用户名: 密码: 验证码:
大猿叶虫滞育诱导及滞育后生物学特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大猿叶虫Colaphellus bowringi Baly 1865属鞘翅目Coleptera,叶甲科Chrysomelidae,无缘叶甲属Colaphellus,是我国十字花科蔬菜上的一种重要食叶害虫。本研究的大猿叶虫江西种群以成虫在土壤中越冬和越夏。由于成虫滞育期的差异,该虫的化性显示了明显的种内变异。有些个体隔年繁殖;有些个体是一化性的,仅在春季或秋季繁殖1代;有些个体是二化性的,春季和秋季各繁殖1代;有些个体是多化性的,春季1代,秋季2-3代。因此,大猿叶虫在田间一年可发生4代。大猿叶虫是短日照型昆虫,但它的光周期反应主要取决于温度,当日平均温度≤20℃时,不论光周期条件如何,所有个体进入滞育。滞育抑制的短日照效应只有在较高温度下(>20℃)才能表达。
     本论文以大猿叶虫为材料,不仅较详细研究了外界环境因子对滞育诱导的影响,也较系统研究了滞育持续期对滞育解除后生物学特性及其子代繁殖的影响。结果分述如下:
     1、大猿叶虫滞育诱导和钟机制的研究 24-h昼夜循环的光周期反应显示了大猿叶虫是一个典型的短日照型昆虫。在25℃和28℃下,临界暗长介于10h至12 h之间。非24-h昼夜循环的光周期反应曲线表明暗期的长度在滞育的决定中发挥了重要的作用。夜间干扰试验揭示了暗期对光干扰高度敏感。Nanda-Hamner试验的光周期反应曲线呈现了三个以24 h间隔的滞育诱导峰。Bthasow试验的光周期反应则没有显示滞育诱导的节律性。因此,昼夜节律系统(circadium system)仅构成了大猿叶虫光周期钟的一部分。在该虫滞育诱导的敏感期内,光周期的计数器可积累长夜信息也能积累短夜信息,但积累的方式不同。
     2、温周期对大猿叶虫滞育诱导的作用 在缺乏光的条件下(DD),大猿叶虫温周期反应的临界低温持续期约为10.5 h。恒温反应曲线和温周期反应曲线均显示了滞育的发生主要取决于日平均温度,日平均温度≤20℃时,所有个体进入滞育,>20℃时,随日平均温度升高滞育的发生逐渐下降。低温期反应阈值温度约为19℃,温期反应阈值温度约为31℃。在日平均温度为22℃,23℃和24℃下,温周期幅度对滞育诱导具有显著影响,但当日平均温度≥25℃时,温周期幅度对滞育诱导没有显著作用。在LD12:12下,温周期滞育的诱导受到光期温度的强烈影响;温周期在LD12:12下的滞育发生低于持续暗期下的滞育发生。
     3、食料对大猿叶虫滞育诱导的影响 在25℃、LD13:11条件下,大猿叶虫取食小白菜A(苏州青)Brassica chinensis Var. communis、萝卜叶Raphanus sativus var.longipinnatus、茎用芥菜叶B. juncea var. tumida和小白菜B(上海青)B. chinensis var.
    
    communis滞育比例依次降低;取食衰老叶片趋于诱导滞育。食料对大猿叶虫滞育诱导的
    影响仅在一定的温度和光周期范围内才会表达出来。对不同寄主叶片营养成分含量测定,
    分析表明,叶片中脂类和叶绿素分别与水分相互作用调节滞育的发生。
     4、光周期和温度对滞育后成虫生物学特性的影响在25℃下,光周期(LD 14:10和
    LD12:12)对成虫滞育后的生殖力、存活率、寿命、总产卵量、平均产卵量均无显著影响。
    在长日照(L D14:10)下,温度(18℃,22℃和25℃)对滞育后成虫的生物学特性具有明显的
    影响,随温度的降低,总产卵量随温度下降呈降低趋势,但无显著差异;平均产卵量随
    温度下降而显著降低;滞育后雌虫寿命亦随温度降低显著延长,但雄虫滞育后寿命差异
    不显著。18℃下少量个体被再次诱导滞育。
     5、大猿叶虫滞育持续期对其滞育后生物学特性的影响在自然条件和恒定条件下,
    对非滞育和自然滞育持续期约为5、9、16、22、29、34、47个月的大猿叶虫成虫寿命和
    生殖力进行了测定。结果表明,非滞育成虫的寿命显著长于经历约5、9、16个月滞育的
    成虫滞育后寿命,但不显著长于经历约22、29、34、47个月滞育成虫。非滞育雌虫具有
    长的产卵前期和产卵期,其每雌总产卵量、早期产卵量、平均产卵量和每日的产卵量显
    著低于经历滞育的雌虫(经历约5个月滞育的雌虫除外)。在经历滞育的个体中,产卵前期
    差异很小,每雌总产卵量、早期产卵量、平均产卵量和滞育后寿命、产卵期以滞育期22
    个月的雌虫最高或最长,滞育期29一34个月的雌虫次之,滞育期5一16个月的雌虫最低。
     6、大猿叶虫亲代滞育持续期对其子代繁殖的影响在25℃、LD12:12条件下,测定
    了大猿叶虫亲代滞育持续期(约5、9、22、34个月)对其子代生物学特性的影响。不同
    亲代卵孵化率,及子代蛹存活率、产卵量、非滞育成虫寿命均无显著差异。非滞育亲代
    的卵和子代幼虫发育似乎需要更长时间,但其非滞育成虫寿命较短。亲代经历约34个月
    滞育的子代卵和幼虫发育时间短,但蛹期较长。非滞育亲代的子代幼虫存活率显著低于
    亲代经历滞育的子代幼虫,亲代滞育持续期对子代幼虫存活率影响不显著。非滞育亲代
    的子代成虫滞育发生显著低于亲代经历滞育的子代成虫。
     研究结果表明,光周期、温周期和食料因子对大猿叶虫滞育诱导的调节作用,决定
    了该虫春季发生一代、秋季发生三代。大猿叶虫成虫个体间寿命、生殖力和滞育持续期
    的变异,以及滞育持续期对子代繁殖的影响,构成了该虫分散适应策略的一部分。
The cabbage beetle, Colaphellus bowringi Baly 1865 (Coleptera: Chrysomelidae) is a serious pest of crucifers in China. The beetle's population in Jiangxi Province enters summer and winter diapause as adults in the soil. There are two distinct infestation peaks in the field, one in spring and a second in autumn. The beetle showed a considerable intrapopulation variation in its life history due to the difference in duration of diapause. Some individuals took more than one year to produce one generation. Some were univoltine, i.e., only one generation in spring or autumn; Some were biovoltine, i.e., one generation in spring, another in autumn; Some were multivoltine, i.e., one generation in spring, two or three generations in autumn. Thus, there are four generations per year in the field. The cabbage beetle is a short-day species, but its photoperiodic response highly depended on temperature. All adults entered diapause regardless of photoperiods if the mean temperature was ≤ 20℃; Whereas
    t
    he diapause-averting
    influence of short daylengths was expressed only at high temperatures (above 20℃).
    In this thesis, the effects of environmental factors on diapause induction and diapause duration on the post-diapause life-history traits and offspring performance were investigated in the cabbage beetle.
    1. Diapause induction and clock mechanism
    The cabbage beetle, C. bowringi is a short day species. Using 24-h light-dark cycles, the photoperiodic responses at 25 and 28癈 revealed a critical nightlength between 10 and 12 h. Using non-24-h light-dark cycles, it showed that the duration of the night was much more important than the duration of the light phase in diapause determination. Night-interruption experiments with T = 24 h showed that diapause was effectively induced by a 2-h light pulse in most scotophases; whereas day-interruption experiments by a 2-h dark-break had a little effect on the incidence of diapause. Nanda-Hamner experiments displayed three declining peaks of diapause at 24 h circadian intervals. Bunsow experiments showed two very weak peaks for diapause induction, one being 8 h after lights-off, and another 8 h before lights-on, but it did not show peaks of diapause at a 24 h interval. These results suggest that the circadian oscillatory system constitutes a part of the photoperiodic clock of this beetle but plays a limited role i
    
