用户名: 密码: 验证码:
耕作方式对稻田土壤有机碳库的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稻田土壤有机碳库的变化对培肥土壤及农田土壤的碳固定具有重要意义。本文通过对稻季土壤活性有机碳的不同组分及土壤酶活性的动态变化特征的研究,探讨了耕作方式对稻田土壤固碳能力的影响,主要研究结果如下:
     1.免耕定位试验稻田土壤微团聚体组成以0.002-0.02mm粒径的团聚体颗粒为主,其次为0.02-0.25mm的颗粒,<0.002mm粒径的微团聚体所占的比例最小。免耕各处理(双季免耕秸秆还田、双季免耕和单季免耕)促进大团聚体在土壤表层(0-5cm)中的形成和积累。
     2.水稻全生育期,土壤纤维素酶活性在0-5cm土层表现为双季免耕秸秆还田>单季免耕>双季免耕>翻耕;在5-15cm土层表现为双季免耕秸秆还田>翻耕>单季免耕>双季免耕;在15-30cm土层表现为双季免耕秸秆还田>单季免耕>双季免耕>翻耕。不同处理对土壤蔗糖酶活性的影响不明显。过氧化氢酶活性表现为免耕处理高于翻耕处理。相关性分析表明,土壤蔗糖酶和纤维素酶与土壤总有机碳呈显著正相关,土壤过氧化氢酶与土壤腐殖酸碳呈显著负相关。
     3.0-5cm土层土壤总有机碳含量为双季免耕秸秆还田>双季免耕>单季免耕>翻耕;5-15cm土层土壤总有机碳含量为双季免耕秸秆还田>翻耕>双季免耕>单季免耕;15-30cm土层土壤总有机碳含量表现为双季免耕秸秆还田>翻耕>单季免耕>双季免耕。水稻全生育期,腐殖酸碳的动态变化与总有机碳相一致,但其组分胡敏酸和富啡酸碳在不同处理间差异不显著。双季免耕秸秆还田处理表现出了明显的固碳效应。
     4.土壤微生物生物量碳在0-5cm土层表现为翻耕高于免耕各处理,5=15cm和15-30cm表现为免耕各处理高于翻耕。与翻耕相比,免耕各处理显著提高了0-5cm土层的土壤水溶性有机碳及易氧化碳含量,5-15cm和15-30cm其碳组分含量与翻耕的差异性减小或小于翻耕处理。易氧化碳组分Ⅰ在0-5cm土层免耕三个处理显著高于翻耕处理,组分Ⅱ和Ⅲ碳含量也高于翻耕处理,但处理间差异不显著。相关性分析表明,组分Ⅰ与有机碳呈显著的正相关关系,组分Ⅱ与有机碳呈显著的负相关关系,组分Ⅲ与有机碳间无显著相关性。经过两季的稻作之后,0-5cm土层土壤中颗粒态有机碳的含量表现为双季免耕秸秆还田>双季免耕>翻耕>单季免耕,5-15cm土层下其含量表现为双季免耕>翻耕>单季免耕>双季免耕秸秆还田,15-30cm土层下其含量表现为双季免耕>翻耕>双季免耕秸秆还田>单季免耕。
     5.在水稻的全生育期,土壤活性碳组分的动态变化与土壤总有机碳的动态变化相一致或较土壤总有机碳的变化早,且在作物生长的关键时期其活性增强,反映出活性碳组分比有机碳更加敏感,并利于作物对养分的需求。相关性分析表明,腐殖酸碳、易氧化碳及其组分Ⅰ、水溶性有机碳均与土壤总有机碳呈显著的正相关关系。活性碳组分之间也存在显著的相关性。不同耕作方式下稻田表层土壤(0-5cm)总有机碳、腐殖酸碳及各活性碳组分的含量明显高于底层土壤,且其含量随着土层深度的增加而递减。
     6.土壤碳库管理指数变化趋势在0-5cm土层为双季免耕秸秆还田>双季免耕>翻耕>单季免耕;5-15cm土层表现为双季免耕>翻耕>双季免耕秸秆还田>单季免耕;15-30cm土层表现为单季免耕>翻耕>双季免耕秸秆还田>双季免耕。碳素有效率大小表现为EOC/TOC>SMBC/TOC>WSOC/TOC。0-5cm土层,EOC/TOC和SMBC/TOC表现为翻耕大于免耕各处理,WSOC/TOC和POC/TOC表现为免耕大于翻耕处理。5-15cm土层,DNT处理下碳素有效率除了EOC/TOC外明显高于其他处理。15-30cm土层,DNT处理下各碳素有效率明显高于其他处理。
Understanding the mechanism of soil organic carbon variation is important for fertilizing soil and enhancing cropland soil carbon fixation.The objective of this study was to reveal the different tillage system effects of carbon sequestration in paddy soils, according to the dynamic change characteristics of active soil organic carbon and soil enzyme activities. The main results are summarized as follows:
     1.The amout of aggregates 0.002-0.02mm was the largest in all trestments, followed by those of 0.02-0.25mm in diameter, with those<0.002mm being the smallest. Lack of soil distrubance enriched in the surface layer(0-5cm) under the DNS、DNT and SNT practices, which may benefit the formation and accumulation of macro-aggregates.
