用户名: 密码: 验证码:
A_2BO_4(B=Cu,Mn)型复合氧化物的电化学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池(SOFC)由于具有能量转换率高、燃料可选范围广、不需用贵金属催化剂以及全固态结构带来的操作方便等优点而被认为是一种很有发展前途的燃料电池。目前,降低操作温度,开发中低温(500~800oC)固体氧化物燃料电池成为SOFC发展方向。但操作温度降低,电极的极化损失增加,因此开发中低温高性能电极材料具有重要意义。A2BO4型复合氧化物具有合适的热膨胀系数,能较好地与CGO、LSGM等中温SOFC的电解质材料相匹配,在600~800 oC的中温范围内具有比LSCF体系更优良的氧表面交换性能和氧离子迁移能力,很有希望成为中温SOFC的新型阴极材料。
     本论文采用甘氨酸-硝酸盐法合成了A2BO4型Cu系复合氧化物Ln2-xCexCuO4(Ln=La,Nd,Sm)阴极材料。利用XRD对其物相及热化学稳定性进行了表征。结果表明Ce在La2CuO4中的最大固溶度低于3%,而在Nd2CuO4和Sm2CuO4中的最大固溶度为20%。Ln2-xCexCuO4与电解质材料CGO在1100 oC空气气氛下进行混合烧结,未生成杂相,表现出良好的化学稳定性。考察了电极烧结温度对电极的微观结构和电化学性能的影响,发现在1000oC空气中烧结得到的电极与CGO电解质可形成良好的接触界面,电极表面形成均匀的多孔结构,粒子之间相互连接紧密。Ce4+离子的掺杂提高材料的电导率,Nd2-xCexCuO4和Sm2-xCexCuO4材料在中温区(500~750 oC)空气气氛下的电导率均超过60 S/cm。对阴极极化性能的研究结果表明,Sm2-xCexCuO4体系具有较高的阴极催化活性。其中当Ce掺杂量为0.2时,电极Sm1.8Ce0.2CuO4的极化电阻最小,750oC的极化电阻为0.37Ω.cm2。利用在不同氧分压条件下测试阴极的电化学性能来研究电极反应的动力学过程,从而确定电极反应速率控制步骤。由不同温度下极化电阻与氧分压的关系发现,Sm1.8Ce0.2CuO4电极反应主要存在三个过程,氧离子从TPB界面向电解质的转移过程、电极上发生的电荷转移过程以及氧的解离与吸附过程,其中电极反应速率控制步骤为电极上发生的电荷转移反应。
     在Cu系阴极材料中选择性能最好的Sm1.8Ce0.2CuO4(SCC)材料,进行了SCC-CGO和SCC-Ag复合阴极性能的研究,以期进一步提高阴极性能。系统地考察了CGO和Ag复合量对电极电化学性能的影响。结果表明,CGO含量为5%的复合电极性能最好,750oC的极化电阻为0.17Ω.cm2。CGO的掺入有效地改善了电极和电解质的结合程度,降低了界面极化电阻。同时,阴极极化现象也得到了较大改善,750oC时,极化过电位为30 mV时的电流密度约为150 mA.cm-2。Ag的加入同样提高了电极的电化学性能,当Ag掺杂量为5%时,电极极化电阻最小。空气中750oC测试得到复合电极的极化电阻约为0.18Ω.cm2。
     本文进一步制备并研究了Mn系A2BO4型阴极材料的电化学性能,考察了材料组成对其电化学性能的影响。结果表明,该材料在1100oC空气中与CGO电解质具有良好的化学相容性。A位阳离子缺位型Mn系氧化物具有较好的阴极性能。Sr1.5La0.35MnO4阴极在750 oC的极化电阻最小,为0.25Ω. cm2,这一数值与A位整比型的Sr2-xLaxMnO4阴极材料相比有了较大的降低。电极反应机理研究表明,在不同的温度和氧分压下,电极反应有着不同的速率控制步骤。
Solid Oxide Fuel Cells (SOFC) was considered as a promising fuel cell because of its higher energy efficiency, rapid electrode kinetics without using expensive electrocatalysts such as Pt, the possibility of processing CO, CH4 and other Carbon based fuels, and flexibility to stacks of cells. Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs) become a leading trend for development of SOFC. However, lowering the temperature leads to the increasing of electrode polarization loss. So it is important to research and explore electrode materials with high performance to meet the requirement of IT-SOFCs. A2BO4 type oxide materials exhibited suitable thermal expansion coefficient (TEC), which can match reasonably well with the CGO or LSGM electrolyte materials. And in the temperature range of 600~800oC, this material showed higher oxygen diffusion and surface exchange coefficients than the traditional LSCF system. All these results imply that A2BO4 type oxide is a kind of promising cathode materials for IT-SOFCs.
     In this thesis, cathode materials Ln2-xCexCuO4(Ln=La,Nd,Sm) for IT-SOFCs were prepared by glycine-nitrate process (GNP). The chemical compatibility of the electrode and electrolyte at high temperature and effects of the sintering temperature on the microstructure and electrochemical properties were investigated, respectively. The results showed that maximum solubility of Ce in the La2-xCexCuO4 is 3% and the maximum solubility of Ce in the Nd2-xCexCuO4 and Sm2-xCexCuO4 is 20%. The electrode materials and the electrolyte CGO have good chemical compatibility at 1050 oC. The microstructure of the electrode sintered at 1000oC showed a structure with reasonable porosity and well-necked particles. The good adhesion between electrode and electrolyte is also observed. The doping of Ce increased the conductivity of these materials. The conductivities of Nd2-xCexCuO4 and Sm2-xCexCuO4 exceed 60 S/cm in the intermediate temperature range of 500~750oC. Sm2-xCexCuO4 system exhibited the highest performance. When the doping content of Ce is 20%, the electrode gave the lowest polarization resistance (0.37Ω.cm2) at 750 oC in air. Oxygen partial pressure effect experiments have been performed to study the mechanism of the reaction occurred on the electrode. We have studied variations of the electrode polarization resistance with temperatures and oxygen partial pressures, respectively. The results showed that the possible rate limiting step for cathode reaction depends on the charge transfer process, oxygen adsorption-desorption process and oxygen ion transfer from the TPB to the CGO electrolyte process. The rate limiting step for Sm1.8Ce0.2CuO4 cathode is the charge transfer process.