    
    n its photoperiodic time measurement. The experiments of alternating short-night cycles (LD 16:8) and long-night cycles (LD 12:12) during the sensitive larval period showed that the 'counter' in C. bowringi accumulated long nights as well as short nights, but in different ways.
    2. Effects of thermoperiod on the diapause induction
    The diapause response curves at the thermoperiod (C:T16:28℃) under continuously dark
    
    
    
    
    rearing conditions revealed that the critical cryophase duration was of about 10.5 h. The diapause response curves both at different constant temperatures and at the thermoperiod under continuously dark rearing conditions clearly showed that the incidence of diapause mainly depended on whether or not the mean temperature was ≤20℃ or >20℃. If the mean temperature was ≤20℃, all individuals entered diapause; if >20℃, the incidence of diapause gradually declined with increasing mean temperatures. The results demonstrated a cryophase threshold temperature of about 19℃ and a thermophase threshold temperature of about 31℃ in this insect. Thermoperiodic amplitude (temperature difference between cryophase and thermophase) was shown to have a significant influence on diapause induction at the mean temperatures of 22, 23 and 24℃, but not at ≤20℃ and at > 25℃. Thermoperiodic responses at LD12: 12 clearly showed that the incidence of diapause was strongly influenced by the photophase temperature. The thermoperio
    d at LD12
    :12 induced much lower incidence of diapause than the thermoperiod with the same temperature at continuous darkness.
    3. Effects of food-plants on the diapause induction
    In the cabbage beetle, C. bowringi, the incidence of diapause w
引文
1.戴志一,秦启联,杨益众.亚洲玉米螟滞育诱导外源性因子研究.生态学报,2000,20,620-623.
    2.花保祯,曾晓慧,张皓.不同采果期对桃蛀果蛾幼虫发育及滞育的影响.西北农业大学学报,1996,24,35-38.
    3.郭予元 主编.棉铃虫的研究.北京:中国农业出版社,1998,pp30-41.
    4.刘会梅,孙绪艮,王向军.山楂叶螨滞育的初步研究.昆虫学报,2003,46,500-504.
    5.沈阳农学院主编.蔬菜昆虫学.北京:农业出版社,1991,pp196-197.
    6.唐启义,冯明光.实用统计分析及其DPS数据处理系统.北京:科学出版社,2002.
    7.王启虞和金孟肖.白菜乌壳虫之夏眠与冬眠.昆虫与植病,1936,4,574-577.
    8.吴孔明和郭予元.棉铃虫滞育的诱导因素研究.植物保护学报,1995,22,331-336.
    9.徐卫华.昆虫滞育的研究进展.昆虫学报,1999,42,100-107.
    10.许永玉,牟吉元,胡萃,席敦芹.光周期和温度对中华通草蛉成虫生殖的影响.华东昆虫学报,2002,11,39-43.
    11.薛芳森,李爱青,朱杏芬,桂爱礼,蒋佩兰,刘晓芬.大猿叶虫生活史的研究.昆虫学报,2002,45,494-498.
    12.薛芳森,杨爱卿,李爱青,李峰,朱杏芬.大猿叶虫夏眠与冬蛰的观察.江西植保,2001,24,1-2.
    13.严国光,王福钧.农业仪器分析.北京:农业出版社,1982,p319,542.
    14.张乃鑫,张领耘,舒宗泉.桃小食心虫生物学研究:果实对幼虫蛀果成活、生长发育及滞育的影响.昆虫学报,1977,20,170-176.
    15.章士美.昆虫的化性.江西农业大学学报,农业昆虫系统生物学专辑.1986,1-7.
    16.章士美和赵泳祥.中国农林昆虫地理分布.北京:中国农业出版社,1996,p168-169.
    17.中国土壤学会农业化学专业委员会.土壤农业化学常规分析方法.北京:科学出版社,1983,p259,261.
    18. Adarns, A. J. The photoperiodic clock of the cabbage whitefly, Aleyrodes proletella: resonance experiments at three temperatures. Journal of Insect Physiology, 1986, 32, 567-572.
    19. Adkisson, P. L. Internal clocks and insect diapause. Science, 1966, 154, 234-241.
    20. Adkisson, P. L., Bell, R. A. and Wellso, S. G. Environmental factors controlling the induction of diapause in the pink bollworm, Pectinophora gossypiella (Saunders). Journal of Insect Physiology, 1963, 9, 299-310
    21. Aggarwal, V. P., Saxena, D. M. and Agarwal, H. C. Role of food and larval age in induction of diapause in Trogoderma granarium Everts. Journal of Entomological Research, 1981, 5, 39-42.
    22. Akkawi, M. M. and Scott, D. R. The effect of age of parents on the progeny of diapaused and nondiapaused Heliothis zea. Entomologia Experimentalis et Applicata, 1984, 35, 235-239.
    