     2.During rice growth, soil cellulase activities for the size of sorting was DNS>SNT>DNT>PT in 0-5cm soil layer; was DNS>PT>SNT>DNT in 5-15cm soil layer; was DNS>SNT>DNT>PT in 15-30cm soil layer. Compared to PT, no-tillage treatments reduced the size of soil catalase activities, and had no effects on the size of soil sucrase activities. Linear correlation analysis showed that positive linear correlations existed between soil organic carbon and soil cellulase activities, soil sucrase activities, and negative linear correlations existed between soil humic carbon and soil catalase activities.
     3.During rice growth, soil total organic carbon displayed the trend in 0-5cm soil layer:DNS>DNT>SNT>PT; soil total organic carbon displayed the trend in 5-15cm soil layer:DNS>PT>DNT>SNT; soil total organic carbon displayed the trend in 15-30cm soil layer:DNS>PT>SNT>DNT. Soil humic carbon changes in this study are in accordance with soil total organic carbon, but compared to PT, no-tillage treatment had no effects on the content of soil humic acid and fulvic acid. Compared to PT, DNS treatments was conducive to improving and accumulating the content soil organic carbon.
     4.Compared to PT, no-tillage treatments reduced the contents of SMBC in 0-5cm soil layer, and increased in 5-15cm and 15-30cm soil layer. Compared to PT, no-tillage treatments significantly increased the contents of WSOC and EOC only in 0-5cm soil layer. Compared to PT, no-tillage treatments increased the contents of the fractions of soil organic oxidized with 333mmol L-1KMnO4, but there was no significantly differents Meanwhile, there was no close correlations existed betwwen soil organic carbon and fractionⅢ, but there were significantly positive and negative correlativity between soil organic carbon and fractionⅠ, fractionⅡrespectively. After two years rice growing, soil POC displayed the trend in 0-5cm soil layer:DNS>DNT>PT>SNT; soil POC displayed the trend in 5-15cm soil layer:DNT>PT>SNT>DNS; soil POC displayed the trend in 15-30cm soil layer:DNT>PT>DNS>SNT.
     5.During rice growth, active carbon index changes in this study are in accordance with or early than soil total organic carbon, and its activity increased in the crucial period of crop growth, therefore, active carbon index is more sensitive than total organic carbon and beneficial to crop growth. There were significantly positive correlativity between soil organic carbon and humic carbon, water-soluble organic carbon, soil organic oxidized with 333mmol L-1KMnO4 and its fractionⅠ. Soil organic carbon and active carbon index declined with soil depth, and significantly affected by soil depth.
