用户名: 密码: 验证码:
超声靶向微泡介导PHD2-shRNA转染治疗缺血性心肌病研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
缺血性心脏病(ischemic heart disease, IHD)患者经药物、介入、搭桥治疗后,患者的病死率和致残率可明显降低,然而,临床上仍有5%-10%的部分患者不宜选择上述治疗方法,探索新的治疗方法和途径对此类患者显得尤为重要。随着心血管疾病发病机制分子水平研究的深入,“治疗性血管生成(therapeutic angiogenesis)"基因疗法已成为IHD治疗的新策略。血管新生作为一个新的治疗措施可以增加缺血心肌的血流灌注,成了IHD治疗研究的热点。在基因疗法的研究中,安全有效的基因运送载体是临床基因治疗成功的保证。
     近年来,随着超声造影技术的不断改进及可携带基因超声微泡造影剂研制的进展,使得超声已经从一种单纯的临床诊断工具发展成为一种有潜力的治疗方法。超声靶向微泡破坏(Ultrasound-targeted microbubble destruction, UTMD)通过在特定部位发射不同声强的超声波,致该部位微泡发生破裂,产生空化,使得血管内皮屏障损伤,血管通透性增加,从而使外源物质通过本来无法通过的血管内皮屏障到达特定的部位。UTMD转运系统中如何将超声微泡改造成基因携带量大、稳定的载基因微泡是值得关注的问题。
     本研究制备阳离子脂质微泡(Cationic liposomes microbubble, CLM),旨在为UTMD非病毒基因转运系统提供有效的载体;运用UTMD联合RNA干扰技术,将CLM/基因复合物转运至缺氧细胞模型,观察治疗性血管生成因子表达。建立大鼠IHD模型,探讨UTMD联合CLM介导shRNA转染促进缺血心肌血管新生的作用,观察其对心功能改善情况,以期为IHD的基因治疗提供一种安全、有效的方法。
     目的①制备阳离子脂质超声微泡(CLM),评价其理化性质及毒性反应;②探讨超声联合CLM介导绿色荧光蛋白(EGFP)基因转染的增强作用。方法①阳离子脂质微泡的制备及质量研究:采用薄膜水化法制备CLM,分别于1h、24h、3d、7d、14d光镜及电镜下观察其形态,纳米激光粒度测量其粒径及电位,检测其稳定性;急性细胞毒性实验和急性动物毒性实验观察其毒性;②探讨不同转染方式对绿色荧光蛋白(EGFP)基因转染的增强作用。实验分组:裸质粒组(P组)、超声辐照+裸质粒(P-US组)、裸质粒+超声微泡(P-CLM组)、裸质粒+超声微泡+超声辐照(UTMD组)。荧光显微镜观察EGFP的表达情况,流式对EGFP表达行定量分析。结果①光镜及电镜下观察,CLM呈球形,大小一致,分布度好;CLM均为纳米级,粒径范围分布于(250.4±88.32)nin-(399-±99.8)nm;电位分布于(18.8±4.97)mV-(20.1±3.1)mV;体内、外急性毒性实验均示无毒性。②荧光显微镜观察,各组于转染48h后均可见EGFP表达。UTMD组EGFP表达分布最多,亮度最强,P-CLM组次之,以P组最弱;流式细胞仪定量分析结果与荧光显微镜观察结果一致。与P组比较,P-US、P-CLM及UTMD组转染率增加;P-US组比较,P-CLM和UTMD组转染率效率均增加;与P-CML组比较,UTMD组转染效率明显增加,差异均有统计学意义(P<0.05)。P-US转染效率较P组增加近6倍;P-CLM组较P组增加约10倍;UTMD组较P组增加近30倍。结论采用薄膜水化法成功制备表面带正电荷纳米级CLM,粒径分布均匀,无毒副作用;超声联合CLM可显增EGFP转染至靶细胞。
     目的构建靶向PHD2基因的shRNA真核表达载体,采用超声靶向微泡破坏(UTMD)联合RNA干扰技术,探讨PHD2-shRNA转染缺氧诱导条件下人脐静脉内皮细胞(HUVEC)的可行性,研究PHD2-shRNA对PHD2基因的沉默效应,进而促进HIF-1α及其下游促血管生成因子表达。方法构建靶向PHD2基因的shRNA真核表达质粒(shPHD2)和对照质粒(shScramble),将缺氧反应元件(HRE)寡核苷酸片段插入至shPHD2以及shScramble质粒;通过UTMD介导shPHD2和shScramble转染至HUVEC细胞;体外模拟HUVEC缺氧微环境;观察常氧及低氧状态下shPHD2转染效率。RT-PCR、Western blots检测常氧和缺氧状态下PHD2、HIF-1α及其下游促血管生成因子的表达。结果测序分析证实重组质粒构建成功;荧光显微镜观察常氧及低氧环境下,HUVEC细胞内均可见红色荧光表达;荧光素酶活性检测进一步证实,与对照组比较,常氧及低氧环境下,shPHD2转染组荧光素酶活性增加,差异均有统计学意义(P<0.05)。细胞置于低氧环境后,血管生成因子表达增加。Western blot结果证实低氧shPHD2转染组HIF-1a表达呈稳定增加。为了验证HIF-1a表达增加是由shRNA沉默PHD2基因所致,RT-PCR检测结果进一步证实shPHD2转染后,PHD2mRNA表达减低的同时,伴HIF-1a及其下游3个与血管生成因子均表达增加,与对照组,差异均具有统计学意义(P<0.05)。因此,低氧状态及常氧状态沉默PHD2基因均能增强HIF-1a表达水平,诱导HIF1a下游促血管生成因子表达。结论UTMD介导PHD2干扰质粒能有效沉默PHD2基因,促进HIF-1α及其下游促血管生成相关因子的表达。
     目的探讨超声靶向微泡破坏(UTMD)介导PHD2-shRNA转染治疗大鼠急性心肌梗塞(MI)的治疗效果。方法左冠状动脉结扎法建立大鼠急性MI动物模型,随机分为:假手术组(sham组,n=30);MI对照组(shScramble组,n=60):注射shScramble对照质粒;治疗组(shPHD2组,n=60):注射PHD2-shRNA干扰质粒。分别于术前、术后第1d、7d、14d、28d行超声心动图检查;处死动物,对组织样本行Masson's trichome及H&E染色后行组织学检查;RT-PCR检测PHD2、HIF1a、VEGF、TGFβ、bFGF在各组标本中mRNA表达情况;采用免疫组化SABC法检测心肌梗死区域PHD2和HIFa及CD34的表达。结果①shPHD2组较shScramble组心功能明显改善;与shScramble组比较,shPHD2组第7d、14d及28d所测LVEF、LVFS值均增加,差异均有统计学意义(P<0.05)。②与shScramble组比较,shPHD2组治疗后CVF和PVCA均显著减少,差异有统计学意义(P<0.05)。③RT-PCR检测shPHD2组与对照组比较表达减低,而HIF-1αmRNA及其下游促血管生成因子VEGF、TGFβ、bFGF mRNA表达增加,于第14d时达高峰,差异均有统计学意义(P<0.05)。④免疫组织化学结果显示,shPHD2组内HIF-1α、VEGF均较shSchamble组表达增加,于第14d达峰值,差异均有统计学意义。与shSchamble组比较,shPHD2组内可见更多新生血管形成,二组间比较,差异有统计学意义。结论UTMD可促进PHD2-shRNA转染至大鼠心肌组织;靶向PHD2基因的shRNA干扰质粒可有效促血管生成因子表达;UTMD联合CLM介导PHD2-shRNA转染可促进缺血心肌内新生血管形成,有效改善大鼠心功能。
Ischemic heart disease(IHD) is the leading cause of morbidity and mortality in the world.Conventional treatment for IHD consists of medical therapy as the first-line strategy followed by percutaneous coronary intervention or coronary artery bypass graft. It can significantly reduce mortality and morbidity. However, a significant number of patients will still have refractory angina despite these treatments. For such patients, the alternative approach of delivering potent angiogenic factors to stimulate new vessel growth has undergone intense investigation over the past decade.