    
    23. Barker, R. J. and Cohen, C. F. Light-dark cycles and diapause induction in Pieris rapae (L.). Entomologia Experimentalis et Applicata, 1965, 8, 27-32.
    24. Beck, S. D. Photoperiodic induction of diapause in an insects. Biological Bulletin, 1962a, 122, 1-12.
    25. Beck, S. D. Temperature effects on insects: relation to periodism. Proceedings of North Central Branch of the Entomological Society of America, 1962b, 17, 18-19.
    26. Beck, S. D. Insect photoperiodism. New York: Academic Press. 1968.
    27. Beck, S. D. Insect photoperiodism(2nd ed.). Academic Press, New York. 1980.
    28. Beck, S. D. Thermoperiodic induction of larval diapause in the European corn borer, Ostrinia nubilalis. Journal of Insect Physiology, 1982, 28, 273-277.
    29. Beck, S. D. Thermal and thermoperiodic effect on larval development and diapause in the European corn borer, Ostrinia nubilalis. Journal of Insect Physiology, 1983a, 29, 107-112.
    30. Beck, S. D. Insect thermoperiodism. Annual Review of Entomology, 1983b, 28, 91-108.
    31. Beck, S. D. Effects of thermoperiod on photoperiodic determination of larval diapause in Ostrinia nubilalis. Journal of Insect Physiology, 1985, 31, 41-46.
    32. Braby, M. F. Reproductive seasonality in tropical satyrine butterfies: strategies for the dry season. Ecological Entomology, 1995, 20, 5-17.
    33. Bradshaw, W. E. Major environmental factors inducing the termination of larval diapause in Chaoborus americanus Johannsen (Diptera: Culicidae). Biological Bulletin, 1969, 136:2-8
    34. Bradshaw, W. E. Thermoperiodism and the thermal environment of the pitcher-plant mosquito, Wyeomyia smithii. Oecologia, 1980, 46, 13-17.
    35. Brown, J. R. and Phillips, J. R. Diapause in Microplitis croceipes (Hymenoptera: Braconidae). Annals of the Entomological Society of America, 1990, 83, 1125-1129.
    36. Brown, J. R. and Phillips, J. R. Thermoperiod Effects on Diapause Induction in Microplitis croceipes (Cresson) (Hymenoptera: Braconidae). Environmental Entomology, 1991, 20, 1444-1446.
    37. Bulter, G. D., Jr., Wilson, L. T. and Henneberry, T. J. Heliothis virescens (Lepidoptera: Noctuidae): Initiation of summer diapause. Journal of Economic Entomology, 1985, 78, 320-324.
    38. Bünning, E. and Joerrens, G. Tagesperiodische antagonistische Schankungen der Blau-violett und Gelbrot- Empfindlichkeit als Grundlage der photoperiodischen Diapause-Induction bei Pieris brassicae. Z Naturf. 1960, 15,205-213.
    39. Bünsow, R. C. The circadian rhythm of photoperiodic responsiveness in Kalanchoe. Cold Spring Harbor Symposium on Quantitative Biology, 1960, 25,257-260.
    40. Carlisle, D. B., Ellis, P. E., and Betts, E. The influence of aromatic shrubs on sexual maturation in the desert locust Schistocerca gregaria. Journal of Insect Physiology, 1965, 11, 1541-1558.
    
    
    41. Caussanel, C. A., Karlinsky, M., and Breuzet, C. Les arrts de vitellogenèse, éléments de quiescences physiologiques chez Labidura riparia (Insecte, Dermaptere). Bull. Soc. Zool. France, 1980, 105,427-436.
    42. Chang, Y. F., Tauber, M. J., and Tauber, C. A. Reproduction and quality of F_1 offspring in Chrysoperla carnea: differential influence of quiescence, artificially-induced diapause, and natural diapause. Journal of Insect Physiology, 1996, 42, 521-528.
    43. Charlesworth, P., and Shorrocks, B. The reproductive biology and diapause of the British fungal-breeding Drosophila. Ecological Entomology, 1980, 5, 315-326
    44. Chippendale, G. M., and Reddy, A. S. Temperature and photoperiodic regulation of diapause of the southwestern corn borer, Diatraea grandiosella. Journal of Insect Physiology, 1973, 19, 1397-1408.
    45. Chippendale, G. M., Reddy, A. S., and Catt, C. L. Photoperiodic and thermoperiodic interaction in the regulation of the larval diapause of Diatraea grandiosella. Journal of Insect Physiology, 1976, 22, 823-828.
    46. Claret, J. Two mechanisms in the biological clocks of Pieris brassicae L.: an oscillator for diapause induction, an hourglass for diapause termination. Experientia, 1985, 41, 1613-1615.
    47. Claret, J., and Carton, Y. Influence de I'espèce-hte sur la diapause de Pimpla instigator F. (Hyméoptére, Ichneumonidae). Cr hebd. Séanc Acad Sci, Pauis(D), 1975, 281,279-282.
    48. Cobb, P. P., and Bass, M. H. Some effect of photoperiod, temperature, and food on the induction of diapause in boll weevil. Journal of Economic Entomology, 1968, 61,624-625.
    49. Danforth, B. N. Emergence dynamics and bet-hedging in a desert bee Perdita portalis. Proceedings of the Royal Society of London Series B, 1999, 266, 1985-1994.
    50. Danilevsky, A.S. Photoperiodism and seasonal development of insect. Oliver & Boyd, London, 1965, 283 pp. (English translation).
    51. Danilevshiy, A. S., and Kusnetsova, I, A. Vnutrividovye adaptatsii nasekomykh Ⅰ kleshchei (Intraspecific adaptations in insects and mites). Lenigrad: Len Gos Univ. 1968.
    52. Danks, H. V. Insect dormancy: an ecological perspective. Biological Survey of Canada, Ottawa. 1987.
    53. Danks, H. V. Insect life-cycle polymorphism: theory, evolution and ecological consequences for seasonality and diapause control. Kluwer Academic Publishers, Netherlands. 1994.
    54. Danks, H. V. The range of insect dormancy responses. European Journal of Entomology, 2002, 99, 127-142.
    55. Denlinger, D. L. Pupal diapause in trophical flesh flies: Environmental and endcrine regulation, metabolic rate and genetic selection. Biological Bulletin, 1979, 156, 31-46.
    56. Denlinger, D. L. Basis for a skewed sex ratio in diapause-destined flesh flies. Evolution, 1981, 35, 1247-1248.
    
