但目前针对河流藻类叶绿素a序列的混沌特性研究尚无相关报道。本文对藻类叶绿素a浓度和径流量的最大预测时间进行了估计,各年的时叶绿素a序列的最长预测时间变化范围为8.01-18.94天,平均为13.98天(约2周),与当前天气预报的最长预报时长相当,而径流量的最长预测时间估计约为80天。气候因素的混沌特性对藻类生长表现出的混沌特征的影响可能要大于径流量等水文因素的影响。该分析结果可为河流藻类浓度可预测能力问题提供新的研究思路。
     本文的研究成果,对于拓宽预测理论的研究方法,提高藻类预测精度,揭示藻类生长的真实规律,提升饮用水源地水质管理水平具有重要的现实意义。
Eutrophication occurred in the drinking water source areas (surface water) often results in the water quality deterioration. Recent studies showed that algal blooms are the process of algae physical migration by floating and aggregating to the surface of water body, which are not caused by the short-time outbreak of algae biomass. The algal concentration has far exceeded the limits of water quality standards even before the occurrence of algal bloom. It shows more practical for drinking water security to make the short-scale continuous prediction of algal concentration, rather than to predict such'rare events'.
     In the thesis, a method of short-term prediction was proposed to make continuous prediction of chlorophyll a concentrations in river. The prediction theory is based on the consistency between the similarity of the algal short-term growth and the assumptions of the method of Case-based Reasoning (CBR). According to'four-REs'in the method of CBR, the similar conditions including similar factors, similarity coefficient, similarity criteria, similarity error, and multi-criterion synthetic similitude index, were established for the element of fluid meshed as the unit of algal growth according to Lagrangian method. The historical period in which the algal growth is most similar to the current algal growth, was firstly determined by those similar conditions, then the values of chlorophyll a in the backward extension of the historical period were selected as the predictive values. Additionally, a growth model based on the recent historical data was built to predict chlorophyll a concentration on12o'clock next day according to Lagrangian method,. The optimal combination of calibrated parameters and the optimal period of calibration data were both determined by the L-M method. The results from the model with the optimal calibration parameters input in the forecast period were uses as the predicted values. Finally, the chaos of the time series of hourly chlorophyll a observations was analized, the main chaotic charateristeics, which included embedding dimension, time delay, correlation dimension, and the largest Lyapunov exponent, were estimated. The classical methods estimating such characteristics included the C-C method for embedding dimension and time delay, the G-P algorithm for correlation dimension, and the Rosenstein method for the largest Lyapunov exponent. The maximum prediction time was finally estimated by the largest Lyapunov exponent.
     The series of the chlorophyll a concentrations, which were observed between May1st and August9th on2000and2001in Elbe River, were made the next24-72hours prediction according to the similar prediction principle. After the prediction accuracy was improved by data preprocessing and weight setting, hourly variation of trophic level for the next three days were predicted by multi-threshold sectional evaluations of chlorophyll a concentration. The forecasting accuracy was up to85%. Only the prediction of daily mean values of chlorophyll a concentrations according to a single threshold (often called'algae bloom'prediction) were focused in recent studies, which were able to give a precision of83%and2.5-3days of predictable time. The results indicated that the predict model proposed in the thesis have advantage in the prediction accuracy of trophic level and the real-time performance of prediction.
     The mechanic model of algae growth based on the variable parameters was verified by predicting the noontime data for the next day observed between May and August in2000in Elbe River, which gave more accurate description of algal growth heterogeneity in space and time than only piror paprameters used. The results obtained by selecting the reasonable parameters combinations (five parameters) and the period of calibration data(seven days), showed much better than those obtained on the condition of the prior parameters, even had more days with the high prediction precision (the relative error less than±10%) compared to the results by CBR at the same predictive time. The method provides a new solution for shore-term algal prediction in river when using mechanic model.
     Highly nonlinear growth of algae and sprase sampling of algae data in make the real-time preiditon of alage more difficult. The estimation of predictablity has few reports at present. The theory of chaos was used to analyze the observed sequence of chlorophyll a from March to September between1997and2001in Elbe River. The results showed that the time series of chlorophyll a had low-dimensional chaos with low correlation dimension (D=2.75-4.02). It also confirmed that, the runoff sequence of Elbe River in the same period was chaotic judged by the largest Lyapunov exponent larger than zero (λ1=0.0125). The results were similar to those from domestic research about the chaos of river runoff. However, there are no relevant reports about chaotic characteristics of chlorophyll a sequence in river currently. In the thesis, the maximum predictive times for the sequence of hourly chlorophyll a concentration in each year were estimated respectively, which changed from8.01to18.94days. The average value was13.98days (about two weeks) just close to the current biggest day-to-day weather forecast time. A much larger value for the runoff series in the same period was estimated to be80days. The results indicates that, compared with the weather factor greatly influencing the chaotic characteristics of chlorophyll a, the runoff factor is clearly weaker. The results of analysis are expected to provide a new thought for the researches of predictablity of algae in river.
     In conclusion, the achievements of the thesis are expected to help broaden the research method of prediction theory, improve the prediction accuracy of algae, and reveal the real growth rhythm of algae. The jobs in the thesis show the important practical significance for improving the level of water quality management of portable water source district.
引文
[1]H. W. Paerl, Fulton, III, P. H. Moisander, J. Dyble. Harmful freshwater algal blooms, with an emphasis on cyanobacteria[J]. The Scientific World Journal,2001,1:76-113.