     In order to improve the electrode property further, the composite cathode of Sm1.8Ce0.2CuO4-CGO (SCC-CGO) and Sm1.8Ce0.2CuO4-Ag (SCC-Ag) electrodes were studied systematically. The results showed that the addition of CGO powders into SCC electrode was effective in improving the electrode performance and the bonding of the electrode and electrolyte. The addition of 5 wt.% CGO in SCC resulted in the lowest polarization resistance of 0.17 ?.cm2 at 750 oC in air. And the polarization phenomenon of the cathode was improved simultaneously. When the current density reached 150 mA.cm-2, the over-potential is 30 mV at 750 oC in air. The SCC-Ag composite cathode also showed fine electrochemical performance. The addition of 5 wt.% Ag in SCC resulted in the lowest polarization resistance of 0.18 ?.cm2 at 750 oC in air.
     Besides, the A2BO4 type manganate cathode materials, Sr2-xLaxMnO4 and Sr1.5LaxMnO4, were also prepared. The electrochemical properties of these materials were studied as used for SOFC cathode. The results showed that Sr1.5LaxMnO4 cathode exhibited improved performance. The lowest polarization resistance (0.25 ?.cm2) was obtained for Sr1.5La0.35MnO4 at 750 oC in air. Study on the oxygen reduction mechanism of Sr1.5La0.35MnO4 electrode showed that the rate limiting step changed with the variation of temperature and PO2.
引文
[1] Grove. W. R. Gas voltaic battery. [J]. Philos. Mag., 1839, (14): 127-130.
    [2] Ostwald F. W. Die wissenschaftliche elektrochemie der gegenwart ind die technishe der zukunft (The scientific electrochemistry of the present and the technology of the future). [J]. Z. Elektrotech., 1894, (1): 122-125.
    [3] Nernst W. Uber die elektrolytische Leitung fester Korper bei sehr hohen Temperaturen (On the electrolytic conduction of solid bodies at very high temperatures). [J]. Electrochem., 1899, (6): 41-43
    [4] Baur E, Preis H. Fuel Cells with Solid Conductors. [J]. Electrochem., 1937, (43): 727-732.
    [5] Adams A. M., Bacon F. T., Waston R.G. H., Fuel Cells, W. Metchell eds, Academic Press, NY: 1963.
    [6]韩敏芳,彭苏萍.固体氧化物燃料电池材料及制备[M].北京:科学出版社,2004. 3-4.
    [7]林维明,马紫峰,《燃料电池系统》,北京:化学工业出版社,1996. 8-12.
    [8] Minh N.Q., Takahashi T., Science and technology of ceramic fuel cells. Elsevier Science B. V., Amsterdam, The Netherlands, 1995.
    [9]李瑛,王林山.燃料电池[M].北京:冶金工业出版社,2000. 2-4.
    [10]衣宝廉.燃料电池—高效、环境友好的发电方式[M].北京:化学工业出版社,2000. 18-19.
    [11]黄镇江,刘凤军.燃料电池及其应用[M].电子工业出版社,2005. 8.
    [12] Skinner S. J., Recent advances in Perovskite -Type materials for solid oxide fuel cell cathodes. [J]. International Journal of Inorganic Materials, 2001, (3): 113-121.
    [13] Singhal S.C., Solid oxide fuel cells for stationary, mobile, and military applications. [J]. Solid State Ionics, 2002, (152-153): 405-410.
    [14] Tu H.Y., Stinning U., Advances, aging mechanisms and lifetime in solid oxide fuel cells [J]. J. Power Sources., 2004, (127): 284-293.
    [15] Singhal S.C., Advances in solid oxide fuel cell technology. [J]. Solid State Ionics, 2000, (135): 305-313.
    [16] Hashimoto N., The practice of fuel cells Global SOFC activities and evaluation programmes. [J]. J. Power Source, 1994, (49), 103-114.
    [17] Isenberg A.O., Energy conversion via solid oxide electrolyte electrochemical cells at high temperatures. [J]. Solid State Ionics, 1981, (3–4): 431–437.
    [18] Guan J., Dorris S.E., Balachandran U., Liu M., Transport properties of BaCe0. 95Y0.05O3-δmixed conductors for hydrogen separation. [J]. Solid State Ionics, 1997, (100): 45-52.
    [19] Matsumoto K., Rippel R., A new approach to fuel cell investment strategy. [J]. J. Power Sources, 1998, (71): 75-79.
    [20]江义.固体氧化物燃料电池最新发展动态.电化学, 1998, (4): 353-354.
    [21] Hatchwell C., Sammes N.M., Brown I.W.M. Fabrication and properties of Ce0.8Gd0.2O1.9electrolyte based tubular solid oxide fuel cells. [J]. Solid State Ionics, 1999, (126): 201-208.
    [22] George A. R., Bessette N. F. Reducing the manufacturing cost of tubular solid oxide fuel cell technology.[J] J. Power Sources, 1998, (71): 131-137.
    [21] Yokokawa H., Sakai N., Horita T., Yamaji K. Recent development in solid oxide fuel cell materials. [J]. Fuel cells, 2001, (1): 117-131.
