用户名: 密码: 验证码:
稻、鸭、鱼共育稻田浮游动物群落研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稻田是陆地上受人为干扰最大的间歇性人工湿地,也是最重要的内陆淡水生态系统,生物种群非常丰富。于2008年6月至9月在华农油菜科研基地,进行了稻、鸭、鱼共育稻田浮游动物群落的研究试验,通过对浮游动物的种类、密度、生物量、相似性、多样性的调查与分析,研究了稻田浮游动物的群落组成和结构,以及鸭、鱼对浮游动物的群落组成和结构的影响。
     本次试验共检测到浮游动物46属103种。其中轮虫18属48种,占46.6%;枝角类11属25种,占24.3%;原生动物11属20种,占19.4%;桡足类最少(6属10种),占9.7%。各组群落组成D组共有67种,最多;R组和DF组均为63种,F组59种,最少。其中有鸭组种类多于无鸭组,有鱼组种类少于无鱼组。
     浮游动物的密度R组最高,为22.09×103ind/L,D组最低,11.72×103ind/L,DF组和F组密度分别是12.48×103ind/L和12.65×103ind/L,居中。D、DF和F三组密度相差较小,R组密度则显著高于其余三组。结果显示:鱼、鸭降低了原生动物的密度,鸭提高了大型浮游动物的密度,而鱼则降低了大型浮游动物的密度。
     浮游动物生物量R组为33.10 mg/L,最大,其次是D组(25.33 mg/L),F组最小(13.13 mg/L)。有鱼、鸭组中原生动物、轮虫和无节幼体的生物量大于对照组,然而桡足幼体、成体和枝角类的生物量小于对照组,其中鱼鸭混养组最小。
     浮游动物R组与其它3组的相似性系数大于其它3组之间的相似性系数。枝角类的相似性系数大于轮虫;同一组中不同时期的相似性系数总体上越来越小;轮虫F组与其它三组的相似性系数大于其它三组之间的相似性系数。枝角类DF组与其它三组的相似性系数小于其它三组之间的相似性系数。
     轮虫Margalef多样性系数是有鸭组大于无鸭组。以密度为计算值的浮游动物Margalef多样性系数是有鸭组大于无鸭组。以生物量为计算值的Margalef多样性系数是有鱼组大于无鱼组。鱼、鸭提高了稻田浮游动物的Margalef多样性。
     作为完全的人工水体,稻田中浮游动物群落与湖泊、水库和人工养殖湖泊等自然水体具有很大的差别,说明稻田水体有其独特性。与湖、库等大型水体相比,稻田更适合浮游动物的繁殖、生长。
Rice field is the most important artificial wetland on the earth and the most disturbing ecosystem with abundant aquatic populations also. Present study had investigated the community composition and structure of zooplankton in the rice fields cultivating ducks and fishes at the Experimental Base of Huazhong Agricultural University from June to September 2008. During the experiment period, we examined the community composition and structure of Zooplankton including species composition, density, biomass, similarity, biodiversity. Simultaneously, the influences of ducks and fish on Zooplankton community in the rice fields were conducted in the present study.
     A total of 46 genus and 103 species were observed in this experiment, which consisted of 18 genus and 48 species for rotifer (46.6%),11 genus and 25 species for cladocera (24.3%),11 genus and 20 species for protozoa (19.4%),6 genus and 10 species for copepod (9.7%). Group D showed the most abundant (67 taxa) for species composition. Group R and DF was the minor (63 taxa for both groups) and Group F was the least (59 taxa). As a result, species richness of groups with ducks was superior to those of groups without duck and groups without fish exceeded that of groups with fish.
     Group R showed the maximal density of zooplankton (22.09×103 ind/L), followed by Group DF (12.48×103 ind/L) and Group F (12.65×103 ind/L), but Group D was the minimum (11.72×103 ind/L). Very little difference was found between the zooplankton density of Group D, DF and F. However, the density of zooplankton was significantly higher in Group R than in other groups (p<0.05). Based on these facts, fish and ducks decreased the density of protozoa. Ducks increased the density of large-sized zooplankton, but fish as the contrary.
     The maximal biomass of zooplankton was observed in Group R (33.10 mg/L), followed by Group D (25.33 mg/L), but Group F showed the minimum value (13.13 mg/L). The biomass of protozoa, rotifer and nauplius was higher in groups with fish and ducks than in control group. However, the biomass of copepodid, adult copepod and cladocera was the contrary, particularly in Group DF.
     The similarity index between Group R and the other three groups was higher than those among the other three groups. Cladocera showed higher similarity index than rotifer. As a whole, the similarity index of the same group tended to decrease during different period. For rotifer, similarity index between Group F and the other three groups was higher than those among the other three groups. For cladocera, similarity index between Group DF and the other three groups was lower than those among the other three groups.
     The Margalef index of rotifer was higher in groups with ducks than in groups without ducks. According to the density values, the Margalef index of zooplankton was higher in groups with ducks than in groups without ducks. The Margalef index of zooplankton was higher in groups with fish than in groups without fish based on the biomass values. Consequently, fish and ducks increased the Margalef diversity index of zooplankton in the rice fields.