     The progress of gene therapy largely depends on the development of gene delivery technologies, including viral vector and non-viral vector. Among non-viral techniques, ultrasound-targeted microbubble destruction(UTMD) has evolved as a new promising tool for organ-specific gene delivery. Recent studies showed that mechanical and cavitation effects caused by UTMD were able to increase membrane permeability and enhance exogenous genetic materials into targeted cells.
     In this article, we assessed whether the novel combination of UTMD and cationic lipid microbubbles(CLM) was available and useful tool for gene delivery and transfection. Furthermore, we demonstrated that the inhibition of HIF-1αdegradation through shRNA knockdown of PHD2 in the ischemic heart represents a novel angiogenic therapy approach.
     Objective:①To prepare cationic lipid microbubble (CLM), and to evaluate its physical and chemical properties and toxicity;②To evaluate the gene transfection efficiency by UTMD accompanied with CLM. Methods①The CLM was prepared by the thin film hydration, and its morphology was observed with electron microscopy in 1h,24h,3d,7d, and 14d, respectively, the nano-particle size were measured and the stability was tested; acute toxicity were observed;②Different transfection methods of the green fluorescent protein (EGFP) gene transfection enhancement. Experimental groups:naked plasmid group (P group), Ultrasonic irradiation and plasmid (P-US group), plasmid and CLM(P-CLM Group), naked plasmid and ultrasound and CLM (UTMD Group). The expression of EGFP was observed.
     Results①CLMs were spherical, the similar size and good distribution degree under the light and electron microscopy. The nano-size of cationic lipid microbubbles was varied from (250.4±88.32)nm to(399±99.8)nm and the Potential was varied from (18.8±4.97) mV to (20.1±3.1) mV. Vivo and in vitro toxicity tests have shown no acute toxicity.②The EGFP expression was the strongest intensity in UTMD group, P-CLM group was secondary, and that in P group was the weakest; the results from flow cytometry analysis were coincidental to fluorescence microscopy results. The transfection efficiency rate of P-US was almost 7 times than that of P group; That in P-CLM group than in P group increased by about 10 times; UTMD group than in P group increased nearly 30 times.
     Conclusions:Nano-size CLM prepared by film hydration was characteristic as uniform diameter, non-toxic side effects; Ultrasound combined with CLM can significantly increase the transfection of EGFP to HUVEC.
     Objective:To construct the targeting PHD2 shRNA eukaryotic expression vector by combining UTMD with RNA interference technology. To investigate the feasibility of PHD2-shRNA transfection to human umbilical vein endothelial cells (HUVEC) induced by hypoxic condition and the PHD2 gene silencing effect, HIF-1αand its downstream angiogenesis factor expression under hypoxic condition. Methods:We constructed the targeting PHD2 shRNA eukaryotic expression plasmid (shPHD2) and the control plasmid (shScramble), inserted the hypoxia response element (HRE) oligonucleotide fragments into plasmid, and transfected shPHD2 and shScramble to HUVEC cells mediated by UTMD. Under In vitro microenvironment; we observed shPHD2 transfection efficiency and detected PHD2, HIF-1αand its downstream angiogenesis factor expression with RT-PCR, Western blots. Results:Fluorescence microscope and luciferase detection were confirmed that the luciferase activity of shPHD2 transfection group significantly increased in normal oxygen and hypoxic conditions comparing with control group(P<0.05). Under hypoxic conditions, there was more angiogenesis factor expression. Western blot confirmed the HIF-1a stable expression increased in hypoxia condition. In order to verify the HIF-1a expression is induced by the shRNA silence PHD2 gene, RT-PCR results further confirmed that after shPHD2 transfection treatment, the expression on the PHD2 mRNA reduced, however, the expression of HIF-1a and its downstream 3 angiogenesis-related expression gene significantly increased comparing with the control group (P<0.05). Conclusions:UTMD mediated PHD2 interference expression vectors can effectively promoted silence PHD2, HIF-1αand its downstream angiogenesis-related factor expression.
     Objective:To construct the recombinant expression vectors targeted PHD2 gene and to analyze the silencing effect in myocardial ischemic in rats; To investigate direct injection of shRNA targeting PHD2 can improve ventricular function and enhance neoangiogenesis in rat model of myocardical infarction by UTMD techniques associated with RNAi techniques. Methods:shRNA targeting PHD2 (shPHD2) plasmid was injected intramyocardially following ligation of left anterior descending artery in rat. Animals were randomized into sham operation group(n=30) shPHD2 MI experimental group(n=60) and MI shScramble control group (n=60). Echocardiography was performed before and after(7d,14d,28d) the left anterior descending artery ligation. Explanted heart from study and control groups were embedded into Masson's trchome and HE for immunostaining. Results: echocardiography showsd the shPHD2 group had improved fractional shortening compared with the shSchamble group at 14 days. RT-PCR analysis of explanted hearts also confirmed that animals treated with shPHD2 had significantly higher levels of HIF1RT-PCR analysis of explanted hearts also confirmed that animals treated with shPHD2 had significantly higher levels of HIF1α、VEGF、bFGF and TGFβm RNA.Postmortern analysis show increased presence of small capillaries and venules in the infracted zones by CD34 staining. Conclusions:Inhibition of PHD2 by shRNA led to significant improvement in angiogenesis and contractility in Myocardial ischemic heart disease in rats. With further validation, the combination of shRNA therapy and UTMD can be used to track novel cardiovascular gene therapy application in the future.
引文
1 Yla-Herttuala S, Alitalo K. Gene transfer as a tool to induce therapeutic vascular growth. Nat Med.2003,9(6):694-701.
    2 Bekeredjian R, Chen S, Frenkel PA, et al. Ultrasound targeted microbubble destruction can repeatedly direct highly specific plasmid expression to the heart. Circulation.2003,108(8):1022-1026.
    3 Miao CH, Brayman AA, Loeb KR, et al.Ultrasoun enhances gene delivery of human factor IX plasmid. Hum Gene Ther.2005,16(7):893-905.
    4 Takahashi M, Kido K, Aoi A, et al.Spinal gene transfer using ultrasound and microbubbles. J Control Release.2007,117(2):267-272.
    5 Kodama T, Tan PH, Offiah I, et al. Delivery of oligodeoxynucleotides into human saphenous veins and the adjunct effect of ultrasound and microbubbles. Ultrasound Med Biol.2005,31(12):1683-1691.