    [2]D. W. Schindler. Eutrophication and Recovery in Experimental Lakes:Implications for Lake Management[J]. Science,1974,184(4139):897-899.
    [3]J. H. Ryther, W. M. Dunstan. Nitrogen, phosphorus, and eutrophication in the coastal marine environment[J]. Science,1971,171(3975):1008-1013.
    [4]W. H. Pearsall. Phytoplankton in the English Lakes:II. The composition of the phytoplankton in relation to dissolved substances [J]. The Journal of Ecology,1932, 20(2):241-262.
    [5]V. H. Smith. Low nitrogen to phosphorus ratios favor dominance by Blue-Green Algae in lake phytoplankton [J]. Science,1983,221(4611):669-671.
    [6]A. C. Redfield. The biological control of chemical factors in the environment[J]. American Scientist,1958,46:205-221.
    [7]L. Hakanson, A. C. Bryhn, J. K. Hytteborn. On the issue of limiting nutrient and predictions of cyanobacteria in aquatic systems[J]. Science of The Total Environment, 2007,379(1):89-108.
    [8]L. Xie, P. Xie, S. Li, H. Tang, H. Liu. The low TN:TP ratio, a cause or a result of Microcystis blooms?[J]. Water Research,2003,37(9):2073-2080.
    [9]G. Caron-Lormier, D. A. Bohan, C. Hawes, A. Raybould, A. J. Haughton, R. W. Humphry. How might we model an ecosystem?[J]. Ecological Modelling,2009,220(17): 1935-1949.
    [10]H. Hoogenhout, J. Amesz. Growth rates of photosynthetic microorganisms in laboratory cultures[J].Archiv fur Mikrobiologie,1965,50(1):10-25.
    [11]Robarts R D, Zohary T. Temperature effects on photosynthetic capacity, respiration, and growth rates of blocm-forming cyanobacteria[J]. New Zealand Journal of Marine and Freshwater Research,1987,21:391-399.
    [12]C. Nalewajko, T. P. Murphy. Effects of temperature, and availability of nitrogen and phosphorus on the abundance of Anabaena and Microcystis in Lake Biwa, Japan:an experimental approach[J]. Limnology,2001,2(1):45-48.
    [13]D. Tilman, R. Kiesling, R. Sterner, S. S. Kilham, F. A. Johnson. Green, blue-green and diatom algae:Taxonomic differences in competitive ability for phosphorus, silicon and nitrogen[J]. Arch Hydrobiol,1986, (106):473-185.
    [14]E. van Donk, S. S. Kilham. Temperature effects on silicon-and phosphorus-limited growth and competitive interactions among three diatoms[J]. Journal of phycology,1990, 26(1):40-50.
    [15]P. M. Visser, B. W. Ibelings, L. R. Mur. Autunmal sedimentation of Microcystis spp. as result of an increase in carbohydrate ballast at reduced temperature [J]. Journal of Plankton Reseach.,1995,17(5):919-93.
    [16]H.-S. Cao, Y. Tao, F.-X. Kong, Z. Yang. Relationship between Temperature and Cyanobacterial Recruitment from Sediments in Laboratory and Field Studies[J]. Journal of Freshwater Ecology,2008,23(3):405-412.
    [17]A. J. Westhuizen, J. N. Eloff. Effect of temperature and light on the toxicity and growth of the blue-green alga Microcystis aeruginosa (UV-006)[J]. Planta,1985,163(1):55-59.
    [18]R. W. Hamon, L. L. Weiss, W. T. Wilson. Insolation as an empirical function of daily sunshine duration[J]. Monthly Weather Review,1954,82(6):141-146.
    [19]L. R. Mur, O. M. Skulberg, H. Utkilen. Chapter 2. Cyanobacteria in the environment. In: Ingrid Chorus and Jamie Bartram Toxic Cyanobacteria in Water:A guide to their public health consequences,monitoring and management[M]. London and New York:E & EN Spon,1999.
    [20]H. W. Paerl, J. Tucker, P. T. Bland. Carotenoid Enhancement and Its Role in Maintaining Blue-green Algal (Microcystis Aeruginosa) Surface Blooms [J]. Limnology and Oceanography,1983,28(5):847-857.
    [21]J. Huisman, R. R. Jonker, C. Zonneveld, F. J. Weissing. Competition for light between phytoplankton species:experimental tests of mechanistic theory[J]. Ecology,1999,80(1): 211-222.
    [22]L. v. Liere, L. R. Mur, C. E. Gibson, M. Herdman. Growth and physiology of Oscillatoria agardhii gomont cultivated in continuous culture with a light-dark cycle[J]. Archives of Microbiology,1979,123(3):315-318.
    [23]M. Scheffer, S. Rinaldi, A. Gragnani, L. R. Mur, E. H. van Nes. On the dominance of filamentous cyanobacteria in shallow, turbid lakes[J]. Ecology,1997,78(1):272-282.
    [24]崔毅,陈碧鹃.乳山湾浮游植物与环境因子的相关关系研究[J].应用生态学报,2000,11(6):935-938.
    [25]陈宇炜,秦伯强,等.太湖梅梁湾藻类及相关环境因子逐步回归设计和蓝藻水华的初步预测[J].湖泊科学,2001,13(1):63-71.