    
    57. Denlinger, D. L. Dormancy in tropic insects. Annual Review of Entomology, 1986, 31: 239-264.
    58. Denlinger, D. L. Regulation of diapause. Annual Review of Entomology, 2002, 47, 93-122.
    59. Derr J A. Population movements of Dysdercus bimaculatus (Pyrrhocoridae, Heteroptera) in relation to moisture stress and the fruiting cycles of its different host plants. Ph.D. thesis, Washington Uni., St. Louis, Missouri. 1999.
    60. Deseo, K. V. Side-effects of diapause inducing factors on the reproductive activity of some lepidopterous species. Nature New Biology, 1973, 242, 126-127.
    61. Deseo, K. V., and Saringer, G. Photoperiodic effect on fecundity of Laspeyresia pomonella, Grapholitha funebrana and G molesta: the sensitive period. Entomologia Experimentalis et Applicata, 1975, 18: 187-193.
    62. Dewitt, J. R., and Armbrust, E. J. Photoperiodic sensitivity of the alfalfa weevil during larval development. Journal of Economic Entomology, 1972, 65, 1289-1292.
    63. de Wilde, J., and Hsiao, T. Geographic diversity of the Colorado potato beetle and its infestation in Eurasia. In Advances in potato pest management (eds. J. H. Lashomb and R. Casagrande). Hutchinson Ross, Stroudsberg, PA. 1981, pp. 47-68.
    64. de Wilde, J., Duintjer, C. S., and Mook, L. Physiology of diapause in the adult Colorado beetle (Leptinotarsa decemlineata Say). Ⅰ. The photoperiod as a controlling factor. Journal of Insect Physiology, 1959, 3, 75-85.
    65. Dingle, H. Diapause in a migrant insect, the milkweed bug Oncopeltus fasciatus (Dallas) (Hemiptera: Lygaeidae). Oecologia, 1974, 17, 1-10.
    66. Dingle, H. Adaptive variation in the evolution of insect migration, In R L Rabb and G G Kennedy (Eds.), Movement of highly mobile insects: concepts and methodology in research. N. C. State Univ.m Raleigh, 1979 pp64-87
    67. Duelli, P. Diapause induction in Chrysoperla carnea: what photoperiodical parameters are actually measured? In: Ecology of Aphidophaga. Ⅰ. Hodek (ed). Academia, Prague, and W Junk, Dordrecht, 1986, pp 239-244.
    68. Dumortier, B. The "circadian paradigm": A test of involvement of the circadian system in the photoperiodic clock. Journal of Theoretical Biology, 1994, 166, 101-112.
    69. Dumortie, B., and Brunnarius, J. L'information thermoperiodique et l'induction de la diapause chez Pieris brassicae. Comptes Rendus de Ⅰ Academie des Sciences Serie, 1977a, 284, 957-960.
    70. Dumortie, B., and Brunnarius, J. Existence d'une composabte circadierme dans l'induction thermoperiodique de la diapause chez Pieris brassicae. Comptes Rendus de 1 Academie des Sciences Serie, 1977b, 285,361-364.
    71. Ellers, J., and Van Alphen, J. J. M. A trade-off between diapause duration and fitness in female parasitoids. Ecological Entomology, 2002, 27,279-284.
    72. Fantinou, A. A., and Kagkou, E. A. Effect of thermoperiod on diapause induction of Sesamia
    
    nonagrioides (Lepidoptera, Noctuidae). Environmental Entomology, 2000, 29, 489-494.
    73. Fantinou, A. A., Karandinos, M. G., and Tsitsipis, J. A. Diapause induction in the Sesamia nonagrioides (Lepidoptera: Noctuidae) affect of photoperiod and temperature. Environmental Entomology, 1995, 24, 1458-1466.
    74. Feder, J. L., Roethele, J. B., Wlazlo, B., and Berlocher, S. H. Selective maintenance of allozyme differences among sympatric host races of the apple maggot fly. Proceedings of the National Academy of Sciences, 1997, 94, 11417-11421.
    75. Fischer, K., and Fiedler, K. Sexual differences in life-history traits in the butterfly Lycaena tityrus: a comparison between direct and diapause development. Entomologia Experimentalis et Applicata, 2001, 100, 325-330.
    76. Forrest, T. G. Insect size tactics and developmental strategies. Oecologia, 1987, 73, 178-184.
    77. Foster, D. R., and Crowder, L. A. Diapause of pink boliworm, Pectinophora gossypiella (Saunders) related to dietary lipids. Comparative Biochemistry and Physiology, 1980, 65B: 723-726.
    78. Fujiie, A. Ecological studies on the population of the pear leaf miner, Bucculatrix pyrivorella Kuroko (Lepidoptera:Lyonetiidae). Ⅲ. Fecundity fluctuation from generation to generation within a year. Applied Entomology and Zoology, 1980, 15, 1-9.
    79. Furunishi, S., and Masaki, S. Photoperiodic response of the univoltine ant-lion Myrmeleon formicarius (Neuoptera: Myrmeleontidae). Kontyǘ, 1981, 49:653-667
    80. Gebre-Amlak, A. Phenology and fecundity of maize stalk borer Busseola fusca (Fuller) in Awassa, southern Ethiopia. Insect Science and its Application, 1989, 10, 131-137.
    81. Glitho, I. A., Lenga, A., and Huignard. J. Intensity of the male reproductive diapause in Bruchidius atrolineatus Pic (Coleoptera: Bruchidae) is affected by induction conditions. Invertebrate Reproduction and Development, 1991, 19, 233-243.
    82. Goehring, L., and Oberhauser, K. S. Effects of photoperiod, temperature, and host plant age on induction of repreductive diapause and development time in Danaus plexippus. Ecological Entomology, 2002, 27, 674-685.
    83. Goryshin, N. I. The influence of diurnal light and temperature rhythms on diapause in Lepidoptera. Entomological Review, 1964, 43, 43-46.
    84. Goryshin, N. I., and Tyshchenko G. F. Accumulation of photoperiodic information during diapause induction in the cabbage moth, Barathra brassicae L. (Lepidoptera, Noctuidae). Entomological Review, 1973, 52, 173-176.
    85. Goryshin, N. I., Volkovich, T.A., Saulich, A. Kh., Vagner, M., and Borisenko, I. A. The role of temperature and photoperiod in the control over development and diapause of the carnivorous bug Podisus maculiventris (Hemiptera, Pentatomidae). Zoologicheskii Zhurnal, 1988, 67, 1149-1161 (in Russian).
    86. Han, E. N., and Bauce, E. Timing of diapause initiation, metabolic changes and over wintering survival of the spruce budworm, Choristoneura fumiferana. Ecological Entomology, 1998, 23, 60-167.
    
