用户名: 密码: 验证码:
无线传感器网络非测距三维定位算法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线传感器网络(WSN)作为一种由大量结构简单、价格低廉的微型传感器集成无线通信接口所组成的网络,它在环境监测、灾难救助、目标跟踪、医疗监护等领域都有广泛的应用前景。在这些应用中,节点的位置信息对传感器网络监测活动至关重要。事件发生的位置是传感器节点监测消息中所包含的重要信息,没有位置信息的监测消息往往毫无意义。同时,无线传感器网络的一些协议比如基于地理信息的路由也需要定位信息作为支撑。因此,节点自定位技术是无线传感器网络的重要研究内容之一,具有非常重要的理论意义和实际应用价值。
     首先,本文概述了无线传感器网络的结构和特点,然后重点研究其节点定位问题。节点定位算法可以分为基于测距(Range-based)和无需测距(Range-free)两类。无需测距定位技术因其低成本和低功耗而备受关注。本文概述了几种典型的非测距定位算法,如质心算法、凸规划、DV Hop、APIT、ROCRSSI等,分析了每种算法的优缺点,指出现有定位算法所存在的问题。这些算法均基于二维平面应用而设计,且较难扩展到三维空间。而在实际应用中,无线传感器网络在空间上往往部呈立体分布,比如在海洋环境监测中,在海平面下不同深度部署传感器节点,进行水温、盐度、洋流、潮汐探测等。这些三维应用具有更加复杂的网络拓扑结构,需要更加健壮的定位算法进行立体空间定位。
     本文的研究工作主要围绕三维定位算法展开。现有的三维定位算法有两种解决方案,一种是依靠与锚节点进行信息交换,通过三角计算等方法来获取未知节点的位置;另一种是通过基础设施在网内动态广播消息进行定位。对于后者来说,定位成败完全取决于基础设施,存在安全隐患。因此本文重点关注第一种解决方案。本文针对目前三维定位算法存在的不足,基于网格划分思想和投票机制,提出一种分布式非测距三维定位算法(3D-DRL)。该算法将仿真区域划分为大小相同的立体网格,锚节点对所有网格进行投票,最后将得票值最高的网格作为未知节点的‘最大可能定位区域’,选取该区域的质心作为未知节点的估计位置。3D-DRL无需未知节点间相互通信,具有较小的通信开销,不依赖于锚节点比例,且对网络拓扑结构具有鲁棒性。
     最后,在MATLAB仿真平台上搭建了仿真系统模型,通过对定位算法进行仿真试验,统计分析了各种因素对算法性能的影响,试验结果表明,即使在信号传输不规则的情况下,该算法仍具有较高的定位精度和100%的定位比例,有效的解决了三维空间内的无线传感器网络节点的定位问题。
Wireless sensor network(WSN), which consists of a large number of simple and inexpensive sensor device, equipped with wireless communication interface, has been proposed for various applications such as environment monitoring, disaster relief, target tracking, medical care, and so on. In these applications, it is important for the sensor nodes to be aware of their own locations, because sensed data is always meaningless without relating to its physical position. Furthermore, many protocols of WSN, for example, the location aided routing protocols, will likely depend on the location aware sensors. Therefore, localization has become a critical problem in WSN and also attracted massive attentions from both industry and academy.
     A brief introduction of WSN is given to describe the structure and characteristics of WSN. Then the localization algorithm is explained and investigated particularly. Localization algorithms can be divided into two types:range-based methods and range-free methods. Because of the advantages on power and cost on sensor node, range-free methods are stressed in this paper. The most representative range-free methods such as Centroid algorithm, Convex optimization, DV Hop, APIT, ROCRSSI, are discussed, a brief summary of advantages and disadvantages is given, and also the existing problems are concluded. But these algorithms based on two-dimensional (2D) plane are difficult to be expanded to three-dimensional (3D) application. However, sensor networks may often be deployed over complex 3D terrains in real applications. For example, an environmental monitoring network deployed in the sea to detect the temperature and salinity of sea water, the ocean currents and tide, and so forth. In these networks, network topologies could be much more complex than 2D cases, which requires the localization schemes to be more robust to network irregularities.