    6 Henry TD, Annex BH, McKendall GR, et al. The VIVA trial:Vascular endothelial growth factor in Ischemia for Vascular Angiogenesis.Circulation. 2003,107(10):1359-1365.
    7 Kano MR, Morishita Y, Iwata C, et al. VEGF-A and FGF-2 synergistically promote neoangiogenesis through enhancement of endogenous PDGF-B-PDGFR beta signaling. J Cell Sci.2005,118(Pt16):3759-3768.
    8 Wu S, Nishiyama N, Kano MR, et al. Enhancement of angiogenesis through stabilization of hypoxia-inducible factor-1 by silencing prolyl hydroxylase domain-2 gene. Mol Ther.2008,16(7):1227-1234.
    9 Takeda K, Cowan A, Fong GH. Essential role for prolyl hydroxylase domain protein 2 in oxygen homeostasis of the adult vascular system. Circulation. 2007,116(7):774-781.
    10 Berra E, Benizri E, Ginouves A, et al. HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J.2003, 22(16):4082-4090.
    11 Huang M, Chan DA, Jia F, et al.Short hairpin RNA Interference Therapy for Ischemic Heart Disease.Circulation.2008,118(14 suppl):S226-233.
    12 Hannon GJ, Rossi JJ. Unlocking the potential of the human genome with RNA interference. Nature.2004,431(7006):371-378.
    13 Mayer CR, Bekeredjian R. Ultrasonic gene and drug delivery to the cardiovascular system. Adv Drug Deliv Rev.2008,60(10):1177-1192.
    14 Bekeredjian R, Grayburn PA, Shohet RV. Use of ultrasound contrast agents for gene or drug delivery in cardiovascular medicine. J Am Coll Cardiol.2005,45(3):329-335.
    15 Muller OJ, Schinkel S, Kleinschmidt JA, et al. Augmentation of AAV-mediated cardiac gene transfer after systemic administration in adult rats. Gene Ther.2008, 15(23):1558-1565.
    16 Kondo I, Ohmori K, Oshita A, et al. Treatment of acute myocardial infarction by hepatocyte growth factor gene transfer:the first demonstration of myocardial transfer of a "functional" gene using ultrasonic microbubble destruction. J Am Coll Cardiol, 2004; 44(3):644-653.
    17 Korpanty G, Chen S, Shohet RV, et al. Targeting of VEGF-mediated angiogenesis to rat myocardium using ultrasonic destruction of microbubbles. Gene Ther,2005; 12(17):1305-1312.
    18 Felgner JH, Kumar R, Sridhar CN, et al. Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J Biol Chem.1994,269(4): 2550-2561.
    19 Le Gall T, Loizeau D, Picquet E, et al. A novel cationic lipophosphoramide with diunsaturated lipid chains:synthesis, physicochemical properties, and transfection activities. J Med Chem.2010,53(4):1496-1508.
    20 Akowuah EF, Gray C, Lawrie A, et al. Ultrasound-mediated delivery of TIMP-3 plasmid DNA into saphenous vein leads to increased lumen size in a porcine interposition graft model. Gene Ther.2005,12(14):1154-1157.
    21 Geis NA, Mayer CR, Kroll RD, et al. Spatial distribution of ultrasound targeted microbubble destruction increases cardiac transgene expression but not capillary permeability. Ultrasound Med Biol.2009,35(7):1119-1126.
    1. Ren J, Xu C, Zhou Z, et al.A novel ultrasound microbubble carrying gene and Tat peptide:preparation and characterization. Acad Radiol.2009,16(12):1457-1465.
    2. Klibanov AL. Microbubble contrast agents:targeted ultrasound imaging and ultrasound-assisted drug-delivery applications. Invest Radiol.2006,41(3):354-362.
    3. Ferrara KW, Borden MA, Zhang H.Lipid-shelled vehicles:engineering for ultrasound molecular imaging and drug delivery. Acc Chem Res.2009,42(7):881-892.
    4. Chomas JE, Dayton P, Allen J,et al. Mechanisms of contrast agent destruction. IEEE Trans Ultrason Ferroelectr Freq Control.2001,48(1):232-248.
    5. Stride EP, Coussios CC. Cavitation and contrast:the use of bubbles in ultrasound imaging and therapy. Proc Inst Mech Eng H.2010,224(2):171-191.
    6. Mayer CR, Bekeredjian R. Ultrasonic gene and drug delivery to the cardiovascular system. Adv Drug Deliv Rev.2008,60(10):1177-1192.
    7. Bekeredjian R, Grayburn PA,Shohet RV. Use of ultrasound contrast agents for gene or drug delivery in cardiovascular medicine. J Am Coll Cardiol.2005,45(3):329-335.
    8. Dijkmans PA, Juffermans LJ, Musters RJ, et al. Microbubbles and ultrasound:from diagnosis to therapy. Eur J Echocardiogr.2004,5(4):245-256.
    9. Bouakaz A, Versluis M, de Jong N. High-speed optical observations of contrast agent destruction. Ultrasound Med Biol.2005,31(3):391-399.
    10. de Jong N, Emmer M, van Wamel A, et al.Ultrasonic characterization of ultrasound contrast agents. Med Biol Eng Comput.2009,47(8):861-873.
    11. Gao X, Huang L. A novel cationic liposome reagent for efficient transfection of mammalian cells. Biochem Biophys Res Commun.1991,179(1):280-285.
    12. Felgner JH, Kumar R, Sridhar CN, et al. Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J Biol Chem.1994,269(4): 2550-2561.
    13. Le Gall T, Loizeau D, Picquet E, et al. A novel cationic lipophosphoramide with diunsaturated lipid chains:synthesis, physicochemical properties, and transfection activities. J Med Chem.2010,53(4):1496-1508.
    14. Akowuah EF, Gray C, Lawrie A, et al. Ultrasound-mediated delivery of TIMP-3 plasmid DNA into saphenous vein leads to increased lumen size in a porcine interposition graft model. Gene Ther.2005,12(14):1154-1157.
    15. Bekeredjian R, Chen S, Frenkel PA, et al. Ultrasound-targeted microbubble destruction can repeatedly direct highly specific plasmid expression to the heart. Circulation.2003,108(8):1022-1026.
    16. Chen S, Shohet RV, Bekeredjian R, et al. Optimization of ultrasound parameters for cardiac gene delivery of adenoviral or plasmid deoxyribonucleic acid by ultrasound-targeted microbubble destruction. J Am Coll Cardiol.2003,42(2):301-308.
    17. Geis NA, Mayer CR, Kroll RD, et al. Spatial distribution of ultrasound targeted microbubble destruction increases cardiac transgene expression but not capillary permeability. Ultrasound Med Biol.2009,35(7):1119-1126.
    18. Liang HD, Lu QL, Xue SA, et al. Optimisation of ultrasound-mediated gene transfer (sonoporation) in skeletal muscle cells.Ultrasound Med Biol.2004,30(11):1523-1529.
    19. Ohl CD, Arora M, Ikink R, et al. Sonoporation from jetting cavitation bubbles. Biophys J.2006,91(11):4285-4295.
    20. Song YK, Liu F, Chu S, Liu D.Characterization of cationic liposome-mediated gene transfer in vivo by intravenous administration.Hum Gene Ther.1997,8(13):1585-1594
    21. Vitiello L, Chonn A, Wasserman JD,et al. Condensation of plasmid DNA with polylysine improves liposome-mediated gene transfer into established and primary muscle cells. Gene Ther.1996,3(5):396-404.