    [26]E. A. Laws. Aquatic Pollution:An Introductory Text[M].3 ed. New York John Wiley & Sons,2000.
    [27]J. H. Connell. Diversity in Tropical Rain Forests and Coral Reefs[J]. Science,1978, 199(4335):1302-1310.
    [28]U. Sommer. Nutrient competition between phytoplankton species in multispecies chemostat experiments[J]. archiv fur hydrobiologie,1983,96:399-416.
    [29]U. Sommer. Comparison between steady state and non-steady state competition: experiments with natural phytoplankton[J]. Limnology and Oceanography,1985,30(2): 335-346.
    [30]J. P. Grover. Resource competition in a variable environment:phytoplankton growing according to the Variable-Internal-Stores Model[J]. The American Naturalist,1991, 138(4):811-835.
    [31]A. Gaedeke, U. Sommer. The influence of the frequency of periodic disturbances on the maintenance of phytoplankton diversity[J]. Oecologia,1986,71(1):25-28.
    [32]U. Sommer. Disturbance-diversity relationships in two lakes of similar nutrient chemistry but contrasting disturbance regimes[J]. Hydrobiologia,1993,249(1):59-65.
    [33]A. Gonzalez, M. Loreau. The causes and consequences of compensatory dynamics in ecological communities[J]. Annual Review of Ecology, Evolution, and Systematics, 2009,40:393-414
    [34]N. Guo, P. Xie. Development of tolerance against toxic Microcystis aeruginosa in three cladocerans and the ecological implications[J]. Environmental pollution (Barking, Essex: 1987),2006,143(3):513-518.
    [35]J. E. Schindler. Food quality and zooplankton nutrition[J]. Journal of Animal Ecology, 1971,40(3):589-595.
    [36]S. E. J(?)rgensen. Application of Ecological Modelling in Environmental Management, Part A[M]. New York:Amsterdam,Oxford,1983.
    [37]G. B. Arhonditsis, M. T. Brett. Eutrophication model for Lake Washington (USA):Part Ⅰ. Model description and sensitivity analysis[J]. Ecological Modelling,2005,187(2-3): 140-178.
    [38]R. T. James, V. J. Bierman Jr. A preliminary modeling analysis of water quality in Lake Okeechobee, Florida:Calibration results[J]. Water Research,1995,29(12):2755-2766.
    [39]M. Dahl, D. I. Wilson, L. Hakansonc. A combined suspended particle and phosphorus water quality model:Application to Lake Vanern[J]. Ecological Modelling,2006, 190(1-2):55-71.
    [40]阮景荣,蔡庆华,刘建康.武汉东湖的磷-浮游植物动态模型[J].水生生物学报,1988,12(4):289-307.
    [41]刘玉生,唐宗武,等.滇池富营养化生态动力学模型及其应用[J].环境科学研究,1991,(6):1-8.
    [42]郑丙辉,张永泽.滇池生态动力学模型的改进[J].环境科学研究,1994,(4):1-6.
    [43]张龙江,张永春,吴英海,张毅敏.太湖生态模拟系统构建与应用[J].四川环境,2007,26(2):30-36,53.
    [44]P. Hongping, M. Jianyi. Study on the algal dynamic model for West Lake, Hangzhou[J]. Ecological Modelling,2002,148(1):67-77.
    [45]B. Karrasch, M. Mehrens, Y. Rosenlocher, K. Peters. The dynamics of phytoplankton, bacteria and heterotrophic flagellates at two Banks near Magdeburg in the River Elbe (Germany)[J]. Limnologica-Ecology and Management of Inland Waters,2001,31(2): 93-107.
    [46]M. Scharfe, G. Blocker, W. Petersen, F. Schroeder. A simple Lagrangian model to simulate temporal variability of algae in the Elbe River[J]. Ecological Modelling,2009, 220(18):2173-2186.
    [47]E. D. de Ruyter van Steveninck, W. Admiraal, L. Breebaart, G. M. J. Tubbing, B. van Zanten. Plankton in the River Rhine:structural and functional changes observed during downstream transport[J]. journal of plankton research,1992,14(10):1351-1368.
    [48]L. S. Fore, C. Grafe. Using diatoms to assess the biological condition of large rivers in Idaho (U.S.A.)[J]. Freshwater Biology,2002,47:2015-2037.
    [49]K. Ha, H.-W. Kim, G.-J. Joo. The phytoplankton succession in the lower part of hypertrophic Nakdong River (Mulgum), South Korea[J]. Hydrobiologia,1998, 369-370(0):217-227.
    [50]M. Bormans, I. T. Webster. Modelling the spatial and temporal variability of diatoms in the River Murray [J]. Journal of Plankton Resource,1999,21:581-589.
    [51]徐礼强,童杨斌,楼章华,曹飞凤,许月萍.钱塘江枯水期主要污染物水环境模拟[J].环境科学,2007,28(12):2682-2687.
    [52]施麟宝,孙晓霞.东、西苕溪河网及太湖水质数学模拟[J].河口与海岸工程,1991,2:33-48.
    [53]T.-y. Long, L. Wu, G.-h. Meng, W.-h. Guo. Numerical simulation for impacts of hydrodynamic conditions on algae growth in Chongqing Section of Jialing River, China[J]. Ecological Modelling,2011,222(1):112-119.
    [54]B. A. Whitton, M. Potts. Freshwater blooms[M]. The Netherlands:Kluwer Academic Publishers,2000.