     Our work is primarily focused on the 3D localization of WSN. The existing 3D localization algorithm can be classified into two sorts:one solution is based on information exchange with anchors, and the position is calculated by methods such as triangulation. The other is depended upon dynamic message broadcasting of infrastructure. For the latter, success of localization is entirely determined by the infrastructure, which leads to security threat. Thus we concentrate on the first solution. According to the shortage of algorithms proposed for 3D up to now, based on the grid-based representation of the sensing space and the voting process, we present a novel distributed range-free localization algorithm for 3D(3D-DRL). Based on the grid-based representation, the location area is divided into cubic grid and anchors will vote for each cubic cell.3D-DRL assumes the centroid of cells with highest votes as the estimated location of unknown nodes. The scheme avoids the interaction between the blind nodes, costs lower communication overhead, is independent of the anchor node density and robust to the network topology.
     Finally, a simulation model is created based on MATLAB, and a detailed performance analysis of 3D-DRL is made, and simulation results indicate that even under the irregular radio propagation model, the scheme also performs well in terms of low complexity, high location accuracy and 100 percent location ratio. Thus,3D-DRL provides an effective method to solve the 3D localization of WSN.
引文
[1]孙利民,李建中,陈渝等.无线传感器网络[M].第一版,北京,清华大学出版社,2005.05.
    [2]任丰原,黄海宁,林闯.无线传感器网络[J].软件学报,2003,14(7):1282-1291.
    [3]Akyildiz IF, Su W, Sankarasubramaniam Y, et al. A survey on sensor networks[J]. IEEE Communications Magazine,2002,40(8):102-114.
    [4]21 ideas for the 21st century. Business Week, pp.78-167, August 30,1999.
    [5]Chris Savarese, Jan M Rabaey, Jan Beutel. Locationing in Distributed Ad-Hoc Wireless Sensor Network[C]. Proceedings of IEEE International Conference on Acoustics, Speech and Signal, Salt Lake, USA:IEEE Computer Society,2001,4:2037-2040.
    [6]陈积明,林瑞仲,孙优贤.无线传感器网络通信体系研究[J].传感技术学报,2006,19(4):1290-1295.
    [7]李建中,李金宝,石胜飞.传感器网络及其数据管理的概念、问题与进展[J].软件学报,2003,14(10):1717-1727.
    [8]Jason Hill, Robert Szewczyk, Alec Woo, et al. System Architecture Directions for Networked Sensors[J]. Architectural Support for Programming Languages and Operating Systems,2000, 35(11):93-104.
    [9]陈林星,曾曦,曹毅.移动Ad Hoc网络:自组织分组无线网络技术[M].第一版,北京,电子工业出版社,2006.04.
    [10]T. Sameer, B. Nael, A. Ghazaleh, et al. A Taxonomy of Wireless Micro-sensor Network Models[J]. ACM Mobile Computing and Communications Review,2003,6(2):28-36.
    [11]R. Want, A. Hopper, V. Falcao, Gibbons J. The Active Badge Location System. ACM Transactions on Information Systems[J],1992,10(1):91-102.
    [12]P. Bahl, V.N. Padmanabhan. RADAR:An In-building RF-based User Location and Tracking System[C]. Proceedings of the 19th IEEE Conference on Computer Communications (INFOCOM2000),2000:775-784.
    [13]A. Savvides, C.C. Han, M.B. Srivastava. Dynamic fine-grained localization in ad-hoc networks of sensors[C]. Proceedings of the 7th IEEE International Conference on Mobile Computing and Networking, Rome, Italy,2001:166-179.
    [14]Nissanka B Priyantha, Anit Chakraborty, Hari Balakrishnan. The Cricket Location-Support System[C]. Proceedings of the 6th Annual International Conference on Mobile Computing and Networking,2000:32-43.
    [15]Andy Ward, Pete Steggles, Rupert Curwen, et al. The Bat Ultrasonic Location System[DB/OL]. http://www.cl.cam.ac.uk/research/dtg/attarchive/bat/, Jan 2005.
    [16]王福豹,史龙,任丰原.无线传感器网络中的自身定位系统和算法[J].软件学报,2005,16(5):857-868.
    [17]Cesare Alippi, Giovanni Vanini. Wireless Sensor Networks and Radio Localization:a Metrological Analysis of the MICA2 received signal strength indicator[C]. Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks, Tampa, Florida, USA, November 2004:579-580.
    [18]D.Niculescu, B.Nath. Ad hoc Positioning System(APS) using AOA[C]. Proceedings of the 22nd Annual Joint Conference of the IEEE Computer and Communications, San Francisco, 2003,3:1734-1743.