    
    87. Hardie, J. The photoperiodic counter, quantitative day-length effects and scotophase timing in the vetch aphid Megoura viciae. Journal of Insect Physiology, 1990, 36, 939-949.
    88. Hardie, J., and Vaz Nunes, M. The aphid photoperiodic counter. In: Leather, S.R., Watt, A.D., Mills, N.J., Waiters, K.F.A. (Eds.), Individuals Populations and Patterns in Ecology. Intercept, UK, 1994, pp. 13-23.
    89. Hare, J. D. Seasonal variation in plant-insect association: Utilization of Soldnum dulcamara by Leptinotarsa decemlineata. Ecology, 1983, 64: 345-361.
    90. Henrich, V. C., and Denlinger, D. L. Selection for late pupariation affects diapause incidence and duration in the flesh fly, Sarcophaga bullata. Physiological Entomology, 1982, 7, 407-411.
    91. Hodek, I. Le role des signaux de l'environment et des processus endogens darts laregulation de la reproduction par la diapause imaginable. Bull. Soc. Zool. De France, 1981, 106,317-325.
    92. Hodek, I. Environmental regulation and some neglected aspects of insect diapause. Entomological Science, 1999, 2, 533-537.
    93. Hodek, I. Controversial aspects of diapause development. European Journal of Entomology, 2002, 99, 163-173.
    94. Hodek, I., Bonet, A., and Hodkova, M. Some ecological factors affecting diapause in adults of Acanthoscehdes obtectus from Mexican mountains. In Ⅴ Labeyrie (ed.), The Ecology of Bruchids Attacking Legumes (Pulses), 1981, pp43-55.
    95. Hodek, I., and Hodková, M. Multiple role of temperature during insect diapause: a review. Entomologia Experimentalis et Applicata, 1988, 49, 153-166.
    96. Hodek, I., Iperti, G., and Rolly, F. Activation of hibernating Coccinella septempunctata (Coleptera) and Perilitus coccinellae (Hymenoptera) and the photoperiodic response after diapause. Entomologia Experimentalis et Applicata, 1977, 21,275-286.
    97. Honeck, A. Intraspecific variation in body size and fecundity in insects: a general relationship. OIKOS, 1993, 66, 483-492.
    98. Hopper, K. R. Risk-spreading and bet-hedging in insect population biology. Annual Review of Entomology, 1999, 44, 535-560.
    99. Hunter, M. D., and McNeil, J. N. Host-plant quality influences diapause and voltinism in a polyphagous insect herbivore. Ecology, 1997, 78, 977-986.
    100. Ikeda-Kikue, K., and Numata, H. Effects of diet, photoperiod and temperature on the post-diapause reproductive in the cabbage bug, Eurydema rugosa. Entomologia Experimentalis et Applicata, 1992, 64, 31-36.
    101. Ikeda-Kikue, K., and Numata, H. Effect of low temperature on the termination of photoperiodic and food-mediated diapause in the cabbage bug, Eurydema rugosa Motschulsky (Heteroptera: Pentatomidae). Applied Entomology and Zoology, 1994, 29, 229-236.
    102. Irwin, J. T., and Lee, R. E. Jr. Mild winter temperatures reduce survival and potential fecundity of the goldenrod gall fly, Eurosta solodaginis (Diptera: Tephritidae). Journal of Insect Physiology, 2000,
    
    46,655-661.
    103. Ishihara, M., and Shimada, M. Trade —off in allocation of metabolic reserves: effects of diapause on eggs production and adult longevity in a multivotine bruchid, Kytorhinus sharpianus. Functional Ecology, 1995, 9, 618-624.
    104. Istock, C. A. Fitness variation in a natural population. In: Evolution of Insect Migration and Diapause. H. Dingle (ed.), New York, Springer-Verlag, 1978, pp 171-190.
    105. Istoek, C. A., Wasserman, S. S., and Zimmer, H. Ecology and evolution of the pitcher plant mosquito. 1. Population dynamics and laboratory reponses to food and population density. Evoloution, 1975, 29, 296-312
    106. Istock, C. A., Zisfein, J., and Vavra, K. J. Ecology and evolution of the Pitcher-plant mosquito. 2. The substructure of fitness. Evolution, 1976, 30, 548-557.
    107. Jansson, R. K., Zitzman, A. E. Jr., and Lashomb, J. H. Effects of food plant and diapause on adult survival and fecundity of Colorado potato beetle (Coleoptera: Chrysomelidae). Environmental Entomology, 1989, 18, 291-297.
    108. Johnsen, S., and Gutierrez, A. P. Induction and termination of winter diapause in a Californian strain of the cabbage maggot (Diptera: Anthomyiidae). Environmental Entomology, 1997, 26, 84-90.
    109. Kalushkov, P., Hodková, M., Nedvěd, O., and Hodek, I. Effect of thermoperiod on diapause intensity in Pyrrhocoris apterus (Heteroptera: Pyrrhocoridae). Journal of Insect Physiology, 2001,47, 55-61.
    110. Kim, Y., Krafsur, E. S., Bailey, T. B., and Zhao, S. Mode of inheritance of face fly diapause and its correlation with other developmental traits. Ecological Entomology, 1995, 20, 359-366.
    111. Kimura, M. T., Awasaki, T., Ohtsu, T. and Shimada, K. Seasonal changes in glycogen and trehalose content in relation to winter survival for four temperate species of Drosophila. Journal of Insect Physiology, 1992, 38, 871-875.
    112. Kimura, Y., and Masaki, S. Hourglass and oscillator expression of photoperiodic diapause response in the cabbage moth Mamestra brassicae. Physiological Entomology, 1993, 18, 240-246.
    113. Knulle, W. Genetic and environmental determinaats of hypopus duration in the stored-product mite, Lepidoglyphus destructor Experimental & Applied Acarology, 1991, 10, 231-258.
    114. Kono, Y. Abnormal photoperiodic and phototactic reactions of the beetle, Epilachna vigintioctopunctata, reared on sliced potatoes. Applied Entomology and Zoology, 1979, 14, 185-192.
    115. Kono, Y. Endocrine activities and photoperiodic sensitivity during prediapause period in the phytophagous lady beetle, Epilachna vigintioctopunctata. Applied Entomology and Zoology, 1980, 15, 73-80.
    116. Koveos, D.S., Kroon, A., and Veerman, A. The same photoperiodic clock may control induction and maintenance of diapause in the spider mite Tetranychus urticae. Journal of Biological Rhythms, 1993, 8, 265-282.
    117. Kroon, A., and Veenendaal, R. L. Trade-off between diapause and other life-history traits in the spider mite Tetranychus urticae. Ecological Entomology, 1998, 23,298-304.
    