    [20] Matsumoto K., Rippel R., A new approach to fuel cell investment strategy. [J]. J. Power Sources, 1998, (71): 75-79.
    [21] Hatchwell C., Sammes N.M., Brown I.W.M. Fabrication and properties of Ce0.8Gd0.2O1.9electrolyte based tubular solid oxide fuel cells. [J]. Solid State Ionics, 1999, (126): 201-208.
    [22] George A. R., Bessette N. F. Reducing the manufacturing cost of tubular solidoxide fuel cell technology.[J] J. Power Sources, 1998, (71): 131-137.
    [23] Patcharavorachot Y., Arpornwichanop A., Chuachuensuk A. Electrochemical study of a planar solid oxide fuel cell: Role of support structures. [J]. J. Power Sources, 2008, (177): 254-261.
    [24] Skinner S. J., Recent advances in Perovskite -Type materials for solid oxide fuel cell cathodes. [J]. International Journal of Inorganic Materials, 2001, (3): 113-121.
    [25] Hideaki I., Tagawa H. Ceria-based solid electrolytes. [J]. Solid State Ionics, 1996, (83): 1-16.
    [26] Huang W., Shuk P., Greenblat M. Hygrathermal synthesis and properties of Ce1-xSmxO2-x/2 and Ce1-xCaxO2-x solid solutions. [J]. Chem. Mater., 1997, (9): 2240-2245.
    [27] Kharton V.V., Fiquejredo F.M., Navarro. L. Ceria-based materials for solid oxide fuel cells. [J]. Journal of marerials for solid oxide fuel cells, 2001, (36): 1105-1117.
    [28] Zhu B., Functional ceria-salt-composite materials for advanced IT-SOFC applications. [J]. J. Power Sources, 2003, (114): 1-5.
    [29] Foschini C.R., Souza P.F., Paulin F.I., AC impedance study of Ni, Fe, Cu, Mn ceria stabilized zirconia ceramics. [J]. J. Euro. Ceram. Soc., 2001, (21): 1143-1150.
    [30] Sammes N.M., Tompsett G.A., Nafe H., Aldinger F. Bismuth based oxide electrolytes-structure and ionic conductivity. [J]. J. Euro. Ceram. Soc., 1999, (19): 1801-1826.
    [31] Subasri R., Mallika C., Mathews T., Sastry V.S., Sreedharan O.M. Solubility studies, thermodynamics and electrical conductivity in the Th1-xSrxO2 system. [J]. J. Nuc. Mater., 2003, (312): 249-256.
    [32] Zhuiykov S. An investigation of conductivity, microstructure and stability of HfO2-ZrO2-Y2O3-Al2O3 electrolyte compositions for high-temperature oxygen measurement. [J]. J. Euro. Ceram. Soc., 2000, (20): 967-976.
    [33] Simwoins D., Tietz F., Stover D. Nickel coarsening in annealed Ni/8YSZ anodesubsreates for solid oxide fuel cells. [J]. Solid State Ionics, 2000, (132): 241-251.
    [34] Xia C., Liu M. Low-temperature SOFCs based on Gd0.1Ce0.9O1.95 fabricated by dry pressing. [J]. Solid State Ionics, 2001, (144): 249-255.
    [35] Lee J.H., Kim J., Kim S., Lee H.W., Song H.S. Characterization of the electrical properties of Y2O3-doped CeO2-rich CeO2-ZrO2 solid solutions. [J]. Solid State Ionics, 2004, (166): 45-52.
    [36] Ishihara T., Matsuda H., Takita Y. Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor. [J]. J. Am. Chem. Soc., 1994, (116): 3801-3803.
    [37] Fukui T., Ohara S., Murata L., Performance of intermediate temperature solid oxide fuel cells with La(Sr)Ga(Mg)O3 electrolyte film. [J]. J. Power Sources, 2002, (106): 142-145.
    [38] Huang K., John B. A solid oxide fuel cell based on Sr and Mg doped LaGaO3 electrolyte: the role of a rare-earth oxide buffer. [J] J. Alloys and Compounds, 2000, (303-304): 454-464.
    [39] Zhenga F., Bordiaa R.K., Pederson L.R. Phase constitution in Sr and Mg doped LaGaO3 system. [J]. Mater. Res. Bull., 2004, (39): 141-155.
    [40] Yamaji K., Horita T., Ishikawa M. Compatibility of La0.9Sr0.1Ga0.8Mg0.2O2.85 as the electrolyte for SOFCs. [J]. Solid State Ionics, 1998, (108): 415-421.
    [41] Singhal S.C. Advances in solid oxide fuel cell technology. [J]. Solid State Ionics, 2000, (135): 305-313.
    [42] Marina O.A., Mofensen M. High-temperature conversion of methane on a composite gadolinia-doped ceria-gold electrode. [J]. Applied Catalysis A: General, 1999, (189):117-126.
    [43] Park S.D., Vorhs J.M., Gorte R.J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell. [J]. Nature, 2000, (404): 265-267.
    [44] Steele B.C.H. Survey of materials selection for ceramic cells. [J]. Solid State Ionics, 1996, (86-88): 1223-1234.
    [45] Lee C.H., Lee C.H., Lee H.Y., Oh S.M. Microstructure and anodic properties of Ni/YSZ cermets in solid oxide fuel cells. [J]. Solid State Ionics, 1997, (98): 39-48.
    [46] Kuhn J.N., Lakshminarayanan N., Ozkan U.S. Effect of hydrogen sulfide on the catalytic activity of Ni-YSZ cermets. [J]. J. Molecular Catalysis A: Chemical, 2008, (282):9-21.
    [47] Skarmoutsos D., Tsoga A., Naoumidis A., Nikolopoulos P. 5mol% TiO2-doped Ni-YSZ anode cermets for solid oxide fuel cells. [J]. Solid State Ionics, 2000, (135): 439-444.