    22. Chen T, SUN SX, DU M, et al. Hydrochloride liposome,the preparation and pharmaceutical properties. Chin Pharm,2005,40(7):522-525.
    23. Oberdorster G, Sharp Z, Atudorei V, et al. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol.2004,16(6-7):437-445.
    24. Unger EC, McCreery TP, Sweitzer RH, et al. Acoustically active lipospheres containing paclitaxel:a new therapeutic ultrasound contrast agent. Invest Radiol. 1998,33(12):886-892.
    25. Chen ZY, Xie MX, Wang XF, et al. Different effects of therapeutic ultrasound parameters and culture conditions on the gene transfection efficiency. Chin J Cancer Res,2008,20(4):249-254.
    26. Liang HD, Lu QL, Xue SA, et al.Optimisation of ultrasound-mediated gene transfer (sonoporation) in skeletal muscle cells.Ultrasound Med Biol.2004,30(11):1523-1529.
    27. Van wamel A, Kooiman K, Harteveld M, et al. Mechanism of intracellular delivery by acoustic cavitation. Ultrasound Med Biol,2006,32(6):915-924.
    28. Bekeredjian R, Kroll RD, Fein E, et al. Ultrasound targeted microbubble destruction increases capillary permeability in hepatomas. Ultrasound Med Biol, 2007,33(10):1592-1598.
    29. Korosoglou Q Hardt SE, Bekeredjian R,etal Ultrasound exposure can increase the membrane permeability of human neutrophil granulocytes containing microbubbles without causing complete cell destruction. Ultrasound Med Biol,2006,32(2):297-303.
    30. Zhao YZ, Luo YK, Zhang Y, et al. Property and contrast-enhancement effects of lipid ultrasound contrast agent:a preliminary experimental study. Ultrasound Med Biol. 2005,31(4):537-543.
    31. Fisher NG, Christiansen JP, Klibanov A, et al. Influence of microbubble surface charge on capillary transit and myocardial contrast enhancement. J Am Coll Cardiol. 2002,40(4):811-819.
    32. Janicki S, Jankowski J, Szulc J, et al. The effect of cryoprotectants on the physical properties of large liposomes containing sodium diclofenac. Acta Pol Pharm. 2002,59(3):187-191.
    33. Hasik MJ, Kim DH, Howle LE, et al. Evaluation of synthetic phospholipid ultrasound contrast agents. Ultrasonics.2002,40(9):973-982.
    34. Caracciolo G, Callipo L, De Sanctis SC,et al. Surface adsorption of protein corona controls the cell internalization mechanism of DC-Chol-DOPE/DNA lipoplexes in serum. Biochim Biophys Acta.2010,1798(3):536-543.
    35. Schratzberger P, Krainin JG, Schratzberger G, et al. Transcutaneous ultrasound augments naked DNA transfection of skeletal muscle. Mol Ther.2002,6(5):576-583.
    36. Leong-Poi H, Kuliszewski MA, Lekas M, et al. Therapeutic arteriogenesis by ultrasound-mediated VEGF165 plasmid gene delivery to chronically ischemic skeletal muscle. Circ Res,2007,101(3):295-303.
    37. Manomet Y, Nakayama N, Nakayama K, et al. Insonation facilitates plasmid DNA transfection into the central nervous system and microbubbles enhance the effect. Ultrasound Med Biol,2005,31(5):693-702.
    38. Li T, Tachibana K, Kuroki M, et al. Gene transfer with echo-enhanced contrast agents:comparison between Albunex, Optison and Levovist in mice-mitial results. Radiology,2003,229(2):426-428.
    39. Li P, Armstrong WF, Miller DL. ImPact of myocardial contrast echocardiography on vaseular permeability:comparison of three different contrast agents. Ultrasound Med Biol.2004:30(1):83-91.
    40. Stride EP, Coussios CC.Cavitation and contrast:the use of bubbles in ultrasound imaging and therapy.Proc Inst Mech Eng H.2010;224(2):171-191.
    41. Stride E.Physical principles of microbubbles for ultrasound imaging and therapy. Cerebrovasc Dis.2009;27 (2):1-13.
    42. Ferrara KW, Borden MA, Zhang H.Lipid-shelled vehicles:engineering for ultrasound molecular imaging and drug delivery. Ace Chem Res.2009,42(7):881-892.
    43. Tartis MS, Kruse DE, Zheng H,et al.Dynamic microPET imaging of ultrasound contrast agents and lipid delivery. J Control Release.2008,131(3):160-166.
    44. Christiansen JP, French BA, Klibanov AL, et al.Targeted tissue transfection with ultrasound destruction of plasmid-bearing cationic microbubbles. Ultrasound Med Biol.2003,29(12):1759-1767.
    45. Borden MA, Caskey CF, Little E,et al.DNA and polylysine adsorption and multilayer construction onto cationic lipid-coated microbubbles.Langmuir.2007,23(18):9401-9408.
    1. Hockel M, Schlenger K, Doctrow S, et al. Therapeutic angiogenesis. Arch Surg, 1993,128(4):423.
    2. Losordo DW, Dimmeler S. therapeutic angiogenesis and vasculogenesis for ischemic disease.PartI:angiogenic cytokines.Circulation.2004,109(21):2487-2491.
    3. Ahn A, Frishman WH, Gutwein A,et al.Therapeutic angiogenesis:a new treatment approach for ischemic heart disease-part Ⅰ. Cardiol Rev.2008,16(4):163-171.
    4. Nessa A, Latif SA, Siddiqui NI,et al. Angiogenesis-a novel therapeutic approach for ischemic heart disease. Mymensingh Med J.2009,18(2):264-272.
    5. Pislaru S, Janssens SP, Gersh BJ, et al. Defining gene transfer before expecting gene therapy:putting the horse before the cart. Circulation.2002,106(5):631-636.
    6. Kano MR, Morishita Y, Iwata C, et al. VEGF-A and FGF-2 synergistically promote neoangiogenesis through enhancement of endogenous PDGF-B-PDGFR beta signaling. J Cell Sci.2005,118(Pt16):3759-3768.
    7. Wu S, Nishiyama N, Kano MR, et al. Enhancement of angiogenesis through stabilization of hypoxia-inducible factor-1 by silencing prolyl hydroxylase domain-2 gene. Mol Ther.2008,16(7):1227-1234.
    8. Huang LE, Arany Z, Livingston DM, et al. Activation of hypoxia-inducible t ranscription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J Biol Chem.1996,271(50):32253-32259.
    9. Bunn HF, Poyton RO. Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev.1996,76(3):839-885.
    10. Hellwig-Burgel T, Stiehl DP, Wagner AE, et al. Hypoxia-inducible factor-1 (HIF-la): a novel transcription factor in immune reactions. J Interferon Cytokine Res.2005, 25(6):297-310.
    11. Maddaford TG, Dibrov E, Hurtado C, et al. Reduced expression of the Na+/Ca2+ exchanger in adult cardiomyocytes via adenovirally delivered shRNA results in resistance to simulated ischemic injury.Am J Physiol Heart Circ Physiol.2010,298(2):H360-366.