     6.Carbon pools management index displayed the trend in 0-5cm soil layer: DNS>DNT>PT>SNT; and displayed the trend in 5-15cm soil layer:DNT>PT>DNS>SNT; and displayed the trend in 15-30cm soil layer:SNT>PT>DNS>DNT. The available ratio of soil carbon was EOC/TOC>SMBC/TOC>WSOC/TOC under paddy field. Compared to PT, no-tillage treatments reduced the size of EOC/TOC and SMBC/TOC, increased the size of WSOC/TOC and POC/TOC. Carbon pools management index in DNT treatment were higher than other treatments in 5-15cm and 15-30cm soil layer.
引文
1.陈安磊,谢小立,陈惟财等.长期施肥对红壤稻田耕层土壤碳储量的影响.环境科学,2009,30(5):1267-1272.
    2. 陈恩凤,关连珠,汪景宽等.土壤特征微团聚体的组成比例与肥力评价.土壤学报,2001,38(1):49-53.
    3.陈恩凤.土壤肥力物质基础及其调控制.北京:科学出版社,1983,398-408.
    4.陈桂秋,黄道友,苏以荣等.红壤丘陵区土地不同利用方式对土壤有机质的影响.农业环境科学学报,2005,24(2):256-260.
    5.陈尚洪,朱钟麟,刘定辉等.秸秆还田和免耕对土壤养分及碳库管理指数的影响研究.植物营养与肥料学报,2008,14(4):806-809.
    6. 陈智,蒋先军,罗红燕等.土壤微生物生物量在团聚体中的分布以及耕作影响.生态学报,2008,28(12):5964-5969.
    7.冯跃华,邹应斌,Buresh R J等.不同耕作方式对杂交水稻根系特性及产量的影响.中国农业科学,2006a,39(4):693-701.
    8.冯跃华,邹应斌,Buresh R J等.免耕直播对一季晚稻田土壤特性和杂交水稻生长及产量形成的影响.作物学报,2006b,32(11):1728-1736.
    9.高明,周保同,魏朝富等.不同耕作方式对稻田土壤动物、微生物及酶活性的影响研究.应用生态学报,2004,15(7):1177-1181.
    10.关松荫.土壤酶及其研究法.农业出版社,1986,128-131,293-294,328.
    11.侯光炯.农业土壤学-侯光炯在宜宾应用研究17年论文集.四川科学技术出版社,新疆科技卫生出版社,2000:143-210.
    12.黄欠如,胡锋,袁颖红等.长期施肥对红壤性水稻土团聚体特征的影响.土壤,2007,39(4):608-613.
    13.江泽普,黄绍民,韦广泼等.不同免耕模式对水稻产量及土壤理化性状的影响.农业资源与环境科学,2007,23(12):362-365.
    14.金琳,李玉娥,高清竹等.中国农田管理土壤碳汇估算.中国农业科学,2008,41(3):734-743.
    15.李昌新,黄山,彭现宪等.南方红壤稻田与旱地土壤有机碳及其组分的特征差异.农业环境科学学报,2009,28(3):606-611.
    16.李恋卿,潘根兴,张旭辉等.退化红壤植被恢复中土壤微团聚体及其有机碳的分布变化.土壤通报,2000,31(5):193-196.
    17.李玲,朱捍华,苏以荣等.稻草还田和易地还土对红壤丘陵农田土壤有机碳及 其活性组分的影响.中国农业科学,2009,42(3):926-933.
    18.李勇.试论土壤酶活性与土壤肥力.土壤通报,1989,20(4):190-193.
    19.李志鹏,潘根兴,张旭辉.改种玉米连续3年后稻田土壤有机碳分布和13C自然丰度变化.中国农业科学,2007,44(2):244-251.
    20.林而达,李玉娥,郭李萍等.中国农业土壤固碳潜力与气候变化.北京:科学出版社,2005,102-113.
    21.凌启鸿.论水稻生产在我国南方经济发达地区可持续发展中的不可替代作用.中国稻米,2004,1:5-8.
    22.刘军,黄庆,付华等.水稻免耕抛秧高产稳产的生理基础研究.中国农业科学,2002,35(2):152-156.
    23.刘满强.不同有机肥管理下水稻生物学性质和有机碳物理保护机制研究.[博士学位论文].南京:南京农业大学图书馆,2005.