    [48] Mori M., Hier Y., Itoh H., Tompsett G.A., Sammes N.M. Evaluation of Ni and Ti-doped Y2O3 stabilized ZrO2 cemet as an anode in high-temperature solid oxide fuel cells. [J]. Solid State Ionics, 2003, (160): 1-14.
    [49] Jung S.J., Lu C., He H.P., Ahn K., Gorte R.J., Vohs J.M. Influence of composition and Cu impregnation method on the performance of Cu/CeO2/YSZ SOFC anodes. [J]. J. Power Sources, 2006, (154): 42-50.
    [50] Olga C.N., Raymond J.G., Vohs J.M. Comparison of the performance of Cu–CeO2–YSZ and Ni–YSZ composite SOFC anodes with H2, CO, and syngas. [J]. J. Power Sources, 2005, (141): 241-249.
    [51] Han K.R., Jeong Y.J., Lee H.W., Kim C.S. Fabrication of NiO/YSZ anode material for SOFC via mixed NiO precursors. [J]. Mater. Lett., 2007, (61): 1242-1245.
    [52] Hornés A., Gamarra D., Munuera G., Conesa J.C. and Martínez-Arias A. Catalytic properties of monometallic copper and bimetallic copper-nickel systems combined with ceria and Ce-X (X = Gd, Tb) mixed oxides applicable as SOFC anodes for direct oxidation of methane. [J]. J. Power Sources, 2007, (169): 9-16.
    [53] Sfeir J. LaCrO3-based anodes: stability considerations. [J]. J. Power Sources, 2003, (118): 276-285.
    [54] Huang X.L., Zhao H.L., Qiu W.H., Wu W.J., Li X. Performances of planar solid oxide fuel cells with doped strontium titanate as anode materials. [J]. EnergyConvers. Manage., 2007, (48): 1678-1682.
    [55] Reich C.M., Kaiser A., Tuller H.L. Conduction in titanate pyrochlores: role of dopants. [J]. Solid State Ionics, 1994, (72): 59-66.
    [56] Hui S.Q., Petric A. Conductivity and stability of SrVO3 and mixed perovskites at low oxygen partial pressures. [J]. Solid State Ionics, 2001, (143): 275-283.
    [57] Duran P., Tartaj J., Capel F., Moure C. Formation, sintering and thermal expansion behaviour of Sr- and Mg-doped LaCrO3 as SOFC interconnector prepared by the ethylene glycol polymerized complex solution synthesis method. [J]. J. European Ceram. Soc., 2004, (24): 2619-2629.
    [58] Kofstad P. High temperature corrosion. [J]. Elsevier Applied Science Publishing CO., INC. 1988, (23): 88.
    [59] Brylewski T., Przybylski K. Microstructure of Fe-25Cr/(La,Ca)CrO3 composite interconnector in solid oxide fuel cell operating conditions. [J]. Mater. Chem. Phys., 2003, (81): 434-437.
    [60] Jiang S.P. A comparative investigation of chromium deposition at air electrodes of solid oxide fuel cells. [J]. J. European Ceram. Soc., 2002, (22): 361-373.
    [61] M. Petitjean, G. Caboche, E. Siebert, L. Dessemond, L.-C. Dufour, J. European Ceram. Soc., 2005, (25): 2651
    [62] Lee Y K., Kim J. Y., Lee Y. K. Conditioning effects on La1?xSrxMnO3-yttria stabilized zirconia electrodes for thin-film solid oxide fuel cells. [J]. J. Power Sources, 2003, (115): 219-228.
    [63] Yang C.C.T., Wei W.C.J., Roosen A. Electrical conductivity and microstructures of La0.65Sr0.3MnO3–8 mol% yttria-stabilized zirconia. [J]. Mater. Chem. Phys., 2003, (81):134-142.
    [64] Chervin C., GlassR. S., Kauzlarich S. M. Chemical degradation of La1?xSrxMnO3/Y2O3-stabilized ZrO2 composite cathodes in the presence of current collector pastes. [J]. Solid State Ionics, 2005, (176): 17-23.
    [65] Meixner D. L., Cutler R. A. Sintering and mechanical characteristics of lanthanum strontium manganite. [J]. Solid State Ionics, 2002, (146):273-284.
    [66] Meixner D. L., Cutler R. A. Low-temperature plastic deformation of a perovskite ceramic material. [J]. Solid State Ionics, 2002, (146):285-300.
    [67] Lee H.K. Electrochemical characteristics of La1?xSrxMnO3 for solid oxide fuel cell. [J]. Mater. Chem. Phys. 2003, (77): 639-646.
    [68] Taimatsu H., Wada K., Kaneko H. Machanism of reaction between lanthanum manganite and yttria-stabilized zirconia. [J]. J. Am. Ceram. Soc., 1992, (75): 401-405.
    [69] Mineshige A., Izutsu J., Nakamura M., Nigaki K., Abe J., Kobune M., Fujii S., Yazawa T. Introduction of A-site deficiency into La0.6Sr0.4Co0.2Fe0.8O3–δand its effect on structure and conductivity. [J]. Solid State Ionics, 2005, (176):1145-1149.
    [70] Qiu L., Ichikawa T., Hirano A., Imanishi N., Takeda Y. Ln1?xSrxCo1?yFeyO3?δ(Ln=Pr, Nd, Gd; x=0.2, 0.3) for the electrodes of solid oxide fuel cells. [J]. Solid State Ionics, 2003, (158):55-65.
    [71] Minh N.Q. Ceramic Fuel Cells. [J]. J. AM.Ceram. Soc., 1993, (76): 563-588.