    
    118. Kroon, A., Veenendaal, R. L., and Veerman, A. Photoperiodic induction of diapause in the spider mite Tetranychus urticae: Qualitative or quantitative time measurement? Physiological Entomology, 1997, 22, 357-364.
    119. Lenga, A., and Huignard, J. Effect of changes in the thermoperiod on reproductive diapause in Bruchidius atrolineatus Pic (Coleoptera: Bruchidae). Physiological Entomology, 1992, 17, 247-254.
    120. Lewis, R.D., and Saunders, D.S. A damped circadian oscillator model of an insect photoperiodic clock. Ⅰ. Description of the model on a feedback control system. Journal of Theoretical Biology, 1987, 128, 47-59.
    121. Linley, J. R., Evans, H. T., and Evans, F. D. S. A quantitative study of autogeny in a naturally occurring population of Culicoides furens (Poey) (Diptera: Ceratopogonidae). Journal of Animal Ecology, 1970, 39, 169-183.
    122. Masaki, S. Summer diapause. Annual Review of Entomology, 1980, 25, 1-25.
    123. Masaki, S. Unity and diversity in insect photoperiodism. In Photoperiodic Regulation of Insect and Molluscan Hormones (Eds Porter R. and Collins G. M.) pp.7-24 Ciba Foudation Symposium No. 104, Pitman, London. 1984.
    124. Masaki, S., and Kikukawa, S. The diapause clock in a moth: Response to temperature signals. In: Biological Clocks in Seasonal Reproductive Cycles, BK Foilett and DE Follett, eds, pp 102-112, Scientechnica, Bristol, UK. 1981.
    125. McNeil, J. N., and Rabb, R. L. Physical and physiological factors in diapause initiation of two hyperparasites of the tobacco hornworn, Manduca Sexta. Journal of Insect Physiology, 1973, 19, 2107-2118.
    126. Menaker, M., and Gross, G. Effect of fluctuating temperature on diapause induction in the pink bollworm. Journal of Insect Physiology, 1965, 11,911-914.
    127. Menu, F., and Desouhant, E. Bet-hedging for variability in life cycle duration: bigger and later-emerging chestnut weevils have increased probability of prolonged diapause. Oecologia, 2002, 132, 167-174.
    128. Messenger, P. S. Bioclimatic studies of the aphid parasite Praon exsoletum. 2. Thermal hits to development and occurrence of diapause. Annals of the Entomological Society of America, 1969, 62, 1026-1031.
    129. Mooney, H. A. Environmental controls on the seasonality of a drought decidous shurb, Diplacus aurantiacus and its predator, the chechspot butterfly, Euphydryas chalcedona. Oecologia, 1980, 45, 143-146.
    130. Mousseau, T. A., and Roff, D. A. Adaptation to seasonality in a cricket: patterns of phenotypic and genotypic variation in body size and diapause expression along a cline in season length. Evolution, 1989, 43, 1483-1496.
    131. Nakamura, K., and Numata, H. Alternative life cycles controlled by temperature and photoperiod in the oligophagous bug, Dybowskyia reticulata. Physiological Entomology, 1998, 23, 69-74.
    
    
    132. Nanda, K. K., and Hamner, K. C. Studies on the nature of the endogenous rhythm affecting photoperiodic response of Biloxi soybean. Botanical Gazette, 1958, 120, 14-25.
    133. Neal, J. W., Chittams, J. L., and Bentz, J. A. Spring emergence by larvae of eastern tent caterpillar (Lepidoptera: Lasiocampidae): a hedge against high-risk conditions. Annals of the Entomological Society of America, 1997, 90, 596-603.
    134. Numata, H. Photoperiodic induction of the first and the second diapause in the bean bug, Riptortus clavatus: a photoperiodic history effect. Journal of Comparative Physiology A, 1990, 167, 167-171.
    135. Numata, H., and Hidaka, T. Photoperiodic control of adult diapause in the bean bug, Riptortus clavatus Thunberg (Heteroptera: Coreidae). Ⅰ. Resversible induction and termination of diapause. Applied Entomology and Zoology, 1982, 17, 530-538.
    136. Numata, H., and Hidaka, T. Photoperiodic control of adult diapause in the bean bug, Riptortus clavatus Thunberg (Heteroptera: Coreidae) Ⅳ: Food and post-diapause development. Applied Entomology and Zoology, 1984, 19, 443-447.
    137. Numata, H., Saulich, A. H., and Volkovich, T. A. Photoperiodic responses of the Linden bug, Pyrrhocoris apterus, under conditions of constant temperature and under thermoperiodic conditions. Zoological Science, 1993, 10, 521-527.
    138. Numata, H., Shiga, S., and Morita, A. Photoperodic receptors in Arthropods. Zoological Science, 1997, 14, 187-197.
    139. Nylin, S. Seasonal plasticity in life history traits: Growth and development in Polygonia c-album (Lepidoptera: Nymphalidae). Biological Journal of the Linnean Society, 1992, 47, 301-323.
    140. Nylin, S. Seasonal plasticity and life-cycle adaptations In butterflies, in: Insect Life-cycle Polymorphism. H. V. Danks (ed.), Kluwer Academic Publisher, the Netherlands, 1994, pp41-67.
    141. Nylin, S., and Gotthard, K. Plasticity in life-history traits. Annual Review of Entomology, 1998, 43, 63-83.
    142. Paarmann, W. Die bedeutung exogener Faktoren für die Gonadenreifung von Orthomus barbarus atlanticus (Coleoptera, Carabidae) aus Nordafrike. Entomologia Experimentalis et Applicata, 1976, 19, 23-36.
    143. Palmer, J. O. Photoperiodic effect on size-related metamorphosis in the milkweed leaf beetle, Labidomera clivicollis. Physiological Entomology, 1982, 7, 31-41.
    144. Palmer, J. O. Photoperiodic control of reproduction in the milkweed leaf beetle, Labidomera clivicollis. Physiological Entomology, 1983, 8, 187-194.
    145. Parrish, D. S., and Davis, D. W. Inhibition of diapause in Bathyplectes curculionis, a parasite of the alfalfa weevil. Annals of the Entomological Society of America, 1978, 71, 103-107.
    146. Peferoen, M., Huybrechts, R., and De Loof, A. Longevity and fecundity in the Colorado potato beetle, Leptinotarsa decemlineata. Entomologia Experimentalis et Applicata, 1981, 29, 321-329.
    147. Pener, M. P., and Orshan, L. Reversible reproductive diapause and intermediate states between diapause
    