    24.刘世平,聂新涛,戴其根等.免耕套种与秸秆还田对水稻生长和稻米品质的影响.中国水稻科学,2007,21(1):71-76.
    25.刘守龙,苏以荣,黄道友等.微生物商对亚热带地区土地利用方式及施肥制度的响应.中国农业科学,2006,39(7):1411-1418.
    26.刘秀梅,李琪,梁文举等.潮棕壤免耕农田土壤酶活性的动态变化.应用生态学报,2006,17(12):2347-2351.
    27.逯非,王效科,韩冰等.农田土壤固碳措施的温室气体泄漏和净减排潜力.生态学报,2009,29(9):4993-5006.
    28.邵景安,唐晓红,魏朝富等.保护性耕作对稻田土壤有机质的影响.生态学报,2007,27(11):4434-4442.
    29.沈宏,曹志洪,徐本生.玉米生长期间土壤微生物量与土壤酶变化及其相关性研究.应用生态学报,1999,10(4):471-474.
    30.唐晓红,邵景安,高明等.保护性耕作对紫色水稻土团聚体组成和有机碳储量的影响.应用生态学报,2007,18(5):1027-1032.
    31.王昌全,魏成明,李廷强等.不同免耕方式对作物产量和土壤理化性状的影响.四川农业大学学报,2001,19(2):152-155.
    32.王清奎,汪思龙.土壤团聚体形成与稳定机制及影响因素.土壤通报,2005,36(3):416-421.
    33.王鑫,刘建新,雷蕊霞等.不同种植年限苜蓿土壤熟化过程中腐殖质性质的研究.水土保持学报,2008,28(2):98-102.
    34.吴建国,张小全,王彦辉等.土地利用变化对土壤物理组分中有机碳分配的影响.林业科学,2002,38(4):19-29.
    35.谢德体,陈绍兰,魏朝富等.水稻不同耕作方式下土壤酶活性及生化特性的研究.土壤通报,1994,25(5):196-198.
    36.谢瑞芝,李少昆,金亚征等.中国保护性耕作试验研究的产量效应分析.中国农业科学,2008,41(2):397-404.
    37.徐侠,王丰,栾以玲等.武夷山不同海拔植被土壤易氧化碳.生态学杂志,2008,27(7):1115-1121.
    38.徐阳春,沈其荣,雷宝坤等.水旱轮作下长期免耕和施用有机肥对土壤某些肥力性状的影响.应用生态学报,2000,11(4):549-552.
    39.徐阳春,沈其荣,冉炜.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响.土壤学报,2002,39(1):89-95.
    40.许泉,芮雯奕,何航等.不同利用方式下中国农田土壤有机碳密度特征及区域差异.中国农业科学,2006,39(12):2505-2510.
    41.姚槐应,黄昌勇等.土壤微生物生态学及其实验技术.科学出版社,2006.
    42.于淑芳,杨力,张玉兰等.长期施肥对土壤腐殖质组成的影响.土壤通报,2002,33(3):165-167.
    43.袁玲,杨邦俊,郑兰君等.长期施肥对土壤酶活性和氮磷养分的影响.植物营养与肥料学报,1997,3(4):300-306.
    44.张鸿龄,梁成华,杜立宇等.长期定位施肥对保护地土壤腐殖质结合形态的影响.应用生态学报,2006,17(5):831-834.
    45.张甲珅,陶澍,曹军.土壤中水溶性有机碳测定中的样品保存与前处理方法.土壤通报,2000,31(4):174-176.
    46.张磊,肖剑英,谢德体等.长期免耕水稻田土壤的生物特征研究.水土保持学报,2002,16(2):111-114.
    47.张逸飞,钟文辉,李忠佩等.长期不同施肥处理对红壤水稻土酶活性及微生物群落功能多样性的影响.生态与农村环境学报,2006,22(4):39-44.
    48.赵劲松,张旭东,袁星等.土壤溶解性有机质的特性与环境意义.应用生态学报,2003,14(1):126-130.
    49.周礼凯.土壤酶学.科学出版社,1987,136-137.