    [72] Gong W.Q., Gopalan S. Pal U. B. Performance of intermediate temperature (600–800°C) solid oxide fuel cell based on Sr and Mg doped lanthanum-gallate electrolyte. [J]. J. Power Sources, 2006, (160): 305-315.
    [73] Qiang F, Sun K.N., Zhang N.Q., Zhu X.D., Le S.R. Zhou D.R. Characterization of electrical properties of GDC doped A-site deficient LSCF based composite cathode using impedance spectroscopy. [J]. J. Power Sources, 2007, (168): 338-345.
    [74] Simner S.P., Bonnett J.R., Canfield N.L. Development of lanthanum ferrite SOFC cathodes. [J]. J. Power Sources, 2003, (113): 1-10.
    [75] Wang W.G., Mogensen M. High-performance lanthanum-ferrite-based cathode for SOFC. [J]. Solid State Ionics, 2005, (176):457-462.
    [76] Leng Y.J., Chan S.H., Jiang S.P. Low-temperature SOFC with thin film GDCelectrolyte prepared in situ by solid-state reaction. [J]. Solid State Ionics, 2004, (170):9-15.
    [77] Inagaki T., Miura K., Yoshida H. High-performance electrodes for reduced temperature solid oxide fuel cells with doped lanthanum gallate electrolyte: II. La(Sr)CoO3 cathode. [J]. J. of Power Sources, 2000, (86): 347-351.
    [78] Raj I.A., Nesaraj A.S., Kumar M. On the suitability of La0.60Sr0.40Co0.20Fe0.80O3 cathode for the intermediate temperature solid oxide fuel cell. [J]. Journal of New Materials for Electrochemical Systems, 2004, (7):145-151.
    [79] Xia C.R., Rauch W., Chen F.L., Liu M.L. Sm0.5Sr0.5CoO3 cathodes for low-temperature SOFCs. [J]. Solid State Ionics, 2002, (149):11-19.
    [80] Fukunaga H., Koyama M., Takahashi N. Reaction model of dense Sm0.5Sr0.5CoO3 as SOFC cathode. [J]. Solid State Ionics, 2000, (132):279-285.
    [81] Liu Y., Rauch W., Zha S.W. Fabrication of Sm0.5Sr0.5CoO3?δ?Sm0.1Ce0.9O2?δcathodes for solid oxide fuel cells using combustion CVD. [J]. Solid State Ionics, 2004, (166):261-268.
    [82] Wang S., Liu X. Preparation and Characterization of High Performance Sm0.5Sr0.5CoO3 Cathodes. [J]. Acta Phys.-Chim. Sinica, 2004, (20):391-395.
    [83] Wang S., Liu X. Kinetics of Oxygen Reduction over Sm0.5Sr0.5CoO3 Cathode. [J]. Acta Phys.-Chim. Sinica, 2004, (20):472-477.
    [84] Teraoka Y., Zhang H.M., Okamoto K. Mixed ionic-electronic conductivity of La-1-xSrxCo1-xFeyO3 perovskite-type oxides. [J]. Mater. Res. Bull., 1998, (23): 51-58.
    [85]王世忠,刘璇.高性能Sm0.5Sr0.5CoO3阴极的制备与表征,物理化学学报,2004,(4): 391-395.
    [86] Lou H., Ge Y. P., Chen P., Mei M. H., Ma F. T., Lu G. L. Preparation, crystal structure, and reducibility of K2NiF4 type oxides Sm2?xSrxNiO4.[J] J. Mater. Chem., 1997, (7): 2097-2101.
    [87] Mark S. D., Islam M. S., Watson G. W., Hancock F. E. Surface structures and defectproperties of pure and doped La2NiO4. [J]. J. Mater. Chem., 2001, (11): 2597-2602.
    [88] Bannikov D.O., Safronov A.P., Cherepanov V.A. Thermochemical characteristics of Lan+1NinO3n+1 oxides. [J]. Thermochimica Acta, 2006, (451): 22-26.
    [89] Guo C.L., Zhang X.L., Zhang J.L., Wang Y.P. Preparation of La2NiO4 catalyst and catalytic performance for partial oxidation of methane. [J]. Mater. Lett., 2007, (61): 2749-2752.
    [90] Freeman P.G., Hayden S.M., Frost C.D., Prabhakaran D., Boothroyd A.T. Magnetic excitations of charge-ordered La2NiO4.11. [J]. J. Magnetism and Magnetic Materials, 2007, (310): 760-762.
    [91] Iguchi E., Satoh H., Nakatsugawa H., Munakata F. Correlation between hopping conduction and transferred exchange interaction in La2NiO4+δbelow 300 K. [J]. Physica B: Condensed Matter, 1999, (270): 332-340.
    [92] Bannikov D.O., Cherepanov V.A. Thermodynamic properties of complex oxides in the La–Ni–O system. [J]. J. Solid State Chemistry, 2006, (179): 2721-2727.
    [93] Skinner , Kilner J. A. Oxygen diffusion and surface exchange in La2-xSrxNiO4.[J]. Solid State Ionics, 2000, (135): 709-712.
    [94] Boehm E., Bassat J. M., Steil M. C., Dordor P., Mauvya F., Grenier J. C. Oxygen transport properties of La2Ni1?xCuxO4+δmixed conducting oxides. [J]. Solid State Sci., 2003, (5): 973-981.
    [95] Kilner J. A., Shaw C. K. M. Mass transport in La2Ni1-xCoxO4+d oxides with the K2NiF4 structure. [J]. Solid State Ionics, 2002, (154): 523-527.
    [96] Boehm E., Bassat J. M., Dordor P., Mauvy F., Grenier J. C., Stevens Ph. Oxygen diffusion and transport properties in non-stoichiometric Ln2-xNiO4+d oxides. [J]. Solid State Ionics, 2005, (176): 2717-2725.