    and full reproductive activity in male Oedipoda miniata grasshoppers. Physiological Entomology, 1980, 5, 417-426.
    148. Peterson, D. M., and Hamner, W. A. Photoperiodic control of diapause in the codling moth. Journal of Insect Physiology, 1968, 14, 519-528.
    149. Pieloor, M. J., and Seymour, J. E. Factors affecting adult diapause initiation in the tropical butterfly Hypolimnas bolina L. (Lepidoptera: Nymphalidae). Australian Journal of Entomology, 2001, 40, 376-379.
    150. Pittendrigh, C.S. Circadian organization and the photoperiodic phenomena. In: Biological Clocks in Seasonal Reproductive Cycles, BK Follett and DE Follett, eds, pp 1-35, Scientechnica, Bristol, UK. 1981.
    151. Rank, G. H., and Rank, F. B. Pre-harvest diurnal temperature variations increase diapause development in the alfalfa leafcutting bee, Megachile rotundata (Fab.) (Hym.: Megachilidae). Journal of Applied Entomology, 1990, 110, 313-317.
    152. Rock, G. C. Thermoperiodic effects on the regulation of larval diapause in the tufted apple bud moth. Environmental Entomology, 1983,12, 1500-1503.
    153. Ruberson, J. R., Bush, L., and Kring, T. J. Photoperiodic effect on diapause induction and development in the predator Orius insidiosus (Heteroptera : Anthocoridae). Environmental Entomology, 1991, 20, 786-789.
    154. Saunders, D. S. Larval diapause of maternal origin. Ⅱ. The effect of photoperiod and temperature on Nasonia vaitripennis. Journal of Insect Physiology, 1966, 12, 569-581.
    155. Saunders, D. S. Photoperiodism and time measurement in the parasitic wasp, Nasonia vitripennis. Journal of Insect Physiology, 1968, 14, 433-450.
    156. Saunders, D. S. The photoperiodic clock in the flesh-fly, Sarcophaga argyrostoma. Journal of Insect Physiology, 1973a, 19, 1941-1954.
    157. Saunders, D. S. Thermoperiodic control of diapause in an insect: theory of internal coincidence. Science, 1973b, 181,358-360.
    158. Saunders, D. S. Insect Clocks, 2nd ed. Pergamon Press, Oxford, 409 pp., 1982a.
    159. Saunders, D. S. Photoperiodic induction of pupal diapause in Sarcophaga argyrostoma: Temperature effects on circadian resonance. Journal of Insect Physiology, 1982b, 28, 305-310.
    160. Saunders, D. S. A diapause induction-termination asymmetry in the photoperiodic responses of the linden bug, Pyrrhocoris apterus, and an effect of near-critical photoperiods on development. Journal of Insect Physiology, 1983, 29, 399-405.
    161. Saunders, D. S. Insect photoperiodism: the Linden bug, Pyrrhoocoris apterus, a species that measures daylength rather than nightlength. Experiential, 1987, 43,935-937.
    162. Saunders, D. S. The photoperiodic clock and 'counter' in Sarcophaga argyrostoma: experimental evidence consistent with 'external coincidence' in insect photoperiodism. Journal of Comparative Physiology, 1992, 170A, 121-127.
    
    
    163. Saunders, D. S. Larval diapause duration and fat metabolism in three geographical strains of the blow fly, Calliphora vicina. Journal of Insect Physiology, 2000, 46, 509-517.
    164. Saunders, D. S., and Lewis, R. D. A damped circadian oscillator model of an insect photoperiodic clock. Ⅲ. Circadian and "hourglass" response. Journal of Theoretical Biology, 1987, 128, 73-85.
    165. Scheltes, P. The condition of the host plant during aestivation-diapause of the stalk borers Chilo partellus and Chilo orichalcociliella (Lepidoptera, Pyralidae) in Kenya. Entomologia Experimentalis et Applicata, 1978, 24, 679-688
    166. Soula, B., and Menu, F. Variability in diapause duration in the chestnut weevil: mixed ESS, genetic polymorphism or bet-hedging? OIKOS, 2003, 100, 574-580.
    167. Spence, J. R. The habitat templet and life history strategies of pond skaters (Heteroptera: Gerridae): reproductive potential, phenology, and wing dimorphism. Canadian Journal of Zoology. 1989, 67, 2432-2447.
    168. Spieth, H. R., and Schwarzer, E. Aestivation in Pieris brassicae (Lepidoptera: Pieridae): Implications for parasitism. European Journal of Entomology, 2001, 98, 171-176.
    169. Steinberg, S., Podolerlt, H., and Applebaum, S. W. Diapause induction in the codling moth, Cydia pomonella: effect of larval diet. Entomologia Experimentalis et Applicata, 1992, 62, 269-275.
    170. Stewart, J. W, Whitcomb, W. H., and Bell, K. O. Estimation studies of the convergent lady beetle in Arkansas. Journal of Economic Entomology, 1967, 60, 1730-1755.
    171. Storey, J. M., and Storey, K. B. Winter survival of the gall fly larva, Eurosta solidaginis: profiles of fuel reserves and cryo-protectants in a natural population. Journal of Insect Physiology, 1986, 32, 549-556.
    172. Takamiya, K. Studies on temperature and photoperiodic conditions on the larval growth of the silkworm, Bombyx mori L., fed on artificial diet. Ⅱ. Effects of temperature and photoperiod throughout the larval stages on the moltinism and voltinism. J Seric Sci, Tokyo, 1974, 43, 35-40 (In Japanese, English summary).
    173. Takeda, M., and Masaki, S. Photoperiodic control of larval development in Plodia interpunctella. In: Proceeding of US/Japanese Seminar on Stored Product Insects. Kansas State University, Manhattan, Kansas, 1976, pp. 186-201.
    174. Takeda, M., and Skopik, S. D. Geographic variation in the circadian system controlling photoperiodism in Ostrinia nubilalis. Journal of Comparative Physiology A, 1985, 156, 653-658.
    175. Tanaka, S., and Zhu, D. H. Presence of three diapauses in a subtropical cockroach: control mechanisms and adaptive significance. Physiological Entomology, 2003, 28, 323-330.
    176. Tanzubil, P. B., Mensah, G. W., and McCaffery, A. R. Diapause initiation and incidence in the millet stem borer, Coniesta ignefusalis (Lepidoptera: Pyralidae): the role of the host plant. Bulletin of Entomological Research, 2000, 90, 365-371.
    177. Tatar, M., Chien, S. A., and Priest, N. K. Negligible senescence during reproductive dormancy in Drosophila melanogaster. The American Naturalist, 2001, 158, 248-258.
    178. Tauber, C. A., and Tauber, M. J. Evolution of seasonal adaptions and life history traits in Chrysopa:
    