    [55]G. Wu, Z. Xu. Prediction of algal blooming using EFDC model:Case study in the Daoxiang Lake[J]. Ecological Modelling,2011,222(6):1245-1252.
    [56]D. M. Lewis. A simple model of plankton population dynamics coupled with a LES of the surface mixed layer[J]. Journal of Theoretical Biology,2005,234(4):565-591.
    [57]J. Yao, P. Xiao, Y. Zhang, M. Zhan, J. Cheng. A mathematical model of algal blooms based on the characteristics of complex networks theory[J]. Ecological Modelling,2011, 222(2011):3727-3733.
    [58]R. Ribeiro, L. Torgo, Predicting Harmful Algae Blooms[M] in Progress in Artificial Intelligence,2003,308-312.
    [59]H. R. Maier, G. C. Dandy, M. D. Burch. Use of artificial neural networks for modelling cyanobacteria Anabaena spp. in the River Murray, South Australia[J]. Ecological Modelling,1998,105(2-3):257-272.
    [60]N. Muttil, J. H. W. Lee. Genetic programming for analysis and real-time prediction of coastal algal blooms[J]. Ecological Modelling,2005,189(2005):363-376.
    [61]J. A. Bradshaw, K. J. Carden, D. Riordan. Ecological applications using a novel expert system shell[J]. Computer applications in the biosciences:CABIOS,1991,7(1):79-83.
    [62]C. Crisci, B. Ghattas, G. Perera. A review of supervised machine learning algorithms and their applications to ecological data[J]. Ecological Modelling,2012,240(0):113-122.
    [63]G. C. S. Lui, W. K. Li, K. M. Y. Leung, J. H. W. Lee, A. W. Jayawardena. Modelling algal blooms using vector autoregressive model with exogenous variables and long memory filter[J]. Ecological Modelling,2007,200(1-2):130-138.
    [64]孔繁翔,高光.大型浅水富营养化湖泊中蓝藻水华形成机理的思考[J].生态学报,2005,25(3):589-595.
    [65]R. V. Thomann, J. A. Mueller,乾爱国,任华堂,纪平,梅军亚,袁珏.地表水水质模拟与控制[M].北京:中国水利水电出版社,2008.
    [66]韩博平,韩志国,付翔.藻类光合作用机理与模型[M].北京:科学出版社,2003.
    [67]R. Barbini, F. Colao, R. Fantoni, C. Micheli, A. Palucci, S. Ribezzo. Design and application of a lidar fluorosensor system for remote monitoring of phytoplankton[J]. ICES Journal of Marine Science:Journal du Conseil,1998,55(4):793-802.
    [68]R. E. Carlson. A trophic state index for lakes[J]. Limnology and Oceanography,1977, 22(2):361-369.
    [69]B. Parinet, A. Lhote, B. Legube. Principal component analysis:an appropriate tool for water quality evaluation and management-application to a tropical lake system[J]. Ecological Modelling,2004,178(3-4):295-311.
    [70]H. Yoshimi. Simultaneous construction of single-parameter and multiparameter trophic state indices[J]. Water Research,1987,21(12):1505-1511.
    [71]G. B. Arhonditsis, S. S. Qian, C. A. Stow, E. C. Lamon, K. H. Reckhow. Eutrophication risk assessment using Bayesian calibration of process-based models:Application to a mesotrophic lake[J]. Ecological Modelling,2007,208(2-4):215-229.
    [72]P. Kasprzak, J. Padisa'k, R. Koschel, L. Krienitz, F. Gervais. Chlorophyll a concentration across a trophic gradient of lakes:An estimator of phytoplankton biomass?[J]. Limnologica-Ecology and Management of Inland Waters,2008,38(3-4): 327-338.
    [73]金相灿.中国湖泊环境[M].北京:海洋出版社,1995.
    [74]叶晶.藻类在湖泊富营养化评价应用中的问题探讨[J].中国农村水利水电,2012,(7):182-182.
    [75]S. Pal, S. Chatterjee, K. p. Das, J. Chattopadhyay. Role of competition in phytoplankton population for the occurrence and control of plankton bloom in the presence of environmental fluctuations[J]. Ecological Modelling,2009,220(2):96-110.
    [76]H. Wilson, F. Recknagel. Towards a generic artificial neural network model for dynamic predictions of algal abundance in freshwater lakes[J]. Ecological Modelling,2001, 146(1-3):69-84.
    [77]J. H. W. Lee, Y. Huang, M. Dickman, A. W. Jayawardena. Neural network modelling of coastal algal blooms[J]. Ecological Modelling,2003,159(2-3):179-201.
    [78]R. Ribeiro, L. Torgo. A comparative study on predicting algae blooms in Douro River, Portugal[J]. Ecological Modelling,2008,212(1-2):86-91.
    [79]E. Cabecinha, M. Lourencob, J. P. Mourac, M. A. Pardald, J. A. Cabral. A multi-scale approach to modelling spatial and dynamic ecological patterns for reservoir's water quality management[J]. Ecological Modelling,2009,220(19):2559-2569.
    [80]E. Cabecinha, R. Cortes, J. P. Mourac, T. Ferreira, M. Lourenco, M. A. Pardald. Multi-scale approach using phytoplankton as a first step towards the definition of the ecological status of reservoirs[J]. Ecological Indicators,2009,9(2):240-255.