    [97] Daroukha M. A., Vashooka V.V., Ullmanna H., Tietzb F., Raj I. A. Oxides of the AMO3 and A2MO4-type: structural stability, electrical conductivity and thermal expansion. [J]. Solid State Ionics, 2003, (158): 141-150.
    [98] Vashook V. V., Girdauskaite E., Zosel J., Wen T. L., Ullmann H., Guth U. Oxygen non-stoichiometry and electrical conductivity of Pr2?xSrxNiO4±δwith x=0-0.5. [J]. Solid State Ionics, 2006, (177): 1163-1171.
    [99] Wang Y. S., Nie H. W., Wang S. R., Wen T. L., Guth U., Valshook V. A2?x Ax/BO4-type oxides as cathode materials for IT-SOFCs (A=Pr, Sm; A/=Sr; B=Fe, Co). [J]. Mater. Lett., 2006, (60): 1174-1178.
    [100] Nie H.W., Wen T. L., Wang S. R., Wang Y. S., Guth U., Vashook V. Preparation, thermal expansion, chemical compatibility, electrical conductivity and polarization of A2?αA/αMO4 (A=Pr, Sm; A/=Sr; M=Mn, Ni;α=0.3, 0.6) as a new cathode for SOFC. [J]. Solid State Ionics, 2006, (177): 1929-1932.
    [101] Munnings C.N., Skinner S.J., Amow G., Whitfield P.S., Davidson I.J. Structure, stability and electrical properties of the La2-xSrxMnO4±δsolid solution series. [J]. Solid State Ionics, 2006, (177): 1849-1853.
    [102] Jennings A. J., Skinner S. J. Thermal stability and conduction properties of the LaxSr2-xFeO4+d system. [J]. Solid State Ionics, 2006, (152): 663-667.
    [103] Li Q., Zhao H., Huo L.H., Sun L.P., Cheng X.L., Grenier J.C. Electrode properties of Sr doped La2CuO4 as new cathode material for intermediate-temperature SOFCs. [J]. Electrochem. Comm., 2007, (9): 1508-1512.
    [104] Khartona V. V., Tsipisa E. V., Yaremchenkoa A. A., Frade J. R. Surface-limited oxygen transport and electrode properties of La2Ni0.8Cu0.2O4+d. [J]. Solid State Ionics, 2004, (166): 327-337.
    [105] Naumovich E.N., Patrakeev M.V., Kharton V.V., Yaremchenko A.A., Logvinovich D.I., Marques F.M.B. Oxygen nonstoichiometry in La2Ni(M)O4+δ(M = Cu, Co) under oxidizing conditions. [J]. Solid State Sci., 2005, (7): 1353-1362.
    [106] Mauvy F., Bassat J. M., Boehm E., Manaud J. P., Dordor P., Grenier J. C. Oxygen electrode reaction on Nd2NiO4+y cathode materials: impedance spectroscopy study. [J] Solid State Ionics, 2003, (158): 17-28.
    [107] Munnings C.N., Skinner S.J., Amow G., Whitfield P.S., Davidson I.J. Oxygen transport in the La2Ni1?xCoxO4+δsystem.[J]. Solid State Ionics, 2005, (176): 1895-1901.
    [108] Soorie M., Skinner S. J. Ce substituted Nd2CuO4 as a possible fuel cell cathode material. [J]. Solid State Ionics, 2006, (177): 2081-2086.
    [109] Li Q., Fan Y., Zhao H., Sun L.P., Huo L.H. Preparation and electrochemical properties of a Sm2-xSrxNiO4 cathode for an IT-SOFC. [J]. J. Power Sources, 2007, (167): 64-68.
    [110]李强.类钙钛矿结构中温固体氧化物燃料电池阴极材料的性能研究[D].博士论文,哈尔滨理工大学,2007.
    [111]卢自桂,江义,董永来,张义煌,阎景旺.锰酸镧和氧化钇稳定的氧化锆复合阴极的研究. [J].高等学校化学学报, 2001, (22): 791-795.
    [112] Kenjo T., Nishiya M. LaMnO3 air cathodes containing ZrO2 electrolyte for high temperature solid oxide fuel cells. [J]. Solid State Ionics, 1992, (57): 295-302.
    [113]赵辉,霍丽华,孙丽萍,高山,于丽君,赵经贵.中温固体氧化物燃料电池复合阴极材料LSM-CBO的制备及性能研究. [J].化学学报, 2004, (62): 1993-1997.
    [114] Yamahara K., Jacobson C.P., Visco S.J. Thin film SOFCs with cabalt-infiltrated cathodes. [J]. Solid State Ionics, 2005, (176): 275-279.
    [115] Murray E. P., Sever M. J., Barnett S. A. Electrochemical performance of (La,Sr)(Co,Fe)O3–(Ce,Gd)O3 composite cathodes. [J]. Solid State Ionics, 2002, (148): 27-34.
    [116] Wang W.G., Mogensen M. High-performance lanthanum-ferrite-based cathode for SOFC. [J]. Solid State Ionics, 2005, (176): 457-462.
    [117] Leng Y.J., Chan S.H., Jiang S.P. Low-temperature SOFC with thin film GDC electrolyte prepared in situ by solid state reaction. [J]. Solid State Ionics, 2004, (170): 9-15.
    [118] Esquirol A., Kilner J., Brandon N. Oxygen transport in La0.6Sr0.4Co0.2Fe0.8O3-δ/ Ce0.8Gd0.2O2-x composite cathode for IT-SOFCs. [J]. Solid State Ionics, 2004, (175): 63-67.
    [119] Sasaki K., Tamura J., Dokiya M. Noble metal alloy–Zr(Sc)O2 cermet cathode for reduced-temperature SOFCs. [J]. Solid State Ionics, 2001, (144): 233-240.