    50.周萍,Piccolo A,潘根兴等.三种南方典型水稻土长期试验下有机碳积累机制研究Ⅲ.两种水稻土颗粒有机质结构特征的变化.土壤学报,2009b,46(3):398-405.
    51.周萍,潘根兴,李恋卿等.南方典型水稻土长期试验下有机碳积累机制Ⅴ.碳输入与土壤碳固定.中国农业科学,2009c,42(12):4260-4268.
    52.周萍,宋国菡,潘根兴等.三种南方典型水稻土长期试验下有机碳积累机制研 究Ⅱ.团聚体内有机碳的化学结合机制.土壤学报,2009a,46(2):263-273.
    53.朱钟麟,舒丽,刘定辉等.秸秆还田和免耕对水稻土微形态特征的影响.生态环境,2008,17(2):682-687.
    54. Ashagrie Y, Zech W, Guggenberger G, et al. Soil aggregation, and total and particulate organic matter following conversion of native forests to continuous cultivation in Ethiopia. Soil and Tillage Research,2007,94:101-108.
    55. Baker J M, Ochsner T E, Venterea R T, et al. Tillage and soil carbon sequestration-What do we really know? Agriculture, Ecosystems and Environment, 2007,118(1):1-5.
    56. Beare M H, Hendrix P F, Coleman D C, et al. Aggregate-protected and unprotected organic matter pools in conventional and no-tillage soils. Soil Science Society of America Journal,1994,58:787-795.
    57. Bergstrom D W, Monreal C M, Tomlin A D, et al. Interpretation of soil enzyme activities in a comparison of tillage practices along a topographic and textural gradient. Canadian Journal of Soil Science,2000,80:71-79.
    58. Bhattacharyya P, Chakrabarti K, Chakraborty A. Microbial biomass and enzyme activities in submerged rice soil amended with municipal solid waste compost and decomposed cow manure. Chemosphere,2005,60:310-318.
    59. Blair G J, Lefory R D B, Lisle L. Soil carbon fractions based on their degree of oxidation and the development of a carbon management index for agricultural systems. Australian Journal Agricultural Research,1995,46:1459-1466.
    60. Burford J R, Bremner J M. Relation between denitrification capacities of soils and total water soluble and readily decomposable soil organic matter. Soil Biology and Biochemistry,1975,7:389-394.
    61. Cambardella, C A, Elliot E T. Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Science Society of America Journal,1992,56: 777-783.
    62. Carvalho J L N, Feigl B J, Godinho V P, et al. Carbon sequestration in agricultural soils in the Cerrado region of the Brazilian Amazon. Soil and Tillage Research,2009, 70:342-349.
    63. Chapman S J, Campbell C D, Purl G. Native woodland expansion:soil chemical and microbiological indicators of change. Soil Biology and Biochemistry,2003,35: 753-764.
    64. Crecchio C, Curei M, Mininni R, et al. Short-term effects of municipal solid waste compost amendments on soil carbon and nitrogen content, some enzyme activities and generic diversity. Biology and Fertility of Soils,2001,34:311-318.
    65. Dalal R C, Chan K Y. Soil organic matter in rain-fed cropping systems of the Australian Cereal Belt. Australian Journal of Soil Research,2001,39:435-464.
    66. Fang C M, Moncrieff J B. The variation of soil microbial respiration with depth in relation to soil carbon composition. Plant and Soil,2005,268:243-253.
    67. Feller C, Beare M H. Physical control of soil organic matter dynamics in the tropics. Geoderma,1997,79:69-116.
    68. Franchini J C, Crispino C C, Souza R A, et al. Microbiological parameters as indicators of soil quality under various soil management and crop rotation systems in southern Brazil. Soil and Tillage Research,2007,92:18-29.
    69.Gao M, Luo Y J, Wang Z F, et al. Effect of tillage system on distribution of aggregates and organic carbon in a Hydragric Anthrosol. Pedosphere,2008,18(5): 574-581.
    70. Griffith S M, Schnitzer M. Analytical characteristics of humic and fulvic acids extracted from tropical volcanic soila. Soil Sci. Soc. Amer. Proc.1975,39:861-867.