    [81]T. Platt, G. N. White Iii, L. Zhai, S. Sathyendranath, S. Roy. The phenology of phytoplankton blooms:Ecosystem indicators from remote sensing[J]. Ecological Modelling,2009,220(21):3057-3069.
    [82]H. Li, M. Arias, A. Blauw, H. Los, A. E. Mynett, S. Peters. Enhancing generic ecological model for short-term prediction of Southern North Sea algal dynamics with remote sensing images[J]. Ecological Modelling,2010,221(20):2435-2446.
    [83]T. Legovic, A. Cruzado. A model of phytoplankton growth on multiple nutrients based on the Michaelis-Menten-Monod uptake, Droop's growth and Liebig's law[J]. Ecological Modelling,1997,99(1):19-31.
    [84]M. E. Baird, S. M. Emsley. Towards a mechanistic model of plankton population dynamic[J]. Journal of Plankton Research,1999,21(1):85-126.
    [85]M. E. Baird. Towards a verified mechanistic model of plankton population dynamics[D]. 1999.
    [86]G. S. Janowitz, D. Kamykowski. An Eulerian model of phytoplankton photosynthetic response in the upper mixed layer[J]. Journal of Plankton Reseach.,1991,13(5): 983-1002.
    [87]R. A. Vollenweider. The scientific basis of lake and stream eutrophication, with particular reference to phosphorus and nitrogen as eutrophication factors[J]. Paris:Tech Rep, OECD, DAS/CSI/68,1968,27:1-182.
    [88]R. A. Vollenweider. Input-output models with special reference to the phosphorus loading concept in limnology[J]. Schweizerische Zeitschrift Hydrology,1975,37:53-84.
    [89]D. M. Imboden, R. Gachter. A dynamic lake model for trophic state prediction [J]. Ecological Modelling,1978,4(2-3):77-98.
    [90]D. P. Larsen, H. T. Mercier, K. W. Malueg. Modeling algal growth dynamics in Shagawa Lake, Minnesota, with comments concerning projected restoration of the lake,In:E.J. Middlebrooks, D.H. Falkenborg and T.E. Maloney (Editors),Modeling the Eutrophication Process.[M]. Utah State University,Logan, Utah,1974.
    [91]M. V. Lorentzen, D. J. Smith, L. V. Kimmel. A long term phosphorus model for lakes: Application to Lake Washington. In Canale, R. P. (ed.),Modeling the Biochemical Processes in Aquatic Ecosystems[M]. Michigan:Ann Arbor Science 1976.
    [92]J. Monod. La technique de culture continue, theorie et applications [J]. Annales d'Institute Pasteur,1950,79:390-410.
    [93]M. R. Droop. Some thougths on nutrient limitation in algae[J]. Journal of Phycology, 1973,9(3):264-272.
    [94]C. F. Cerco, M. R. Noel, D. H. Tillman. A practical application of Droop nutrient kinetics (WR 1883)[J]. Water Research,2004,38(20):4446-4454.
    [95]S. E. J(?)rgensen. Fundamentals of ecological modelling(2nd edition), developments in enviromental modelling[M]. Amsterdam:Elsevier,1994.
    [96]F.-L. Xu, S. E. J(?)rgensen, S. Tao, B.-G. Li. Modeling the effects of ecological engineering on ecosystem health of a shallow eutrophic Chinese lake (Lake Chao)[J]. Ecological Modelling,1999,117(2-3):239-260.
    [97]W. Hu, S. E. Jorgensen, F. Zhang. A vertical-compressed three-dimensional ecological model in Lake Taihu, China[J]. Ecological Modelling,2006,190(3-4):367-398.
    [98]饶群,芮孝芳.完全混合系统总磷随机模型研究[J].水科学进展,2002,13(1):21-25.
    [99]H. Hassan, K. Hanaki, T. Matsuo. A modeling approach to simulate impact of climate change in lake water quality:Phytoplankton growth rate assessment[J]. Water Science and Technology,1998,37(2):177-185.
    [100]J. M. Malmaeus, T. Blenckner, H. Markensten, I. Persson. Lake phosphorus dynamics and climate warming:A mechanistic model approach[J]. Ecological Modelling,2006, 190(1-2):1-14.
    [101]S. Sala, M. Vighi. GIS-based procedure for site-specific risk assessment of pesticides for aquatic ecosystems[J]. Ecotoxicology and Environmental Safety,2008,69(1):1-12.
    [102]徐礼强,顾正华,楼章华,李红仙.基于GIS的并行和分布式处理技术在水信息领域中的应用[J].水利水电技术,2005,36(10):86-89.
    [103]J. Zhang, S. E. J(?)rgensen, C. O. Tan, M. Beklioglu. A structurally dynamic modelling--Lake Mogan, Turkey as a case study[J]. Ecological Modelling,2003, 164(2-3):103-120.
    [104]F. Recknagel, M. French, P. Harkonen, K.-I. Yabunaka. Artificial neural network approach for modelling and prediction of algal blooms[J]. Ecological Modelling,1997, 96(1-3):11-28.
    [105]K.-S. Jeong, D.-K. Kim, J.-M. Jung, M.-C. Kim, G.-J. Joo. Non-linear autoregressive modelling by Temporal Recurrent Neural Networks for the prediction of freshwater phytoplankton dynamics[J]. Ecological Modelling,2008,211(3-4):292-300.