    12. Hannon GJ, Rossi JJ. Unlocking the potential of the human genome with RNA interference. Nature.2004,431:371-378.
    13. Huang M, Chan DA, Jia F, et al. Short hairpin RNA interference therapy for ischemic heart disease. Circulation.2008,118(14 Suppl):S226-233.
    14. Liu Y, Miyoshi H, Nakamura M. Encapsulated ultrasound microbubbles:therapeutic application in drug/gene delivery. J Control Release.2006,114(1):889-922.
    15. Kodama T, Tomita Y, Koshiyama K, et al. Transfection effect of microbubbles on cells in superposed ultrasound waves and behavior of cavitation bubble. Ultrasound Med Biol.2006,32(6):905-914.
    16. Bekeredjian R, Chen S, Frenkel PA, et al. Ultrasound targeted microbubble destruction can repeatedly direct highly specific plasmid expression to the heart. Circulation.2003,108(8):1022-1026.
    17. Hutvagner G, Zamore PD. RNAi:nature abhorsa double-strand. Curr Opin Genet Dev.2002,12(2):225-232.
    18. Takahashi Y, Nishikawa M, Takakura Y.Nonviral vector-mediated RNA interference: its gene silencing characteristics and important factors to achieve RNAi-based gene therapy. Adv Drug Deliv Rev.2009,61(9):760-766.
    19. Bass BL. RNA interference.The short answer.Nature.2001,411(6838):428-429.
    20. Natarajan R, Salloum FN, Fisher BJ, et al. Hypoxia inducible factor-1 activation by prolyl 4-hydroxylase-2 gene silencing attenuates myocardial ischemia reperfusion injury. Circ Res.2006,98(1):133-140.
    21. Natarajan R, Salloum FN, Fisher BJ,et al.Activation of hypoxia-inducible factor-1 via prolyl-4 hydoxylase-2 gene silencing attenuates acute inflammatory responses in postischemic myocardium.Am J Physiol Heart Circ Physiol.2007,293(3):1571-158.
    22. Bao S, Thrall BD, Miller DL.Transfection of a reporter plasmid into cultured cells by sonoporation in vitro. Ultrasound Med Biol.1997,23(6):953-959.
    23. Miller DL, Dou C.Induction of apoptosis in sonoporation and ultrasonic gene transfer. Ultrasound Med Biol.2009,35(1):144-154.
    24. Forbes MM, Steinberg RL, O'Brien WD Jr.Examination of inertial cavitation of Optison in producing sonoporation of chinese hamster ovary cells. Ultrasound Med Biol.2008,34(12):1009-1018.
    25. Miller DL, Pislaru SV, Greenleaf JE.Sonoporation:mechanical DNA delivery by ultrasonic cavitation. Somat Cell Mol Genet.2002,27(1-6):115-134.
    26. Lawrie A, Brisken AF, Francis SE, et al. Ultrasound-enhanced transgene expression in vascular cells is not dependent upon cavitation-induced free radicals. Ultrasound Med Biol.2003,29(10):1453-1461.
    27. Lawrie A, Brisken AF, Francis SE, et al. Microbubble-enhanced ultrasound for vascular gene delivery. Gene Ther.2000,7(23):2023-2027.
    28. Shohet RV, Chen S, Zhou YT, et al. Echocardiographic destruction of albumin microbubbles directs gene delivery to the myocardium. Circulation,2000, 101(22):2554-2556.
    29. Erikson JM, Freeman GL, Chandrasekar B.Ultrasound-targeted antisense oligonucleotide attenuates ischemia/reperfusion-induced myocardial tumor necrosis factor-alpha. J Mol Cell Cardiol.2003,35(1):119-130.
    30. Pislaru SV, Pislaru C, Kinnick RR, et al. Optimization of ultrasound-mediated gene transfer:comparison of contrast agents and ultrasound modalities. Eur Heart. 2003,24(18):1690-1698.
    31. Tiukinhoy SD, Khan AA, Huang S, et al.Novel echogenic drug-immunoliposomes for drug delivery. Invest Radiol.2004,39(2):104-110.
    32. Herbst SM, Klegerman ME, Kim H, et al.Delivery of stem cells to porcine arterial wall with echogenic liposomes conjugated to antibodies against CD34 and intercellular adhesion molecule-1. Mol Pharm.2010,7(1):3-11.
    33. Anwer K, Kao G, Proctor B, et al.Ultrasound enhancement of cationic lipid-mediated gene transfer to primary tumors following systemic administration. Gene Ther. 2000,7(21):1833-1839.
    34. Christiansen JP, French BA, Klibanov AL,et al.Targeted tissue transfection with ultrasound destruction of plasmid-bearing cationic microbubbles. Ultrasound Med Biol.2003,29(12):1759-1767.
    35. Hernot S, Cosyns B, Droogmans S, et al.Effect of high-intensity ultrasound-targeted microbubble destruction on perfusion and function of the rat heart assessed by pinhole-gated SPECT. Ultrasound Med Biol.2010,36(1):158-165.
    36. Fujii H, Sun Z, Li SH, et al.Ultrasound-targeted gene delivery induces angiogenesis after a myocardial infarction in mice. JACC Cardiovasc Imaging.2009, 2(7):869-879.
    37. Yu JX, Huang XF, Lv WM,et al. Combination of stromal-derived factor-1alpha and vascular endothelial growth factor gene-modified endothelial progenitor cells is more effective for ischemic neovascularization. J Vasc Surg.2009,50(3):608-616.
    38. Yla-Herttuala S, Rissanen TT, Vajanto I, et al. Vascular endothelial growth factors: biology and current status of clinical applications in cardiovascular medicine. J Am Coll Cardiol.2007,49(10):1015-1026.
    39. Nissen LJ, Cao R, Hedlund EM, et al. Angiogenic factors FGF2 and PDGF-BB synergistically promote murine tumor neovascularization and metastasis. J Clin Invest.2007,117(10):2766-2777.
    40. Kido M, Du L,Sullivan CC,et al. Hypoxia-inducible factor 1-alpha reduces infarction and attenuates progression of cardiac dysfunction after myocardial infarction in the mouse.J Am Coll Cardiol,2005,46(11):2116-2124.
    41. Dong F, Khalil M, Kiedrowski M,et al. Critical role for leukocyte hypoxia inducible factor-1alpha expression in post-myocardial infarction left ventricular remodeling. Circ Res.2010,106(3):601-610.
    42. Appelhoff RJ, Tian YM, Raval RR, et al. Differential function of the prolyl hydroxylases PHD1,PHD2 and PHD3 in the regulation of Hypoxia-inducible factor(HIF).J Biol Chem.2004,279(37):38458-38465.
    43. Fong GH, Takeda K. Role and regulation of prolyl hydroxylase domain proteins. Cell Death Differ.2008,15(4):635-641.
    44. Yun SP, Lee MY, Ryu JM, et al.Role of HIF-1 alpha and VEGF in human mesenchymal stem cell proliferation by 17beta-estradiol:involvement of PKC, PI3K/Akt, and MAPKs. Am J Physiol Cell Physiol.2009,296(2):C317-326.
    45. Takata K, Morishige K, Takahashi T, et al. Fasudil-induced hypoxia-inducible factor-1alpha degradation disrupts a hypoxia-driven vascular endothelial growth factor autocrine mechanism in endothelial cells.Mol Cancer Ther.2008,7(6):1551-1561.