    71. Huang X X, Gao M, Wei C F, et al. Tillage effect on organic carbon in a purple paddy soil. Pedosphere,2006,16(5):660-667.
    72. Huggins D R, Clapp C E, Allmaras R R, et al. Carbon dynamics corn-soybean sequences as estimated from natural carbon-13 abundance. Soil Science Society of America,1998,62(1):195-203.
    73. Jastrow J D, Boutton T W, Miller R M. Carbon dynamics of aggregate-associated organic matter estimated by carbon-13 natural abundance. Soil Science Society of America,1996,60:801-807.
    74. Jenkinson D S, Ladd J N. Microbial biomass in soil:measurement and turnover. Soil Biochemistry. New York:New York, Marcel Dekker,1981,5:415-471.
    75. Jenkinson D S. Studies on the decomposition of plant material in soil:Ⅴ. The effects of plant cover and soil type on the loss of carbon from 14C labelled ryegrass decomposing under field conditions. Journal of Soil Science,1977,28(3):424-434.
    76. John B, Yamashita T, Ludwig B, Flessa H. Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use. Geoderma.2005, 128:63-79.
    77. Kalbitz K, Solinger S. Controls on the dynamics of dissolved organic matter in soils: A review. Soil Science,2000,165(4):277-304.
    78. Kandeler E, Kampichler C, Horak O. Influence of heavy metals on the functional diversity of soil microbial communities. Biology and Fertility of Soils,1996,23: 299-306.
    79. King J A, Bradley R I, Harrison R, et al. Carbon sequestration and saving potential associated with changes to the management of agricultural soils in England. Soil Use and Management,2004,20(4):394-402.
    80. Klose S, Ajwa H A. Enzyme activities in agricultural soils fumigated with methyl bromide alternatives. Soil Biology and Biochemistry,2004,36:1625-1635.
    81. Kucharik C J, Foley J A, Delire C, et al. Testing the performance of a dynamic global ecosystem model water balance, carbon balance and vegetation structure. Global Biogeochemical cycles,2000,14(3):795-825.
    82. Kuzyakov Y, Domanski G. Carbon input by plants inio the soil. Review. Plant Nutrient and Soil Science,2000,163:421-431.
    83. Lal R. Soil carbon dynamics in cropland and rangeland. Environmental Pollution, 2002,116:353-362.
    84. Lal R. Soil carbon sequestration impacts on global climate change and food security. Science,2004,304:1623-1627.
    85. Lefroy R D B, Blair G, Strong W M. Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance. Plant and Soil,1993,155-156,399-402.
    86. Liu Q H, Shi X Z, Weindorf D C, et al. Soil organic carbon storage of paddy soils in China using the 1:1000000 soil database and their implications for C sequestration. Global Biogeochemical cycles,2006,20:GB3024.
    87. Loginow W, Wisniewski W, Gonet S S, et al. Fractionation of organic carbon based on susceptibility to oxidation. Polish Journal of Soil Science,1987,20:85-98.
    88. Manlay R, Fellller C, Swift M J. Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems. Agriculture, Ecosystem and Environment,2007,119:217-233.
    89. McConkey B G, Liang B C, Campbell C A, et al. Crop rotation and tillage impact on carbon sequestration in Canadian prairie soils. Soil and Tillgae Research,2003,74: 81-90.
    90. McVay K A, Budde J A, Fabrizzi K, et al. Management effects on soil physical properties in long-term tillage studies in Kansas. Soil Science Society of America, 2006,70:434-438.
    91. Monreal C M, Bergstrom D W. Soil enzymatic factors expressing the influenc of landuse, tillage system and texture on soil biochemical quality. Canadian Journal of Soil Science,2000,80:419-428.
    92. Oorts K, Bossuyt H, Labreuche J, et al. Carbon and nitrogen stocks in relation to organic matter fractions, aggregation and pore size distribution in no-tillage and conventional tillage in northern France. European Journal of Soil Science,2007,58: 248-259.