    [19]N.B. Priyantha, A.K.L. Miu, H Balakrishnan, et al. The Cricket Compass for Context-aware Mobile Applications[C]. Proceedings of the 7th Annual International Conference on Mobile Computing and Networking,2001:1-14.
    [20]G.Q. Mao, B. Fidan, B.D.O. Anderson. Wireless Sensor Network Localization Techniques[J]. ACM Computer Networks:The International Journal of Computer and Telecommunications Networking,2007,51(10):2529-2553.
    [21]D. Niculescu, B. Nath. Ad hoc Positioning System (APS)[C]. IEEE Global Telecommunications Conference, San Antonio,2001,5:2926-2931.
    [22]Nirupama Bulusu, John Heidemann, Deborah Estrin. GPS-less Low Cost Outdoor Localization for Very Small Devices[J]. IEEE Personal Communications,2000:7(5):28-34.
    [23]Nirupama Bulusu, John Heidemann, Vladimir Bychkovskiy and John Heidemann. Density Adaptive Algorithms for Beacon Placement in Wireless Sensor Networks [C]. Proceedings of the 21st International Conference on Distributed Computing Systems,2001:489-498.
    [24]L. Doberty, L.E. Ghaoui, K.S.J. Pister. Convex Position Estimation in Wireless Sensor Networks[C]. Proceedings of 20th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2001),2001,3:1655-1663.
    [25]Dmitri Perkins, Ranesh Tumati. Reducing Localization Errors in Sensor Ad hoc Networks[C]. IEEE International Conference on Performance, Computing, and Communications, Phoenix, Arizona,2004:723-729.
    [26]Y. Shang, W. Ruml, Y. Zhang, et al. Localization from Mere Connectivity[C]. Proceedings of the 4th ACM International Symposium on Mobile Ad Hoc Networking and Computing, Annapolis, Maryland,2003:201-212.
    [27]Tian He, C.D. Huang, B.M. Blum, et al. Range-Free Localization Schemes in Large Scale Sensor Networks[C]. Proceedings of the 9th annual international conference on Mobile computing and networking, San Diego, California, USA:ACM Press,2003:81-95.
    [28]R. Nagpal. Organizing a Global Coordinate System from Local Information on an Amorphous Computer[R]. The Artificial Intelligence Laboratory of the Massachusetts Institute of Technology, August 1999:1-11.
    [29]Liqiang Zhang, Xiaobo Zhou, Qiang Cheng. Landscape 3D:A Robust Localization Scheme for Sensor Networks over Complex 3D Terrains [C]. Proceedings of the 31st IEEE Conference on Local Computer Networks,2006:239-246.
    [30]Jianlin Liang, Jun Shao, Ying Xu, et al. Sensor Network Localization in Constrained 3-D spaces[C]. Proceedings of the IEEE International Conference on Mechatronics and Automation, 2006:49-54.
    [31]C.H. Ou, K.F. Ssu. Sensor Position Determination with Flying Anchors in three-dimensional Wireless Sensor Networks [J]. IEEE Transactions on Mobile Computing,2008,7(9): 1084-1097.
    [32]吕良彬,曹阳,高洵等.基于球壳交集的传感器网络三维定位算法[J].北京邮电大学学报,2006,29(增刊):48-51.
    [33]C. Fretzagias, M. Papadopouli. Cooperative Location-sensing for Wireless Networks[C]. Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications,2004:121-131.
    [34]Qi Yao, S.K. Tan, Yu Ge, et al. An Area Localization Scheme for Large Wireless Sensor Networks[C]. Proceedings IEEE 61st Vehicular Technology Conference,2005,5:2835-2839.
    [35]G.L. Joo, S.V. Rao. A Grid-Based Location Estimation Scheme using Hop Counts for Multi-hop Wireless Sensor Networks[C]. International Workshop on Wireless Ad-Hoc Networks, 2004:330-334.
    [36]Z.X. Jia, C.D. Wu, YZ. Zhang, et al. Distributed Grid Location Estimation Scheme Based on Euclidean Distance[C]. IEEE 3rd Conference on Industrial Electronics and Applications,2008: 1128-1132.
    [37]J. Hightower, G. Boriello. Location Systems for Ubiquitous Computing [J]. IEEE Computer, 2001,34(8):57-66.
    [38]Steve Shafer, John Krumm, Barry Brumitt, et al. Easy Living[C]. Proceedings of the 1998 Joint DARPA/NIST Smart Spaces Workshop,1998:127-130.