    [120] Sasaki K., Tamura J., Hosoda H., Lan T. N., Yasumoto K., Dokiya M. Pt–perovskite cermet cathode for reduced-temperature SOFCs. [J]. Solid State Ionics, 2002, (148): 551-555.
    [121] Wang S.R., Kato T., Nagata S., Honda T., Kaneko T., Iwashita N., Dokiya M. Performance of a La0.6Sr0.4Co0.8Fe0.2O3–Ce0.8Gd0.2O1.9–Ag cathode for ceria electrolyte SOFCs. [J]. Solid State Ionics, 2002, (146): 203-210.
    [122]Zhang J.D., Ji Y., Gao H.B. Composite cathode La0.6Sr0.4Co0.2Fe0.8O3-δ- Ce0.9Sm0.1O1.95-Ag for intermediate temperature solid oxide fuel cells. [J]. J. Alloys. Comp., 2005, (395): 322-325.
    [123] Huang S.G., Xia C.R., Meng G.Y.中温固体氧化物燃料电池的Ag-YSB复合阴极. [J]. Chin. J. Mater. Res., 2005, (19): 54-58.
    [124] Barbucci A., Bozzo R., Cerisola G., Costamagna P. Characterisation of composite SOFC cathodes using electrochemical impedance spectroscopy. Analysis of Pt/YSZ and LSM/YSZ electrodes. [J]. Electrochimica. Acta, 2002, (47): 2183-1295.
    [125] Hu H.X., Liu M.L. Characteristics of Pt|BaCe0.8Gd0.2O3|Pt Cells at Intermediate Temperatures. [J]. J. Electrochem. Soc., 1997, (144): 3561-3567.
    [126] Wang D., Nowick A. S. Cathodic and Anodic Polarization Phenomena at Platinum Electrodes with Doped CeO2 as Electrolyte. [J]. J. Electrochem. Soc.1979, (126): 1155-1165.
    [127] Verkerk M.J., Burggraaf A. J. Oxygen transfer on substituted ZrO2, Bi2O3, and CeO2 electrolytes with platinum electrodes . [J]. J. Electrochem. Soc., 1983, (130):78-84.
    [128] Mitterdorfer A., Gauckler L. J. Identification of the reaction mechanism of the Pt, O2(g)yttria-stabilized zirconia system: Part I: General framework, modelling, and structural investigation. [J]. Solid State Ionics, 1999, (117): 187-202.
    [129] Mitterdorfer A., Gauckler L. J. Identification of the reaction mechanism of the Pt, O2(g)yttria-stabilized zirconia system: Part II: Model implementation, parameter estimation, and validation.[J]. Solid .State Ionics, 1999, (117): 203-217.
    [130] Mitterdorfer A., Gauckler L. J. Reaction kinetics of the Pt, O2(g)c-ZrO2 system: precursor-mediated adsorption. [J]. Solid State Ionics, 1999, (120): 211-225.
    [131] Schwandt C., Weppner W. Kinetics of oxygen, platinum/stabilized zirconia and oxygen, gold/stabilized zirconia electrodes under equilibrium conditions. [J]. J. Electrochem. Soc., 1997, (144): 3728-3738. [132 ] Svensson A. M., Sunde S., Nisancioglu K. Mathematical modeling of oxygen exchange and transport in air-perovskite-YSZ interface regions. [J]. J. Electrochem. Soc., 1997, (144): 2719-2732.
    [133] Liu M. L. Equivalent circuit approximation to porous mixed-conducting oxygen electrodes in solid-state cells. [J]. J. Electrochem. Soc., 1998, (145): 142-154.
    [134] Mclntosh S., Adler S. B., Vohs J. M., Gorte R.J. The effect of polarization on and implications for characterization of LSM-YSZ composite cathodes. [J]. Electrochem. Solid State Lett., 2004. (7): A111-A114.
    [135] Yokokawa H., Sakai N., Kawada T., Dokiya M. Thermodynamic Analysis of Reaction Profiles Between LaMO3 (M=Ni,Co,Mn) and ZrO2. [J]. J. Electrochem. Soc. 1991, (138): 2719-2727.
    [136] Hassel B. A. V., Boukamp B. A., Burggraaf A. J. Oxygen transfer properties of ion-implanted yttria-stabilized zirconia [J]. Solid State Ionics 1992, (53), 890-903.
    [137] Heuveln F. H., Bouwmeester H. J. M. Electrode properties of Sr-doped LaMnO3 on yttria-stabilized zirconia. [J]. J. Electrochem. Soc.,1997, (144): 134-140.
    [138] Sasaki K., Wurth J.P., Godickemeier M.[C] Proc. 4th Inter. Symp. SOFC. Yokobamda, Japan, 1995: 625.
    [139] Heuveln F.H. V., Berkl F.P.F.V., Huijsmans J.P.P.[C]. Proc. 14th Riso Inter.Symp. Mater. Science, Roskilde, Denmark. 1993: 53.
    [140] Haart L.G. D., Kuipers R.A., Burggraaf A.J., Vries K.J.D. Deposition and electrical properties of thin porous ceramic electrode layers for solid oxide fuel cell application. [J]. J. Electrochem. Soc., 1991, (138):1970-1975.
    [141] Kenjo T., Nishiya M. LaMnO3 air cathodes containing ZrO2 electrolyte for high temperature solid oxide fuel cells.[J]. Solid State lonics, 1992, (57): 295-302.
    [142] ?stergard M. J. L., Clausen C., Bagger C., Mogensen M. Manganite-zirconia composite cathodes for SOFC: Influence of structure and composition. [J]. Electrochem. Acta, 1995, (40): 1971-1981.