    [106]M. Xu, G. Zeng, X. Xu, G. Huang, W. Sun, X. Jiang. Application of Bayesian regularized BP neural network model for analysis of aquatic ecological data-a case study of chlorophyll-a prediction in Nanzui water area of Dongting Lake. [J]. Journal of Environmental Sciences,2006,17(6):946-952.
    [107]裴洪平,罗妮娜.利用BP神经网络方法预测西湖叶绿素a的浓度[J].生态学报,2004,24(2):246-256.
    [108]吴利斌,尚士友,岳海军,马清艳.利用模糊神经网络对湖泊富营养化程度进行评价的研究[J].内蒙古农业大学学报:自然科学版,2004,25(4):67-70.
    [109]仝玉华,周洪亮,黄浙丰,张宏建.一种自优化RBF神经网络的叶绿素a浓度时序预测模型[J].生态学报,2011,31(22):6788-6795.
    [110]黄佳聪.蓝藻水华预报模型及基于遗传算法的参数优化[J].2010.
    [111]王晓玲,李松敏,段文泉,孙月峰.基于隶属度-遗传神经网络模型的水质综合评价[J].天津大学学报2006,39(10):1200-1204.
    [112]Q. Chen, A. E. Mynett. Predicting Phaeocystis globosa bloom in Dutch coastal waters by decision trees and nonlinear piecewise regression[J]. Ecological Modelling,2004, 176(3-4):277-290.
    [113]曾勇,杨志峰,刘静玲.城市湖泊水华预警模型研究——以北京“六海”为例[J].水科学进展,2007,18(1).
    [114]冯剑丰,王洪礼,李胜朋.基于支持向量机的浮游植物密度预测研究[J].海洋环境科学,2007,25(5):438-441.
    [115]徐红敏,杨天行.基于支持向量机分类算法的湖泊水质评价研究[J].吉林大学学报:地球科学版,2006,36(4):570-573.
    [116]卢大远,刘培刚.汉江下游突发“水华”的调查研究[J].环境科学研究,2000,(2):28-31.
    [117]D. Anderson, P. Glibert, J. Burkholder. Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences[J]. Estuaries and Coasts,2002,25(4): 704-726.
    [118]K. R. O'Brien, M. A. Burford, J. D. Brookes. Effects of light history on primary productivity in a phytoplankton community dominated by the toxic cyanobacterium Cylindrospermopsis raciborskii[J]. Freshwater Biology,2009,54(2):272-282.
    [119]T. Vrede, A. Ballantyne, C. Mille-Lindblom, G. Algesten, C. Gudasz, S. Lindahl, A. K. Brunberg. Effects of N:P loading ratios on phytoplankton community composition, primary production and N fixation in a eutrophic lake[J]. Freshwater Biology,2009, 54(2):331-344.
    [120]J. P. Descy. Ecology of the phytoplankton of the River Moselle:effects of disturbances on community structure and diversity[J]. Hydrobiologia,1993,249(1):111-116.
    [121]T. Ietswaart, L. Breebaart, B. van Zanten, R. Bijkerk. Plankton dynamics in the river Rhine during downstream transport as influenced by biotic interactions and hydrological conditions[J]. Hydrobiologia,1999,410(0):1-10.
    [122]J. E. Cloern, A. E. Alpine, B. E. Cole, R. L. J. Wong, J. F. Arthur, M. D. Ball. River discharge controls phytoplankton dynamics in the northern San Francisco Bay estuary[J]. Estuarine, Coastal and Shelf Science,1983,16(4):415-426.
    [123]M.-L. Stefano, G. Elisabetta. Water quality modelling for small river basins[J]. Environ. Model. Softw.,2008,23(4):451-463.
    [124]V. K. Gupta, S. Sorooshian. Uniqueness and observability of conceptual rainfall-runoff model parameters:The percolation process examined[J]. Water Resour. Res.,1983,19(1): 269-276.
    [125]K. H. Reckhow. Water quality simulation modeling and uncertainty analysis for risk assessment and decision making[J]. Ecological Modelling,1994,72:1-20.
    [126]U. Callies, M. Scharfe, M. Ratto. Calibration and uncertainty analysis of a simple model of silica-limited diatom growth in the Elbe River[J]. Ecological Modelling,2008,213(2): 229-244.
    [127]K. W. Chau, C. T. Cheng, C. W. Li. Knowledge management system on flow and water quality modeling[J]. Expert Systems with Applications,2002,22(4):321-330.
    [128]C. L. Wu, K. W. Chau. Mathematical model of water quality rehabilitation with rainwater utilization-a case study at Haigang[J]. International Journal of Environment and Pollution,2006,28(3-4):534-545.
    [129]P. A. Whigham, F. Recknagel. Predicting chlorophyll-a in freshwater lakes by hybridising process-based models and genetic algorithms[J]. Ecological Modelling,2001, 146(1-3):243-251.
    [130]K.-S. Jeong, D.-K. Kim, P. Whigham, G-J. Joo. Modelling Microcystis aeruginosa bloom dynamics in the Nakdong River by means of evolutionary computation and statistical approach[J]. Ecological Modelling,2003,161(1-2):67-78.
    [131]J. X. Xie, C. T. Cheng, K. W. Chau, Y. Z. Pei. A hybrid adaptive time-delay neural network model for multi-step-ahead prediction of sunspot activity [J]. International Journal of Environment and Pollution,2006,28(3-4):364-381.
