用户名: 密码: 验证码:
旋流燃烧器中浓淡气固两相流的数值模拟及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源与环境是制约人类发展的重要问题,而锅炉作为能源行业应用最广泛的燃烧设备,其运行状态的良好是对经济效益和安全最基本的保障。燃烧器是锅炉取得高燃烧效率的主要设备。在过去的几十年里,许多科学家和工程技术人员都对这项领域进行了大量的研究,研发出了不同类型的燃烧器。其中浓淡燃烧器作为燃烧效率最高的燃烧器在能源行业得到了最广泛的应用。本文先通过数值模拟的方法来得到浓淡旋流燃烧器出口的气固相分布,并通过实验方法来进行对比研究。同时阐述了一种新型的测量方法(光学波动法)测量浓度和粒径分布的原理,并在试验条件下利用光学波动法对浓淡燃烧器的气固两相流动特性进行测量。
     本文通过搭建冷模试验台架,研究一次风弯头以及不同挡板对燃烧器出口浓淡分布的影响。并在不同工况下对旋流燃烧器出口的气固两相流的扩散特性进行了研究。在试验中主要进行了以下工作:
     按照冷态模化的基本原理对1:2的旋流燃烧器进行模化计算,确定了模化工况。通过Fluent软件对燃烧器出口的气相流场和气固相分布进行模拟。
     按照要求搭建试验台架后,在一次风管道内使用滑石粉对管道中煤粉运动情况进行模拟。并通过在一次风弯头增加月牙形挡块和三角形挡块来研究弯头和挡块对燃烧器出口浓淡分布的影响。
     按照冷态模化的原理对1:4的浓淡旋流燃烧器进行模化计算和试验台架设计,先在不带粉的情况下进行气相流场测量试验,使用毕托管和热线风速仪等得到了旋流燃烧器出口的回流区速度分布,为以后的气固两相研究奠定了基础。
     通过试验台架的给粉循环系统,应用光学波动法对旋流燃烧器出口的气固两相流的浓淡分布及扩散特性进行测量,得到不同工况下燃烧器出口的浓度分布图,以此来分析不同工况下旋流燃烧器出口的气固两相的扩散特性。
Energy and environment are important issues of human development constraints, and as the most widely used combustion equipment of the energy industry, the well running boiler state is the guarantee for economic benefits and safety. Among the boiler equipments, burner is major equipment for high combustion efficiency. In the past few decades, many scientists and engineers have done a lot of research for this area and developed a different burner. And rich-lean burner as the most efficient burner in the energy industry has been most widely used. This article studies the gas-solid distribution of the outlet of rich-lean swirl burner firstly by numerical simulation method, compared with experimental method. The article also describes the principle of laser wave method, a new meaning method. A new measuring method: laser wave method, and then researches on the characteristics of gas-solid flow of rich-lean burner under the experimental conditions.
     Through constructing cold model test bench, the text makes a research on the diffusion characteristics of the gas-solid distribution of the out let of swirl burner. In the experiment mainly for the following work:
     1) In accordance with the principles of Cold Modeling, the 12 model of the swirl burner were designed modeling to determine the mode chemical conditions. Using fluent software the text simulates the gas phase flow field and the gas-solid distribution of the burner outlet.
     2) After constructing the test bench as required, the experiment stimulates the movement of coal in the use of talc to the pipe in the primary air duct. At the same time, to study the influence of the elbow and the block on the concentration distribution of the burner outlet, the crescent block and the triangle block are added in the elbow of first wind.
     3) According to the principles of Cold Modeling, the article modeling designs the 1:4 rich-lean swirl burner and plans the test bench, performs measurement of gas flow field test in the case without powder and gets the result of the speed of recirculation zone of the outlet of the whirl burner by the use of piton tube and hot wire anemometer., all of which lays the foundation for the future of gas-solid study.
     4) Through the powder circulatory system set up by the test bench, the experiment measures the concentration distribution and diffusion characteristics of gas-solid distribution of the swirl burner outlet by the application of laser wave method, obtaining the chart of the concentration and size distribution of the burner outlet under different conditions. And then the article also analyses the diffusion characteristics of the gas-solid distribution of the whirl burner outer in the different situation.