     Rice field was absolutely artificial water body and showed unique characteristics concerning the community structure of zooplankton compared with natural water bodies such as lakes, reservoirs and cultivated lakes. Zooplankton was more appropriate to grow and breed in rice fields than in large-sized water bodies such as lakes and reservoirs.
引文
1.曹凑贵,汪金平,邓环,等.稻鸭共生对稻田水生动物群落的影响.生态学报,2005,25(9):2644-2649.
    2.曹凑贵,汪金平,金晖,等.稻鸭共育对稻田水体藻类群落的影响.水生生物学报,2007,31(1):146-148.
    3.陈飞星,张增杰.稻田养蟹模式的生态经济分析.应用生态学报,2002,13(3):323-326
    4.邓晓,廖晓兰,黄璜.稻、鸭复合生态系统产甲烷细菌数量.生态学报,2004,24(8):1696-1700
    5.戴志明,杨华松,等.云南稻一鸭共生模式效益的研究与综合评价(一).中国农学通报,2004,20(4):265-267,273
    6.甘德欣,黄璜,黄梅.稻鸭共栖高产高效的原因与配套技术.湖南农业科学,2003,(5):31-32,36
    7.胡鸿钧,魏心印编著.中国淡水藻类:系统、分类、生态.北京:科学出版社,2006
    8.胡春英.不同湖泊演替过程中浮游动物数量及多样性的研究.水生生物学报,1999,23(3):217-226
    9.黄璜,黄梅,等.湿地农田生态系统农药“零星”输入的生态效益分析.湖南农业科学,2003,(3):45-46
    10.黄璜,杨志辉,王华,等.湿地稻—鸭复合系统的CH4排放规律.生态学报,2003,23(5):929-934
    11.林忠华.稻田人工生物圈的调控技术研究.耕作与栽培,1997,1、2:24-28
    12.金千瑜,禹盛苗,欧阳由男,等.中国稻—鸭农作系统发展概况与稻鸭共育技术研究.赵振祥主编.第四届亚洲稻鸭共作研讨会论文集.镇江:镇江市科技局,2004.1-6
    13.金鉴明,卞有生编著.21世纪的阳光产业——生态农业.北京:清华大学出版社,2002,12;139
    14.李学军,乔志刚,聂国兴.稻—鱼—蛙立体农业生态效益的研究.生态学杂志,2001,20(2)37-40
    15.李月梅.稻田养鱼生态效益.农业系统科学与综合研究,1999,15(1)
    16.刘建康主编.东湖生态学研究(一).北京:科学出版社,1990,184-189
    17.刘蔚秋,徐润林,等.生物防治稻田与普通稻田水体中浮游植物的生态特征研究.应用 生态学报,2001,12(1):59-62.
    18.刘小燕,杨治平,黄璜,等.湿地稻-鸭复合系统中水稻纹枯病的变化规律.生态学报,2004,24(11):2579-2583
    19.刘小燕.稻鸭鱼生态种养对稻田甲烷减排及水稻栽培环境改善的功能研究.博士论文,2004.
    20.宁理功.稻—鸭—泥鳅复合生态系统土壤理化性状及效益研究.硕士论文,2003.
    21.马国强,庄雅津,周铭成.稻鸭共作无公害水稻生产技术初探.农业装备技术,2002,(2):20-21
    22.倪达书,汪建国.稻鱼共生生态系统中物质循环及经济效益.水产科技情报,1985,(6):1-4
    23.倪达书,汪建国.稻田养鱼的理论与实践.农业出版社,1988
    24.卞有生等编著.国内外生态农业对比一理论与实践.北京:中国环境科学出版社,2000,42;142-145;225-228
    25.彭凤梅等.云南稻—鸭共生模式效益的研究与综合评价(一).中国农学通报,2002,18(3):34-36
    26.冉茂林,等.我国稻田养鸭的发展及研究现状.中国畜牧杂志,1993,29(5):58-59,61.
    27.童泽霞,等.水稻优质高效增产栽培模式—高档优质稻搭配稻田养鸭试验.作物研究,2003,17(4):192-193
    28.童泽霞.稻田养鸭与稻田生物种群的关系初探.中国稻米,2002,(1):33-34
    29.汪金平,曹凑贵,金晖,等.稻鸭共生对稻田水生生物群落的影响.中国农业科学,2006,39(10):2001-2008.
    30.王强盛,黄丕生,甄若宏,等.稻鸭共作对稻田营养生态及稻米品质的影响.应用生态学报,2004.15(4):639-645
    31.王缨,雷慰慈.稻田种养模式生态效益研究.生态学报,2000,20(2):311-316
    32.王玉堂,王友田.稻田生态渔业利用技术.北京:中国农业出版社,1994
    33.吴春华,陈欣.农药对农区生物多样性的影响.应用生态学报,2004,15(2):341-344
    34.吴宗文,王尤江,等.建稻鱼工程实现优质高效生态渔业综合效益研究.四川环境,1998,17(3):51-54
    35.吴万夫,张荣权主编.渔业工程技术.河南:河南科学技术出版社,2000,127-128
    36.徐润林,白庆笙.广东稻田水体的淡水肉足虫.动物学杂志,2000,35(1):5-8.