    [132]M. Y. Zhao, C. T. Cheng, K. W. Chau, G. Li. Multiple criteria data envelopment analysis for full ranking units associated to environment impact assessment[J]. International Journal of Environment and Pollution,2006,28(3-4):448-464.
    [133]B. Wei, N. Sugiura, T. Maekawa. Use of artificial neural network in the prediction of algal blooms[J]. Water Research,2001,35(8):2022-2028.
    [134]N. Muttil, K. W. Chau. Neural network and genetic programming for modelling coastal algal blooms[J]. International Journal of Environment and Pollution,2006,28(3-4): 223-238.
    [135]N. Muttil, K. W. Chau. Machine learning paradigms for selecting ecologically significant input variables[J]. Engineering Applications of Artificial Intelligence,2007,20(6): 735-744.
    [136]C. E. Vincenot, F. Giannino, M. Rietkerk, K. Moriya, S. Mazzoleni. Theoretical considerations on the combined use of System Dynamics and individual-based modeling in ecology[J]. Ecological Modelling,2011,222(1):210-218.
    [137]B. C. Patten. Network ecology:Indirect determination of the life-environment relationship in ecosystems. In:Higashi, M. and Burns, T. (eds). Theoretical Studies of Ecosystems:The Network Perspective.[M]. New York:Cambridge University Press, 1991.
    [138]R. C. Schank, R. P. Abelson. Scripts, Plans, Goals, and Understanding:An Inquiry Into Human Knowledge Structures[M]. NJ,Hillsdale:Erlbaum,1977.
    [139]J. L. Kolodner. Reconstructive memory:A computer model[J]. Cognitive Science,1983, 7(4):281-328.
    [140]C. K. Riesbeck, R. C. Schank. Inside Case-based Reasoning[M]. NJ,Hillsdale:Erlbaum, 1989.
    [141]D. B. Leake. Case-Based Reasoning:Experiences, Lessons, and Future Directions[M]. Menlo Park:AAAI Press/MIT Press,1996.
    [142]J. Kolodner. An introduction to case-based reasoning[J]. Artificial Intelligence Review, 1992,6(1):3-34.
    [143]J. L. Kolodner. Retrieving events from a case memory:a parallel implementation[C].// Proceedings of the DARPA Case-Based Reasoning Workshop, San Mateo:Morgan Kaufmann:[s. n.],1988:233-249.
    [144]孔繁翔,马荣华,高俊峰,吴晓东.太湖蓝藻水华的预防、预测和预警的理论与实践[J].湖泊科学,2009,21(3):314-328.
    [145]K. Wiltshire, F. Schroeder. Pigment patterns in suspended matter from the Elbe estuary, Northern Germany[J]. Aquatic Ecology,1994,28(3):255-265.
    [146]M. Bohme, R. Eidner, K. Ockenfeld, H. Guhr. Ergebnisse der flieBzeitkonformen Elbe-Langsschnittbereisung:26.6.-7.7.2000[M]. In:Primardaten. BfG-1309. Bundesanst. fu Gewasserkunde Koblenz, Berlin,2002.
    [147]S. Arndt, J. P. Vanderborght, P. Regnier. Diatom growth response to physical forcing in a macrotidal estuary:Coupling hydrodynamics, sediment transport, and biogeochemistry[J]. J. Geophys. Res.,2007,112(C5):C05045.
    [148]L. Hakanson. Suspended particulate matter in lakes, rivers and marine systems[M]. New Jersey:The Blackburn Press,2006.
    [149]J. Huisman, F. J. Weissing. Light-limited growth and competition for light in well-mixed aquatic environments:an elementary model[J]. Ecology,1994,75(2):507-520.
    [150]K. H. Reckhow. Water quality simulation modeling and uncertainty analysis for risk assessment and decision making[J]. Ecological Modelling,1994,72(1-2):1-20.
    [151]OECD. Eutrophication of waters. Monitoring, assessment and control.[M]. Paris,1982.
    [152]O. J. Reichman, H. R. Pulliam. The scientific basis for ecosystem management[J]. Ecological Applications,1996, (6):694-696.
    [153]R. E. Grumbine. Reflections on "What is Ecosystem Management?"[J]. Conservation Biology,1997,11(1):41-47.
    [154]I. Haag. A Basic Water Quality Model for the River Neckar:Part 1-model development, parameter sensitivity and identifiability, calibration and validation[J]. Acta hydrochimica et hydrobiologica,2006,34(6):533-548.
    [155]A. G. Kaufman, S. R. Borrett. Ecosystem network analysis indicators are generally robust to parameter uncertainty in a phosphorus model of Lake Sidney Lanier, USA[J]. Ecological Modelling,2010,221(8):1230-1238.
    [156]D. Marquardt. An Algorithm for Least-Squares Estimation of Nonlinear Parameters [J]. SIAM Journal on Applied Mathematics,1963,11(2):431-441.
    [157]K. Levenberg. A method for the solution of certain problems in least squares[J]. Quarterly of Applied Mathematics,1944,2:164-168.
    [158]E. L. Smith. Photosynthesis in Relation to Light and Carbon Dioxide[J]. Proc Natl Acad Sci,1936,22(8):504-511.
    [159]S. E. Jorgensen, B. C. Patten, M. Straskraba. Ecosystems emerging::4. growth[J]. Ecological Modelling,2000,126(2-3):249-284.