引文
[1]濮洪九,洁净煤技术产业化与我国能源结构优化[J],煤炭学报,2002.(1),1-5
    [2]冯俊凯、毛建雄,煤燃烧技术发展前景预测[J],动力工程,1990(6),20-28
    [3]周强泰,锅炉原理[M],中国电力出版社,2009
    [4]周樟华,浓淡气固两相射流扩散规律研究和炉内防结渣技术[D],浙江大学硕士论文,2006
    [5]林春雷、刘爱国,锅炉经济运行研究[J],中小企业管理与科技,2010(9),20-28
    [6]Cai XinCun、Fu wenhua、Lin shubiao、Wu weihong、Du pei、Li pengxiang, The Study for the Wind Speed Character of the Non-bend Board Horizontal Impingement Dense-weak Firing Burner [J], Boiler Technology,2007(3),38-42
    [7]周樟华、周昊、李建中、王子兴、岑可法,撞击式浓淡气固两相流射流的扩散特性[J],动力工程,2006(3),311-315
    [8]方朔、侯玉波,直吹式制粉系统煤粉等速取样方法[J],贵州电力技术,2009(12),19-21
    [9]Fan Jingyu Xu Songli Wwang Daozeng, PDA measurements of two-phase flow structure and particle dispersion for a particle-laden jet in cross flow[J], Journal Of Hydrodynamics,2010(1),9-18
    [10]Yong Yan, Mass flow measurement of bulk solids in pneumatic pipelines[J].Measurement Science and Technology,1996 (7),1687-1760
    [11]Hu Hongli, Zhou Qulan, Xu Tongmo, Hui Shi, Zhao Qinxin, Tan Houzhang, Capacitance-based system for solid concentration measurement in gas/solid two-phase flow [J], Chinese Journal of Scientific Instrument,2007 (28), 1947-1950
    [12]Luo zi, Wu Qian, Wang Tiefeng, Han mei, Yu Wei, Sha Zuo-liang, Wang Jin-fu, Measurement of Liquid Circulation Velocity and Gas Holdup in a System at High Solid Concentration with an Electric Conductivity Probe [J], Chinese Journal of Process Engineering,2008 (8),833-939
    [13]杨坤平,张元,陈学堂,陈得民,微波自动测量系统的研究[J],计算机技术与发展,2009(2),234-239
    [14]许苓安,多相流相关流量测量技术[M],天津大学出版社,1998
    [15]孙学信,燃煤锅炉燃烧试验技术与方法[M],北京:中国电力出版社,2002
    [16]张忠进、金文桂,热线法的发展和应用[J],吉林工业大学学报,1989(2),134-140
    [17]张朴、孔力,一种气动传输粉体质量测量方法[J],华中科技大学学报:自然科学版,20018(29),47-49
    [18]吴开华、杨冠玲、何振江、黄佐华、罗均宏、吴春龙,激光散射法测量微粒粒径分布[J],广州环境科学,19993(14),33-34
    [19]郑刚、蔡小舒、卫敬明,消光法测量微粒尺寸的测量下限的研究[J]。仪器仪表学报,1998,19(5):504—507
    [20]谢敬辉,赵达尊,闫吉祥,物理光学教程[M],北京理工大学出版社,2005
    [21]庄慧颖,旋流燃烧器与直流燃烧器的特点比较及发展前景[J],中国电力,19982(31),35-37
    [22]Mitsubishi Jukogyo Kabushiki Kaisha, Pulverized Coal Combustion Burner[Z], U.S. Patent NO.6116171,2000
    [23]陈世英、刘贵苏,美国CE—WR型燃烧器混合特性的研究[J],动力工程,19954(15),32-36
    [24]The Babcock & Wilcox Company, Pulverized Coal Burner[Z], U.S. Patent No.5829369,1997
    [25]Hitachi, Ltd, Babcock-Hitachi Kabushiki, Low NOx Burner [Z], U.S. Patent NO. 4907962,1990
    [26]周俊虎、赵玉晓、刘建忠、杨卫娟、周志军、岑可法,低NOx煤粉燃烧器技术的研究进展与前景展望[J],热力发电,2005(8),1-6
    [27]Ishikawajima-Harima Jukogyo Kabushiki Kaisha, Pulverized Coal burner device[Z], U.S. Patent NO.4702180,1987
    [28]邵杰.新型低NOx旋流燃烧器冷态模拟实验研究与数值模拟[D].硕士学位 论文,浙江大学,2008
    [29]Foster Wheeler Energy Corporation, Controlled Flow, Split Stream Burner Assembly, U.S. Patent NO.4400151,1983
    [30]Ansaldo Energia S.p.A, Three Stage Low NOx Burner for burning So lid [Z], Liquid and Gaseous Fuels, U.S. Patent NO.5823764,1998
    [31]范少卿,郭富昌,物理光学[M],北京理工大学出版社,1990
    [32]施卫平,祖迎庆,用格子Boltzmann方法数值模拟混合层中旋涡的合并过程[J],计算力学学报,20064(23),397-400