    37.席运官,钦佩,宗良纲.有机水稻病虫草防治技术与经济效益分析.南京农业大学学报,2004,27(3):46-49
    38.熊国远,朱秀柏,陈周前,等.稻鸭共生技术示范推广报告.当代畜牧,2003,(10):4-6
    39.禹盛苗,金千瑜,等.稻鸭共育对稻田杂草和病虫害的生物防治效应.中国生物防治,2004,20(2):99-102
    40.杨华松,戴志明,万田正治,等.云南稻—鸭共生模式效益的研究与综合评价(二).中国农学通报,2002,18(5):23-24
    41.杨志辉,黄璜,王华.稻—鸭复合生态系统稻田土壤质量研究.土壤通报,2004,35(2):117-121
    42.赵文主编.水生生物学(水产饵料生物学).北京:中国农业出版社,2004
    43.章宗涉,黄祥飞编著.淡水浮游生物研究方法.北京:科学出版社,1991,232-252
    44.章家恩,陆敬雄,张光辉,等.鸭稻共作生态农业模式的功能与效益分析.生态科学,2002,21(1):6-10
    45.朱凤姑,丰庆生,诸葛梓.稻鸭生态结构对稻田有害生物群落的控制作用.浙江农业学报,2004,16(1):37-41
    46.朱清海,李镇鹏,徐春河.稻—萍—蟹立体农业的效益.生态学杂志,1994,13(5):1-4
    47.朱清海.稻—泥鳅田生态系统能流、物流和效益分析.中国稻米,1997,1:26-27
    48.Bambaradeniya C.N.B.2000. Ecology and biodiversity in an irrigated rice field ecosystem in Sri Lanka. Ph. D. Thesis, University of Peradeniya, Sri Lanka,525pp.
    49.Bambaradeniya C.N.B.2004. Biodiversity associated with an irrigated rice agro-ecosystem in Sri Lanka Biodiversity and Conservation 13:1715-1753,20.
    50.Bambaradeniya C.N.B, Fonseka K. T. and Ambagahawatte C.L.1998.A preliminary studyof faunaand flora of arice fleld in Kandy, Sri Lanka.Ceylon Journal of Science (Biological Sciences) 25:1-22.
    51.David C. Little, Pimjai Surintaraseree, Niek Innes-Taylor, Fish culture in rainfed rice of northeast Thailand, Aquaculture,1996,140:295-321
    52.Fernando C.H.1956. The fish fauna of paddy fields and smallirrigation ditches in the western lowlands of Ceylon; and a bibliography of references to fish in paddy fields. Ceylon Journal of Science (C) 7:223-227.
    53.Hakan Berg, Pestieide use in rice and rice-fish farms in the Mekong Delta, Vieinam, Crop Protection,2001,20:897-905
    54.Hakan Berg, Rice monoeulture and integrated riee-fishfarming in the Mekong Delta, Vietnameonomic and ecologieal considerations, Ecologieal Economies,2002,41:95-107
    55.Mustow, S. E. Nath, A. Tollervey, A. G. Sannarm, G. Effect of planting pattern on shading and phytoplankton photosynthesis in Bangladesh rice-fish farms.ICLARM Quarterly(Aquabyte)1996,19(4):23-26
    56.Schoenly K, Cohen J. E, Heong K. L, Litsinger J. A, Aquino G B, Barrion A. T. et al.1996. Foodweb dynamics of irrigated rice felds at five elevations in Luzon, Philippines. Bulletin of Entomological
    57.S.E.Mustow, The effcts of shading on Phytoplankton Photosynthesis in rie-fish fields in Bangladesh, Agrieure, Eeosystems and Environment,2002,90:89-96
    58.Thlbaud, d'Oultremont,Andrew Paul Gutierrez,Amultitrophic model of a rice-fish agroecosystem:Ⅰ.A tropical fishpond food web, Eeological Modelling,2002,156:123-142
    59.Thibaud, d'Oultremont, Andrew Paul Gutierrez.A multitrophic model of a rice-fish agroccosystem:Ⅱ. Linking the flooded rice-fishpond systems, Eeologieal Medelling,2002, 155:159-176
    60.Tamura, T.Carp cultivation in JaPan.In:G.Borgstrom(Editor), Fish as Food.Academic Press, New York/London,1961,103-120
    61.Velmurugu V.1980. A review of weed control in rice. In:Proceedings of the Rice Symposium, Department of Agriculture, Colombo, Sri Lanka, pp.109-132.
    62.Weerakoon A.C.J. and Samarasinghe E.L.1958. Mesofauna of the soil of apaddy field in Ceylon-a preliminary survey. Ceylon Journal of Science (Biological Sciences) 1(2):155-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700