    [39]A. Cerpa, D. Estrin. ASCENT:Adaptive Self-configuring Sensor Networks Topologies[C]. Proceedings of the 21st International Annual Joint Conference of the IEEE Computer and Communications Societies. Piscataway:IEEE Press,2002:101-111.
    [40]L. Doherty. Algorithm for Position and Data Recovery in Wireless Sensor Networks[D]. Department of Electronic Engineering and Computer Science, University of California, Berkeley,2000.
    [41]A. Savvides, H. Park, and M. B. Srivastava. The bits and flops of the n-hop multilateration primitive for node localization problems[C]. The First ACM International Workshop on Wireless Sensor Networks and Application, Atlanta, GA,2002:112-121.
    [42]P. Bergamo, G. Mazzini. Localization in Sensor Networks with Fading and Mobility[C]. Proceedings of the 13th IEEE International Symposium on Personal, Indoor and Mobile Radio
    Communications,2002,2:750-754.
    [43]C. Savarese, J. Rabay, K. Langendoen. Robust Positioning Algorithms for Distributed Ad-hoc Wireless Sensor Networks[C]. Proceedings of the General Track of the Annual Technical Conference on USENIX, Berkeley:USENIX Association,2002:317-327.
    [44]Ninrpama Bulusu. Self-configuring Localization Systems [D]. University of California, Los Angeles,2002.
    [45]N.B. Priyantha, H. Balakrishnam, E. Demaine, et al. Anchor-free Distributed Localization in Sensor Networks [N]. Technical Report TR-892, MIT Lab for Computer Science, April 2003.
    [46]D. Niculescu, B. Nath. DV based Positioning in Ad hoc Networks [J]. Journal of Telecommunication Systems,2003,22(1-4):267-280.
    [47]Chong Liu, Kui Wu, Tian He. Sensor Localization with Ring Overlapping Based on Comparison of Received Signal Strength Indicator[C]. IEEE International Conference on Mobile Ad-hoc and Sensor Systems,2004:516-518.
    [48]蒋小兰,邓平.无需测距的WSN节点自定位算法研究[D].西南交通大学硕士毕业论文,2007.
    [49]N. Bulusu, D. Estrin, J. Heidemann. Tradeoffs in Location Support Systems:The case for quality-expressive location models for applications[C]. Proceedings of the Workshop on Location Modeling for Ubiquitous Computing, Atlanta, Georgia,2001:7-12.
    [50]S.H. Cho, A.P. Chandrakasan. Energy Efficient Protocols for Low Duty Cycle Wireless Microsensor Networks[C]. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing,2001,4:2041-2044.
    [51]A. Cerpa, J. Elson, M. Hamilton, et al. Habitat Monitoring:Application Driver for Wireless Communications Technology[C]. ACM SIGCOMM on Data Communications in Latin America and the Caribbean,2001,31:20-41.
    [52]D. Ganesan, B. Krishnamachari, A. Woo, et al. Complex Behavior at Scale:An Experimental Study of Low-Power Wireless Sensor Networks [R]. Technical Report, Los Angeles:UCLA CS, 2002.
    [53]A. Woo, T. Tong, D. Culler. Taming the Underlying Challenges of Reliable Multihop Routing in Sensor Networks[C]. Proceedings of the 1st ACM Conference on Embedded Networked Sensor Systems, Los Angeles,2003:14-27.
    [54]Y.J. Zhao, R. Govindan. Understanding Packet Delivery Performance in Dense Wireless Sensor Network[C]. Proceedings of the first International Conference on Embedded Networked Sensor Systems,2003:1-13.
    [55]Gang Zhou, Tian He, Sudha Krishnamurthy, et al. Impact of Radio Irregularity on Wireless Sensor Networks[C]. International Conference on Mobile System, Application and Services, 2004:125-138.
    [56]L.X. Hu, D. Evans. Localization for Mobile Sensor Networks [C]. Proceedings of the 10th annual International Conference on Mobile Computing and Cetworking, Philadelphia: Association for Computing Machinery,2004:45-57.
    [57]J.P. Sheu, P.C. Chen, C.S. Hsu. A Distributed Localization Scheme for Wireless Sensor Networks with Improved Grid-Scan and Vector-Based Refinement [J]. IEEE Transactions on Mobile Computing,2008,7(9):1110-1123.
    [58]刘玉恒,薄菊华,郝阳等.无线传感器网络三维自身定位方法[J].北京航空航天大学学报,2008,34(6):647-651.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700