    [33]曾涛,张祥,黄卫星,气固湍动流态化技术的研究进展[J],机械设计与制造,2010(7),262-264
    [34]李海青等,两相流参数检测及应用[M],浙江大学出版社,1991
    [35]周昊,孙国俊,郑立刚,岑可法,带有侧边风的气固两相射流混合特性的实验研究[J],中国电机工程学报,2003(08),187-190
    [36]张端,一次风煤粉浓度在线监测系统的设计[D],华北电力大学硕士论文,2004
    [37]Yorg Yan, Mass flow measurement of bulk solids in pneumatic pipelines[J], Measurement Science and Technology,1996, (7),1687-1760
    [38]肖斌,电容层析成像的两相流仿真和算法研究[D],中国科学院院研究生院硕士论文,2003
    [39]李洪涛、阎维平、叶学民、雷泳、李加护、李钧,自吸式飞灰等速取样枪的气体动力学分析[J],热力发电,2006(3),19-22
    [40]Tripta Thakura, S.G. Deshmukhb, S.C. Kaushika, MukulKulshrestha, Impact assessment of the Electricity Act 2003 on the Indian power sector[J], Energy Policy 33 (2005) 1187 1198
    [41]樊泉桂、李江、柴宝芬,微波测量技术在电厂的应用[J],华北电力技术,1997(6),46-53
    [42]Yutan Inouye, Hiroshige Koura, Hideki Murayama, Masanori Airtime, Michitsu Mori, A study of ultrasonic propagation for ultrasonic flow rate measurement[J], Science Direct,2008(19),223-232
    [43]W.F.J. SLIJKERMAN AND J.P. HOFMAN, Determination of surface relativity from nor diffusion measurements[J], Magnetic Resonance Imaging, vol 16 541-544,
    [44]杜黎龙,射流和管内气固多相流测量研究[D],浙江大学硕士论文,2003
    [45]Zhengliang Liu a, Ying Zheng, Lufei Jia, Qikai Zhang, An experimental method of examining three-dimensional swirling flow in gas cyclones by 2D-PIV[J], Chemical Engineering Journal 133 (2007) 247-256
    [46]Ding Song、Lihui peng、Geng Lu、Shiyuan Yang、Yorg Yan, Velocity measurement of pneumatically conveyed particles through digital imaging[J], Sensors and Actuators A 149 (2009) 180 188
    [47]Qi Xin, Hou Zhi Ling, Tian Jian Long, Yu Zhu, The rapid determination of fat and protein content in fresh raw milk using the laser light scattering technology[J], Optics and Lasers in Engineering,44(2006),858 869
    [48]Jiang-Cheng Wang, A novel optical microscope laser light scattering system[J], Optics Communications,155 1998,236-240
    [49]Renate Dows and Barry Saltzman, Advance in Geophysics[D], Academia Press, 1993
    [50]张玉民、威伯云,电磁学[M],科学出版社,2007
    [51]吴伟亮、蔡小舒、王乃宁、尉士民,近场接收时颗粒的消光特性[J],光学学报,20002(20),252-256
    [52]周洁,基于光学波动法和相关原理的颗粒测量及多波长火焰温度分析[D],浙江大学硕士论文,2001
    [53]郑刚,蔡小舒,卫敬明,消光法测量微粒尺寸的测量下限的研究[J]。仪器仪表学报,1998,19(5):504-507
    [54]张雪、丁艳军、郑康捷、吴占松,基于多信息融合的旋流燃烧器燃烧状态评价[J],中国电机工程学报,Vol.30 No.2 Jan.15,2010,23-30
    [55]周昊.大型电站锅炉氮氧化物控制和燃烧优化中若干关键性问题的研究[D].浙江大学博士论文,2004.
    [56]岑可法,锅炉燃烧试验研究方法及测量技术[M],水利电力出版社,1982
    [57]林阿彪、方月兰,旋流燃烧器空气动力场的数值模拟[J],东北电力技术,2007(8),5-8
    [58]李国能,任涛,哈尔滨锅炉厂旋流燃烧器模拟数值报告[Z],浙江大学热能所,2009
    [59]Hu Weihua, Simulation of Flow Around Multi-Circular-Cylinders Based on Fluent[J], Science of Technology,2010(24),74-78
    [60]Likun Huang, ZhengqiLi, RuiSun, Jue Zhou, Numerical study on the effect of the Over-Fire-Air to the air flow and coal combustion in a 670 t/h wall-fired boiler[J], Fuel Processing Technology 87 (2006) 363-371
    [61]LF-1001激光颗粒测量仪使用说明书[Z],上海理工大学动力学院,1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700