    46. Semenza G. Signal transduction to hypoxia-inducible factor 1.Biochem Pharmacol. 2002.64(5-6):993-998.
    47. Battler A.Growth factor therapies for vascular injury and ischemia. Circulation.1996, 93(1):199-200.
    48. Casscells W. Growth factor therapies for vascular injury and ischemia.Circulation. 1995,91 (11):2699-2702.
    49. Cao Y.Therapeutic angiogenesis for ischemic disorders:what is missing for clinical benefits? Discov Med.2010,9(46):179-184.
    50. Feucht M, Christ B, Wilting J, et al. Vascular endothelial growth factor induces cardiovascular malformation and embryonic lethality. AmJ Pathol.1997,151 (5): 1407-1416.
    51. Roest PA, Molin DG, Schalkwijk CG, et al. Specific local cardiovascular changes of Nepsilon-(carboxymethyl)lysine, vascular endothelial growth factor, and Smad2 in the developing embryos coincide with maternal diabetes-induced congenital heart defects. Diabetes.2009,58(5):1222-1228.
    1. Vincent KA, Jiang C, Boltje I,et al. Gene therapy progress and prospects:therapeutic angio genesis for ischemic cardiovascular disease. Gene Ther.2007,14(10):781-789.
    2. Khan TA, Sellke FW, Laham RJ. Gene therapy progress and prospects:therapeutic angiogenesis for limb and myocardial ischemia. Gene Ther.2003,10(4):285-291.
    3. Fasanaro P, Greco S, Ivan M,et al. microRNA:emerging therapeutic targets in acute ischemic diseases. Pharmacol Ther.2010,125(1):92-104.
    4. Urbich C, Kuehbacher A, Dimmeler S. Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc Res.2008,79(4):581-588.
    5. Wu F, Yang Z, Li G. Role of specific microRNAs for endothelial function and angiogenesis. Biochem Biophys Res Commun.2009,386(4):549-553.
    6. Takeda K, Fong GH. Prolyl hydroxylase domain 2 protein suppresses hypoxia-induced endothelial cell proliferation. Hypertension.2007,49(1):178-184.
    7. Berra E, Benizri E, Ginouves A,et al. HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J. 2003,22(16):4082-4090.
    8. Schumacher B, Pecher P, von Specht BU,et al.Induction of neoangiogenesis in ischemic myocardium by human growth factors:first clinical results of a new treatment of coronary heart disease. Circulation.1998,97(7):645-650.
    9. Mukherjee D, Wong J, Griffin B,et al. Ten-fold augmentation of endothelial uptake of vascular endothelial growth factor with ultrasound after systemic administration. J Am Coll Cardiol.2000,35(6):1678-1686.
    10. Zhigang W, Zhiyu L, Haitao R, et al. Ultrasound-mediated microbubble destruction enhances VEGF gene delivery to the infarcted myocardium in rats. Clin Imaging. 2004,28(6):395-398.
    11. Optimisation of ultrasound-mediated gene transfer:comparison of contrast agents and ultrasound modalities. Eur Heart J,24(18):1690-1698.
    12. Franses RE, McWilliams DF, Mapp PI, et al. Osteochondral angiogenesis and increased protease inhibitor expression in OA. Osteoarthritis Cartilage.2010,18 (4):563-571.
    13. No JH, Jo H, Kim SH, et al. Expression of vascular endothelial growth factor and hypoxia inducible factor-1alpha in cervical neoplasia. Ann N Y Acad Sci.2009, 1171:105-110.
    14. Brilla CG. Aldosterone and myocardial fibrosis in heart failure. Herz.2000,25 (3):299-306.
    15. Lopez B, Gonzalez A, Querejeta R,et al. Alterations in the Pattern of Collagen Deposition May Contribute to the Deterioration of Systolic Function in Hypertensive Patients With Heart Failure. J Am Coll Cardiol.2006,48(1):89-96.
    16. Kido M, Du L,Sullivan CC,et al. Hypoxia-Inducible Factor 1-Alpha Reduces Infarction and Attenuates Progression of Cardiac Dysfunction After Myocardial Infarction in the Mouse.J Am Coll Cardiol,2005,46(11):2116-2124.
    17. ParisiQ, Biondi2Zoccai GG, AbbateA, et al. Hypoxia inducible factor-1 expression mediates myocardial response to ischemia late after acute myocardial infarction. Int J Cardiol.2005,99 (2):337-339.
    18. Tipoe GL,Lau TY,NanjiAA, et al.Expression and functions of vaso activesubstances regulated by hypoxia-inducible factor-1 in chronic hypoxemia. Cardiovasc Hematol AgentsMed Chem,2006,4 (3):199-219.
    19. Appelhoff RJ, Tian YM, Raval RR, et al. Differential function of the prolyl hydroxylases PHD1,PHD2 and PHD3 in the regulation of Hypoxia-inducible factor(HIF).J Biol Chem.2004,279(37):38458-38465.
    20. Berra E, Benizri E, Ginouves A, et al. HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J.2003, 22(16):4082-4090.
    21. Natarajan R, Salloum FN, Fisher BJ, et al. Hypoxia inducible factor-1 activation by prolyl 4-hydroxylase-2 gene silencing attenuates myocardial ischemia reperfusion injury. Circ Res.2006,98(1):133-140.
    22. Huang M, Chan DA, Jia F, et al. Short hairpin RNA interference therapy for ischemic heart disease. Circulation.2008,118(14 Suppl):S226-233.
    23. Arany Z, Foo SY, Ma Y, et al. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature.2008, 451(7181):1008-1012.
    24. Ziello JE, Jovin IS, Huang Y. Hypoxia-Inducible Factor (HIF)-1regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. Yale J Biol Med.2007,80(2):51-60.
    25. Brahimi-Horn MC, Pouyssegur J. Harnessing the hypoxia-inducible factor in cancer and ischemic disease. Biochem Pharmacol.2007,73(3):450-457.
    26. Dong H, Wang Q, Zhang Y, et al. Angiogenesis induced by hVEGF165 gene controlled by hypoxic response elements in rabbit ischemia myocardium. Exp Biol Med (Maywood).2009,234(12):1417-1424.
    27. Sung KC, Kim KS, Lee S. Hypoxic regulation of VEGF, HIF-1(alpha) in coronary collaterals development. Korean J Intern Med.2005,20(4):295-302.
    28. Banai S, Shweiki D, Pinson A,et al. Upregulation of vascular endothelial growth factor expression induced by myocardial ischaemia:implications for coronary angiogenesis. Cardiovasc Res.1994,28(8):1176-1179.
    29. Magovern CJ, Mack CA, Zhang J, et al. Direct in vivo gene transfer to canine myocardium using a replication-deficient adenovirus vector. Ann Thorac Surg.1996, 62(2):425-433.
    30. Li J, Brown LF, Hibberd MG, et al. VEGF, flk-1, and flt-1 expression in a rat myocardial infarction model of angiogenesis. Am J Physiol.1996,270(5 Pt 2):H1803-1811.
    31. Matsunaga T, Warltier DC, Tessmer J,et al. Expression of VEGF and angiopoietins-1 and-2 during ischemia-induced coronary angiogenesis. Am J Physiol Heart Circ Physiol.2003,285(1):H352-358.