    [160]J. Huisman, F. J. Weissing. Biodiversity of plankton by species oscillations and chaos[J]. Nature,1999,402(6760):407-410.
    [161]赵晓东,潘江,李金页,陶晓磊,庞坤.铜绿微囊藻和斜生栅藻非稳态营养盐限制条件下的生长竞争特性[J].生态学报,2011,31(13):3710-3719.
    [162]A. A. Tsonis, J. B. Elsner. The weather attractor over very short timescale[J]. Nature. 1987,333(6173):545-547.
    [163]P. Radhakrishnan, S. Dinesh. An alternative approach to characterize time series data: Case study on Malaysian rainfall data[J]. Chaos, Solitons & Fractals,2006,27(2): 511-518.
    [164]丁晶,王文圣,赵永龙.长江日流量混沌变化特性研究-II相空间嵌入维数的确定[J].水科学进展,2003,14(4):412-416.
    [165]丁晶,王文圣,赵永龙.长江日流量混沌变化特性研究-I相空间嵌入滞时的确定[J].水科学进展,2003,14(4):407-411.
    [166]B. Sivakumar. Rainfall dynamics at different temporal scales:A chaotic perspective[J]. Hydrology and Earth System Sciences,2001,5(4):645-651.
    [167]F. Takens. Detecting strange attractors in turbulence[Jl. Lecture notes in Math,1981.898: 366-381.
    [168]N. H. Packard, J. P. Crutchfield, J. D. Farmer, R. S. Shaw. Geometry from a time series[J]. Physical Review Letters,1980,45(9):712-716.
    [169]A. M. Fraser, H. L. Swinney. Independent coordinates for strange attractors from mutual information[J]. Physical Review A,1986,33(2):1134-1140.
    [170]林嘉宇,黄芝平,王跃科,沈振康.语音信号相空间重构中时间延迟选择的改进的平均位移法[Jl.国防科技大学学报,1999,15(3):220-225.
    [171]D. Kugiumtzis. State space reconstruction parameters in the analysis of chaotic time series-the role of the time window length[J]. Physica D,1996,95:13-28.
    [172]H. S. Kim, R. Eykholt, J. D. Salas. Nonlinear dynamics, delay times, and embedding windows[J]. Physica D,1999,127:48-60.
    [173]P. Grassberger, I. Procaccia. Characterization of strange attractors[J]. Physical Review Letters,1983,50(5):346-349.
    [174]王安良,杨春信.评价奇怪吸引子分形特征的Grassberger-Procaccia算法[J].物理学报,2002,51(12):2719-2729.
    [175]党建武,黄建国.基于G.P算法的关联维计算中参数取值的研究[J].计算机应用研究,2004,(01):48-51.
    [176]A. Wolf, J. B. Swift, H. L. Swinney, J. A. Vastano. Determining Lyapunov exponents from a time series [J]. Physica D,1985,16(2):285-317.
    [177]F. Grond, H. H. Diebner, S. Sahle, A. Mathias, S. Fischer, O. E. Rossler. A robust, locally interpretable algorithm for Lyapunov exponents[J]. Chaos, Solitons & Fractals,2003, 16(5):841-852.
    [178]M. Sano, Y. Sawada. Measurement of the Lyapunov spectrum from a chaotic time series[J]. Physical Review Letters,1985,55(10):1082-1085.
    179] G. Barna, I. Tsuda. A new method for computing Lyapunov exponents[J]. Physics Letters A,1993,175(6):421-427.
    180] M. T. Rosenstein, J. J. Collins, C. J. De Luca. A practical method for calculating largest Lyapunov exponents from small data sets[J]. Physica D,1993.65(1-2):117-134.
    181] E. M. Rathje, N. A. Abrahamson, J. D. Bray. Simplified frequency content estimates of earthquake ground motions[J]. Journal of Geotechnical and Geoenvironmental Engineering,1998,124(2).
    182] E. M. Rathje, F. Faraj, S. Russell, J. D. Bray. Empirical relationships for frequency content parameters of earthquake ground motions[J]. Earthquake Spectra,2004,20(1): 119-144.
    [183]吕金虎,陆君安,陈世华.混沌时间序列分析及其应用[M].武汉:武汉大学出版社,2002.
    [184]刘世达,梁福明,刘式适,辛国君.自然科学中的混沌和分形[M].北京:北京大学出版社,2003.
    [185]韩敏.混沌时间序列预测理论与方法[M].北京:中国水利水电出版社,2007.
    [186]巫兆聪.分形分析中的无标度区确定问题[J].测绘学报,2002,31(3):240-244.
    [187]党建武,施怡,黄建国.分形研究中无标度区的计算机识别[J].计算机工程与应用,2003,39(12):25-27.
    [188]陈敏.一种简单的GP算法无标度区识别方法[J].计算机与信息技术,2007,11:35-39.
    [189]姬翠翠,朱华,江炜.混沌时间序列关联维数计算中无标度区间识别的新方法[J].科学通报,2010,55(31):3069-3076.
    [190]L. A. Smith. Intrinsic limits on dimension calculations[J]. Physics Letters A,1988, 133(6):283-288.
    [191]洪时明,洪时中.用Grassberger-Procaccia方法计算吸引子维数的基本限制[J].物理学报,1994,43(8):1228-1233.
    [192]林振山.长期预报的相空间理论和模式[M].北京:气象出版社,1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700