    93. Oorts K, Bossuyt H, Labreuche J, et al. Carbon and nitrogen stocks in relation to organicmatter fractions, aggregation and pore size distribution in no-tillage and conventional tillage in northern France. European Journal of Soil Science,2007,58: 248-259.
    94. Pan G X, Li L Q, Zhang Q, et al. Organic carbon stock in topsoil of Jiangsu Province, China, and the recent trend of carbon sequestration. Journal of Environmental Sciences,2005,17(1):1-7.
    95. Pan G X, Wu L S, Li L Q, et al. Organic carbon stratification and size distribution of three typical paddy soils from Taihu Lake region, China. Journal of Environmental Sciences,2008,20(4):463-465.
    96. Parton W J, Schimel D S, Cole C V, et al. Analysis of factors controlling soil organic matter levels in great plains grass lands. Soil Science Society of America,1987, 51:1173-1179.
    97. Peixoto R S, Coutinho H L C, Madari B, et al. Soil aggregation and bacterial community structure as affected by tillage and cover cropping in the Brazilian Cerrados. Soil and Tillgae Research,2006,90:16-28.
    98. Philippe S H, Yang H M.免耕农作制.北京:农业出版社,1983.
    99. Plaza C, Hernandez D, Garcia-Gil J C, et al. Microbial activity in pig slurry-amended soils under semiarid conditions. Soil Biology and Biochemistry,2004,36(10): 1577-1585.
    100.Post W M, Kwon K C. Soil carbon sequestration and land-use change:processes and potential. Global Change Biology,2000,6:317-327.
    101.Powlson D S. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biology and Biochemistry,1987,19:159-164.
    102.Rees R M, Parker J P. Filtration increases the correlation between water extractable organic carbon and soil microbial activity, Soil Biology and Biochemistry,2005,37: 2240-2248.
    103.Roldan A, Salinas-Garcia J R, Alguacil R R, et al. Changes in soil enzyme activity, fertility, aggregation and C sequestration mediated by conservation tillage practices and water regime in a maize field. Applied Soil Ecology,2005,30:11-20.
    104.Six J, Bossuyt H, Degryze S, et al. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil and Tillgae Research,2004a,79:7-31.
    105.Six J, Elliot E T, Paustian K, et al. Aggregate and soil organic matter dynamics under conventional and no-tillage systems. Soil Science Society of America,1999,63: 1350-1358.
    106.Six J, Elliot E T, Paustian K, et al. Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Science Society of America,1998,62(5): 1367-1377.
    107.Six J, Elliott E T, Paustian K, et al. Soil structure and organic matter:I. Distribution of aggregate-size classes and aggregate-associated carbon. Soil Science Society of America,2000,64:81-89.
    108.Six J, Ogle S M, Breidt F J, et al. The potential to mitigate global warming with no-tillage management is only realized when practised in the long term. Global Change Biology,2004b,10(2):155-160.
    109.Song G H, Li L Q, Pan G X, et al. Topsoil organic carbon storage of China and its loss by cultivation. Biogeochemistry,2005,74(1):47-62.
    110.Spaccini R, Piccolo A, Haberhauer C, et al. Transformation of organic matter from maize residues into labile and humic fractions of three Europen soils as revealed by 13C distribution and CPMAS-NMR spectra. European Journal of Soil Science,2000, 51:583-594.
    111.Sparling G P. Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter. Soil and Tillgae Research,1992,30: 195-207.
    112.Sun W J, Huang Y, Zhang W, et al. Estimating topsoil SOC sequestration in croplands of eastern China from 1980 to 2000. Australian Journal of Soil Research, 2009,47(3):261-272.
    113.West T O, Post W M. Soil carbon sequestration rates by tillage and crop rotation:a global data analysis. Soil Science Society of America,2002,66:1930-1946.
    114.Zhang W, Feng J, Parker K. Differences in soil microbial biomass and activity for six agroecosystems with a management disturbance gradient. Pedosphere,2004,14(4): 441-447.
    115.Zsolnay A. Dissolved humus in soil waters. In:Piccolo, A. (Ed.), Humic Substances in Terrestrial Ecosystems. Elsevier, Amsterdam,1996,171-224.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700