    32. Dedkov EI, Zheng W, Tomanek RJ. Compensatory growth of coronary arterioles in postinfarcted heart:regional differences in DNA synthesis and growth factor/receptor expression patterns. Am J Physiol Heart Circ Physiol.2006,291(4):H1686-1693.
    33. Wojakowski W, Maslankiewicz K, Ochala A,et al.The pro-and anti-inflammatory markers in patients with acute myocardial infarction and chronic stable angina. Int J Mol Med.2004,14(2):317-22.
    34. Virag JA, Rolle ML, Reece J, et al. Fibroblast growth factor-2 regulates myocardial infarct repair:effects on cell proliferation, scar contraction, and ventricular function. Am J Pathol.2007,171(5):1431-1440.
    35. House SL, Bolte C, Zhou M, et al.Cardiac-specific overexpression of fibroblast growth factor-2 protects against myocardial dysfunction and infarction in a murine model of low-flow ischemia. Circulation.2003,108(25):3140-3148.
    36. Unger EF, Banai S, Shou M, et al. Basic fibroblast growth factor enhances myocardial collateral flow in a canine model. Am J Physiol.1994,266(4 Pt 2):H1588-1595.
    37. Zheng J, Wen Y, Song Y, et al. Activation of multiple signaling pathways is critical for fibroblast growth factor 2-and vascular endothelial growth factor-stimulated ovine fetoplacental endothelial cell proliferation. Biol Reprod.2008,78(1):143-150.
    38. Namba T, Koike H, Murakami K, et al. Angiogenesis induced by endothelial nitric oxide synthase gene through vascular endothelial growth factor expression in a rat hindlimb ischemia model. Circulation.2003,108(18):2250-2257.
    39. Cai WJ, Kocsis E, Luo X, et al. Expression of endothelial nitric oxide synthase in the vascular wall during arteriogenesis. Mol Cell Biochem.2004,264(1-2):193-200.
    40. Taniyama Y, Tachibana K, Hiraoka K,et al. Local delivery of plasmid DNA into rat carotid artery using ultrasound. Circulation.2002,105(10):1233-1239.
    41. Bekeredjian R, Chen S, et al.Effects of ultrasound-targeted microbubble destruction on cardiac gene expression. Ultrasound Med Biol.2004,30(4):539-543.
    42. Bekeredjian R, Chen S, Frenkel PA, et al. Ultrasound-targeted microbubble destruction can repeatedly direct highly specific plasmid expression to the heart. Circulation.2003 Aug 26;108(8):1022-1026.
    43. Buss SJ, Humpert PM, Bekeredjian R, et al.Echocardiographic phase imaging to predict reverse remodeling after cardiac resynchronization therapy. JACC Cardiovasc Imaging.2009,2(5):535-543.
    44. Lawrie A, Brisken AF, Francis SE,et al.Ultrasound enhances reporter gene expression after transfection of vascular cells in vitro. Circulation.1999,99(20):2617-2620.
    45. Shohet RV, Chen S, Zhou YT, et al. Echocardiographic destruction of albumin microbubbles directs gene delivery to the myocardium. Circulation.2000,101(22):2554-2556.
    46. Mukherjee D, Wong J, Griffin B, et al. Ten-fold augmentation of endothelial uptake of vascular endothelial growth factor with ultrasound after systemic administration. J Am Coll Cardiol.2000,35(6):1678-1686.
    47. Kipshidze NN, Porter TR, Dangas G, et al. Systemic targeted delivery of antisense with perflourobutane gas microbubble carrier reduced neointimal formation in the porcine coronary restenosis model. Cardiovasc Radiat Med.2003,4(3):152-159.
    1 Ivey JA, Gardner EA, Fowlkes JB, et al. Acoustic generation of intra-arterial contrast boluses. Ultrasound Med Biol,1995,21(6):757-767.
    2 Ichihara M, Sasaki K, Umemura S, et al. Blood flow occlusion via ultrasound image-guided high-intensity focused ultrasound and its effect on tissue perfusion. Ultrasound Med Biol.2007,33(3):452-459.
    3 Carstensen EL. coustic cavitation and the safety of diagnostic ultrasound. Ultrasound Med Biol.1987,3(10):597-606.
    4 Miller DL.Overview of experimental studies of biological effects of medical ultrasound caused by gas body activation and inertial cavitation. Prog Biophys Mol Biol.2007,3(1-3):314-330.
    5 Luo W, Zhou X, Tian X, et al. Enhancement of ultrasound contrast agent in high-intensity focused ultrasound ablation. Adv Ther. 2006,23(6):861-868.
    6 Dalecki D, Child SZ, Raeman CH, et al. Bioeffects of positive and negative acoustic pressures in mice infused with microbubbles. Ultrasound Med Biol. 2000,26(8):1327-1332.
    7 Chomas J E, Dayton P, Allen J, et al. Mechanisms of contrast agent destruction. IEEE Trans Ultrason Ferroelectr Freq Control:2001,48(1):232-248.
    8 Didenko YT, Susliek KS. The energy efficiency of formation of Photons, radicals and ions during single-bubble cavitation. Nature2002,418(6896):394-397.
    9 Skyba DM, Priee RJ, LinkaAZ,et al. Direct in vivo visualization of intravascular destruction of microbubbles by ultrasound and its local effects on tissue.Circulation1998,98(4):290-293.
    10 Qin S, Caskey CF, Ferrara KW.Ultrasound contrast microbubbles in imaging and therapy:physical principles and engineering. Phys Med Biol.2009,54(6):R27-57.
    11 Zarnitsyn V, Rostad CA, Prausnitz MR. Modeling transmembrane transport through cell membrane wounds created by acoustic cavitation. Biophys J.2008,95(9):4124- 4138.
    12 Van wamel A, Kooiman K, Harteveld M, et al. Mechanism of intracellular delivery by acoustic cavitation. Ultrasound Med Biol,2006,32(6):915-924.
    13 Bekeredjian R, Kroll RD, Fein E, et al. Ultrasound targeted microbubble destruction increases capillary permeability in hepatomas. Ultrasound Med Biol. 2007,33(10):1592-1598.
    14 Manome Y, Nakayama N, Nakayama K, et al. Insonation facilitates plasmid DNA transfection into the central nervous system and microbubbles enhance the effect. Ultrasound Med Biol.2005,31(5):693-702.
    15 Korosoglou G, Hardt SE, Bekeredjian R,et al Ultrasound exposure can increase the membrane permeability of human neutrophil granulocytes containing microbubbles without causing complete cell destruction. Ultrasound Med Biol,2006,32(2):297-303.
    16 Bekeredjian R, Chen S, Pan W, et al. Effects of ultrasound-targeted microbubble destruction on cardiac gene expression. Ultrasound Med Biol.2004,30(4):539-543.
    17 Bekeredjian R, Chen S, Frenkel PA, et al. Ultrasound-targeted microbubble destruction can repeatedly direct highly specific plasmid expression to the heart. Circulation.2003 Aug 26; 108(8):1022-1026.
    18 Buss SJ, Humpert PM, Bekeredjian R, et al.Echocardiographic phase imaging to predict reverse remodeling after cardiac resynchronization therapy. JACC Cardiovasc Imaging.2009,2(5):535-543.