    [143] Adler S. B., Lane J. A., Steele B. C. H. Electrode kinetics of porous mixed-conducting Oxygen electrodes. [J]. J. Electrochem. Soc.,1996, (143): 3554-3564.
    [144] Svensson A. M., Sunde S., Nisancioglu K. A mathematical model of the porous SOFC cathode. [J]. Solid.state Ionics, 1996, (86): 1211-1216.
    [145] Adler S. B., Lane J. A., Steele B. C. H. Electrode Properties of Sr-Doped LaMnO3 on Yttria-Stabilized Zirconia , Fundamental issues in modeling of mixed-conductors. Rebuttal to "Comment on `Electrode Kinetics of Porous Mixed-Conducting Oxygen Electrodes". [J]. J. Electrochem. Soc.,1997, (144): 1884-1890.
    [146] Zhou M., Deng H., Abeles B. Transport in mixed ionic electronic conductor solid oxide membranes with porous electrodes: Large pressure gradient. [J]. Solid State Ionics, 1996, (93):133-138.
    [147] Endo A., Wada S., Wen C.-J., Komiyama H., Yamada K. Low overvoltage mechanism of high ionic conducting cathode for solid oxide fuel cell. [J]. J.Electrochem. Soc., 1998, (145): L35-L37.
    [148] Liu M. L., Winnick J. Comment on "Electrode Kinetics of Porous Mixed-Conducting Oxygen Electrodes". [J]. J. Electrochem. Soc., 1997, (144): 1881-1884.
    [149] Liu M. L., Winnick J. Fundamental issues in modeling of mixed ionic-electronic conductors (MIECs). [J]. Solid State loraics, 1999, (118):11-21.
    [150] Liu M. L., Wu Z. Significance of interfaces in solid-state cells with porous electrodes of mixed ionic–electronic conductors. [J]. Solid State Ionics, 1998, (107): 105-110.
    [151] Svensson A. M., Sunde S., Nisancioglu K. Mathematical modeling of oxygen exchange and transport in air-perobskite-YSZ interface regions. 1. Reduction of intermediately adsorbed oxygen.[J]. J. Electrochem. Soc., 1997, (144): 2719-2732.
    [152] Svensson A. M., Sunde S., Nisancioglu K. Mathematical modeling of oxygen exchange and transport in air-perovskite-yttria-stabilized zirconia interface regions. II. Direct exchange of oxygen vacancies. [J]. J. Electrochem. Soc., 1998, (145):1390-1400.
    [153] Ganduly P., Rao C.N.R. Crystal chemistry and magnetic properties of layered metal oxides possessing the K2NiF4 of related structures. [J]. J. Solid State Chem., 1984, (53): 193-216.
    [154] Lappas A., Prassides K. Layered cuprates with the T? structure: structural and conducting properties. [J]. J. Solid State Chem., 1995, (53): 332-346.
    [155] Goodenough J.B., Manthiram A. Crystal chemistry amd supercondductivity of the copper oxides. [J]. J. Solid State Chem., 1990, (88): 115-139.
    [156] Claus J., Borchardt G., Weber S., Hiver J.M., Scherrer S. Combination of EBSP measurements and SIMS to study crystallographic orientation dependence of diffusivities in a polycrystalline material: oxygen tracter diffusion in La2-xSrxCuO4±δ. [J]. Mater. Sci. Eng., 1996, (B38): 251-257.
    [157] Takeda Y., Kanno R., Noda M. Cathodic polarization phenomena of perovskite oxide electrode with stabilized zirconia. [J]. J. Electrochem. Soc., 1987, (134): 2656-2661.
    [158] Sicbeit E, Hammouche A, Kleitz M. Impedance spectroscopy analysis of La1-xSrxMnO3-yttria-stabilized zirconia electrode kinetics. [J]. Electrochim. Acta., 1995, (40): 1741-1753.
    [159] Mizusaki J, Amano K, Yamauchi S, Fueki K. Electrode reaction of Pt, O2(g)/stabilized zirconia interfaces. I: Theoretical consideration of reaction model. [J]. Solid State Sciences, 1987, (22): 313-322.
    [160] Uchida H., Arisaka S., Watanabe M. High performance electrodes for medium-temperature solid oxide fuel cells: Activation of La(Sr)CoO3 cathode with highly dispersed Pt metal electroca talysts. [J]. Solid State loraics, 2000, (135):347-351.
    [161] Gao Z., Mao Z.Q., Huang J.B., Gao R.F., Wang C., Liu Z.X. Composite cathode La0.15Bi0.85O1.5-Ag for intermediate-temperature solid oxide fuel cells. [J]. Mater. Chem. Phys., 2008, (108): 290-295.
    [162]李艳,吕喆,黄喜强,贾莉,苗继伟,苏文辉,掺银的Sm0.5Sr0.5CoO3中温固体氧化物燃料电池复合阴极材料的制备与性能研究. [J].中国稀土学报,2004,(22):660-664.
    [163] Kim J.D., Kim G.D., Moon J.W. Characterization of LSM–YSZ composite electrode by ac impedance spectroscopy. [J]. Solid State Ionics, 2001, (143):379-389.
    [164] Byeon S.H., Demazeau G., Choy J.H. Local distortion and chemical surroundings of NiO6 octahedra for Ni(Ⅲ) oxides with K2NiF4-Type structure. [J]. Jpn. J. Appl. Phys., 1995, (34): 6156-6163.
    [165] Hayashi H., Kanoh M., Quan C.J., Inaba H., Wang S.R., Dokiya M., Tagawa H. Thermal expansion of Gd-doped ceria and reduced ceria. [J]. Solid State Ionics,2000, (132): 227-233.
    [166] Ruffa A.R. Thermal expansion in insulating materials. [J]. J. Mater. Sci., 1980, (15): 2258-2267.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700