    19 Zhigang W, Zhiyu L, Haitao R, et al. Ultrasound-mediated microbubble destruction enhances VEGF gene delivery to the infarcted myocardium in rats. Clin Imaging. 2004,28(6):395-398.
    20 Kipshidze NN, Porter TR, Dangas G, et al. Systemic targeted delivery of antisense with perflourobutane gas microbubble carrier reduced neointimal formation in the porcine coronary restenosis model. Cardiovasc Radiat Med.2003,4(3):152-159.
    21 Mukherjee D, Wong J, Griffin B,et al. Ten-fold augmentation of endothelial uptake of vascular endothelial growth factor with ultrasound after systemic administration. J Am Coll Cardiol.2000,35(6):1678-1686.
    22 Zen K, Okigaki M, Hosokawa Y,et al.Myocardium-targeted delivery of endothelial progenitor cells by ultrasound-mediated microbubble destruction improves cardiac function via an angiogenic response. J Mol Cell Cardiol.2006,40(6):799-809.
    23 Chen S, Shohet RV, Bekeredjian R, et al.Optimization of ultrasound parameters for cardiac gene delivery of adenoviral or plasmid deoxyribonucleic acid by ultrasound-targeted microbubble destruction. J Am Coll Cardiol.2003,42(2):301-308.
    24 Iwasaki M, Adachi Y, Nishiue T, et al.Hepatocyte growth factor delivered by ultrasound mediated destruction of microbubbles induces proliferation of cardiomyo-cytes and amelioration of left ventricular contractile function in Doxorubicin-indu-ced cardiomyopathy. Stem Cells.2005,23(10):1589-1597.
    25 Lindner JR.et al. Evolving applications for contrast ultrasound. Am J Cardiol.2002,90 (10A):72J-80J.
    26 Lindner JR, Kaul S.Delivery of drugs with ultrasound. Echocardiography. 2001,18(4):329-337.
    27 Anwer K, Kao G, Proctor B, et al. Ultrasound enhancement of cationic lipid-mediated gene transfer to primary tumors following systemic administration. Gene Therapy,2000,7(21):1833-1839.
    28 Duvshani-Eshet M, Machluf M. Efficient transfection of tumors facilitated by long-term therapeutic ultrasound in combination with contrast agent:from in vitro to in vivo setting. Cancer Gene Ther.2007,14(3):306-315.
    29 Iwanaga K, Tominaga K, Yamamoto K, et al. Local delivery system of cytotoxic agents to tumors by focused sonoporation.Cancer Gene Ther,2007,14(4):354-363.
    30 Hauff P, Seemann S, Reszka R, et al. Evaluation of gas-filled microparticles and sonoporation as gene delivery system:feasibility study in rodent tumor models. Radiology,2005,236(2):572-578.
    31 Rapoport N, Gao Z, K, Kennedy A. Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. J Natl Cancer Inst, 2007,99(14):1095-1106.
    32 Lum AF, Borden MA. Davton PA, et al. Ultrasound radiation force enables targeted deposition of model drug carriers loaded on microbubbles. J Control Release,2006, 111(1-2):128-134.
    33 Hayashida K, Ooi J, Omagari K, et al. Percutaneous ethanol injection therapy by theranol mixed with CO2 microbubble for hepatocellular carcinoma. Nippon Shokakibyo Gakkai Zasshi,1997,94(11):730-738.
    34 Korpanty G, Carbon JG, Grayburn PA, et al. Monitoring response to anticancer therapy by targeting mlcrobubbles to tumor vasculature. Clin Cancer Res, 2007,13(1):323-330.
    35 Azuma H, Tomita N, Kaneda Y, et al. Transfection of NFkappaB-decoy oligodeoxynucleotides using efficient ultrasound-mediated gene transfer into donor kidneys prolonged survival of rat renal allografts. Gene Ther,2003,10(5):415-425.
    36 Borden MA, Caskey CF, Little E, et al.DNA and polylysine adsorption and multilayer construction onto cationic lipid-coated microbubbles. Langmuir. 2007,23(18):9401-9408.
    37 Siegel RJ, Luo H.Ultrasound thrombolysis.Ultrasonics.2008,48(4):312-320.
    38 Nishioka T, Luo H, Fishbein MC, et al. Dissolution of thrombotic arterial occlusion by high intensity low frequency ultrasound and dodecafluoropentane emulsion:an in vitro and in vivo study. J Am Coll Cardiol 1997,30(2):561-568.
    39 Bimbanm Y, Luo H, Nagai T, et al. Nonvasive in vivo clot dissolution without a thrombolytic drug:nasalization of thromboses iliofemoral arteries by transeutaneous ultrasound combined with intravenous infusion of microbubbles. Circulation,1998,97(2):130-134.
    40 Xie F, Tsutsui JM, Lof J, et al. Effectiveness of lipid microbubbles and ultrasound in declotting thrombosis. Ultrasound Med Biol.2005,31(7):979-985.
    41 Bekeredjian R, Katus HA, Kuecherer HF.Therapeutic use of ultrasound targeted microbubble destruction:a review of non-cardiac applications.Ultraschall Med. 2006,27(2):134-140.
    42 Leong-Poi H, Kuliszewski MA, Lekas M, et al. Therapeutic arteriogenesis by ultrasound-mediated VEGF 165 plasmid gene delivery to chronically ischemic skeletal muscle. Circ Res,2007,101(3):295-303.
    43 Kusumanto YH, Mulder NH, Dam WA, et al. Improvement of in vivo transfer of plasmid DNAin muscle:comparison of electroporation versus ultrasound. Drug Deliv, 2007,14(5):273-277.
    44 Yoshida T, Kondo T, Ogawa R, et al. Combination of doxorubicin and low-intensity ultrasound causes a synergistic enhancement in cell killing and additive enhancement in apoptosis induction in human lymphoma U927 cells. Cancer Chemother-Pharmacol.2008,61(4):559-567.
    45 Manomet Y, Nakayama N, Nakayama K, et al. Insonation facilitates plasmid DNA transfection into the central nervous system and microbubbles enhance the effect. Ultrasound Med Biol,2005,31(5):693-702.
    46 Chen WS, MatulaTJ, BraylllanAA,et al. A comparison of the fragmentation thresholds and inertial cavitation of different ultrasound contrast agents. J Acoust Soc Am.2003,113(1):645-651.
    47 Li P, Armstrong WF, Miller DL. Impact of myocardial contrast echocardiography on vaseular permeability:comparison of three different contrast agents. Ultrasound Med Biol.2004,30(1):83-91.
    48 Li T, Tachibana K, Kuroki M, et al. Gene transfer with echo-enhanced contrast agents:comparison between Albunex, Optison and Levovist in mice-mitial results. Radiology,2003,229(2):426-428.
    49 Zamitsyn VG, Prausnitz MR. Physical parameters influencing optimization of ultrasound-mediated DNA transfection. Ultrasound Med Biol,2004,30(4):527-538.
    50 Meijering BD, Henning RH, Van Gilst WH, et al. Optimization of ultrasound and microbubbles targeted gene delivery to cultured primary endothelial cells. J Durg Target,2007,15(10):664-671.
    51 Shen ZP, Brayman AA, Chen L, et al. Ultrasound with microbubbles enhances gene expression of plasmid DNA in the liver via intraportal delivery. Gene Ther,2008, 15(16):1147-1155.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700