    Response to diverse selective pressure. In H Dingle and J P Hegmann (eds), Evolution and genetics of life histories. Springer-Verlag, New York, 1982, pp51-72,
    179. Tauber, M. J., Tauber, C. A., and Denys, C. J. Diapause in Chrysopa carnea (Neuroptera: Chrysopidae). Ⅱ. Maintance by photoperiod. Canadian Entomologist, 1970, 102, 474-478.
    180. Tauber, M. J., and Tauber, C. A. Nutritional and photoperiodic control of the seasonal reproductive cycle in Chrysopa mohave. Journal of Insect Physiology, 1973, 19, 729-736.
    181. Tauber, M. J., Tauber, C. A., and Masaki, S. Seasonal adaptations of insect. Oxford University Press, New York and Oxford. 1986.
    182. Tauber, M. J., Tauber, C. A., Obrycki, J. J. Voltinism and induction of aesival diapause in the Colorado potato beetle, Leptinotarsa decemlineata. Annals of the Entomological Society of America, 1988, 81,748-754.
    183. Thiele, H. U. Differences in measurement of daylength and photoperiodism in two stocks from sub-Arctic and temperate climates in the carabid beetle Pterostichus nigrita F. Oecologia, 1977, 30, 349-365.
    184. Thurston, R. Diapause induction in Manduca sexta and Apanteles congregatus by high scotophase temperatures. Environmental Entomology, 1976,5,626-627.
    185. Tyshchenko, V. P., Goryshin, N. I., and Azaryan, A. C. The role of circadian processes in insect photoperiodism. Zhurnal Obshohei Biologii, 1972, 33, 21-31 (in Russian).
    186. Usua, E. J. Diapause in the maize stembore. Journal of Economic Entomology, 1970, 63, 1605-1610.
    187. Van Houten, Y. M., Bruin, J., and Veerman, A Repeated induction and termination of diapause in the predacious mite, Amblyseius potentillae (Garman) (Phytoseiidae). In: The Acari. Reproduction, Development and Life-History Strategies. R. Schuster and P. W. Murphy (eds.), Chapman & Hall, London, 1991, pp. 267-275.
    188. Van Houten, Y. M., Overmeer, W. P. J., and Veerman, A. Thermoperiodically induced diapause in a mite in constant darkness is vitamin A dependent. Experientia, 1987, 43, 933-935.
    189. Van Houten, Y. M., and Veenendaal, R. L. Effects of photoperiod, temperature, food and relative humidity on the inductions of diapause in the predatory mite Amblyseius potentillae. Experimental and Applied Acarology, 1990, 10, 111-128.
    190. Van Houtan, Y. M., and Veerman, A. Photoperiodism and thermoperiodism in the predatory mite, Amblyseius potentillae are probably based on the same mechanism. Journal of Comparative Physiology A, 1990, 167, 201-209.
    191. Vaz Nunes, M. Thermoperiodic responses in insects and mites simulated with the double circadian oscillator clock. Journal of Biological Rhythms, 1998, 13,461-470.
    192. Vaz Nunes, M., and Hardie, J. A model for the photoperiodic counter in the aphid Megoura viciae. Journal of Insect Physiology, 1993, 39, 173-182.
    
    
    193. Vaz Nunes, M., and Hardie, J. The effect of temperature on the photoperiodic 'counter' for female morph and sex determination in two clones of the black bean aphid, Aphis fabae. Physiological Entomology, 1999, 24, 339-345.
    194. Vaz Nunes, M., Kenny, N. A. P., and Saunders, D. S. The photoperiodic clock in the blowfly Calliphora vicina. Journal of Insect Physiology, 1990, 36, 61-67.
    195. Vaz Nunes, M., and Saunders, D. S. Photoperiodic time measurement in insects: a review of clock models. Journal of Biological Rhythms, 1999, 14, 84-104.
    196. Veerman, A. Photoperiodic time measurement in insects and mites: a critical evaluation of the oscillator-clock hypothesis. Journal of Insect Physiology, 2001, 47, 1097-1109.
    197. Veerman, A., Beekman, M., and Veenendall, R. L. Photoperiodic induction of diapause in the large white butterfly, Pieris brassicae: evidence for hourglass time measurement. Journal of Insect Physiology, 1988, 34, 1063-1069.
    198. Veerman, A., and Vaz Nunes, M. Analysis of the operation of the photoperiodic counter provides evidence for hourglass time measurement in the spider mite Tetranychus urticae. Journal of Comparative Physiology A, 1987, 160, 421-430.
    199. Vinogradova, Y. B., and Zinovjeva, K. B. The photoperiodic and temperature induction of pupal and their parasites. Journal of Insect Physiology, 1972, 18, 1629-1638.
    200. Volkovich, T. A., Kolesnichenko, L. 1., and Saulich, A. K. Role of thermorhythms in the development of predatory bug Perillus bioculatus (Hemiptera, Pentatomidae). Zoologicheskii Zhurnal, 1990, 69, 70-81 (in Russian).
    201. Volkovich, T. A., and Sokolova, I. V. Thermoperiodic control of diapause in two species of green lacewings(Neuroptera, Chrysopidae): comparative effect of sharp and smooth changes in temperature, Entomologiea Review, 2000, 80, 904-910.
    202. Wallace, M. M. H. The ecology of Sminthurus viridis (Collembola). Ⅱ. Diapause in the aestivating egg. Australian Journal of Zoology, 1968, 16, 871-883.
    203. Wallaec, M. M. H. Diapause in the aestivating egg of Halotydeus destructor (Acari: Eupodidae). Australian Journal of Zoology, 1970, 18, 295-313.
    204. Wei, X. T., Xue, F. S., and Li, A. Q. Photoperiodic clock of diapause induction in Pseudopidorus fasciata (Lepidoptera: Zygaenidae). Journal of Insect Physiology, 2001,47, 1367-1375.
    205. Wiklund, G., Persson, A., and Wickman, P. O. Larval aestivation and direct development as alternative strategies in the speckled wood butterfly, Pararge aegeria, in Sweden. Ecological Entomology, 1983, 8,233-238.
    206. Williams, J. B., Shorthouse, J. D., and Lee, R. E. Jr. Deleterious effects of mild simulated over-wintering temperatures on survival and potential fecundity of rose-galling Diplolepis wasps (Hymenoptera: Cynipidae). The Journal of Experimental Zoology, 2003, 298A, 23-31.
    207. Xue, F. S., and Kallenborn, H. G. Dispersive breeding in agricultural pest insects and its adaptive significance. Journal of Applied Entomology, 1993, 116, 170-177.
    
    
    208. Xue, E S. and Kallenborn, H. G. Summer and winter diapause in pupae of the cabbage butterfly, Pieris melete Menetries. Journal of Insect Physiology, 1997, 43,701-707.
    209. Xue, F. S. and Kallenbom, H. G. 1998. Control of summer and winter diapause in the Piodorus euchromioides (Lepidoptera: Zygaenidae) on Chinese sweetleaf Symplocos chinensis. Bulletin of Entomological Research, 88: 207-211.
    210. Xue, F. S., Spieth, H. R., Li, A. Q., and Hua, A. The role of photoperiod and temperature in determination of summer and winter diapause in the cabbage beetle, Colaphellus bowringi (Coleoptera: Chrysomelidae). Journal of Insect Physiology, 2002, 48, 279-286.
    211. Yoshida, M. T., and Kimura, M. T. The photoperiodic clock of Drosophila triauraria: Involvement of two processes in the night-length measurement system. Journal of Insect Physiology, 1993, 9, 101-106.
    212. Yoshida, M. T., and Kimura, M. T. Some effects of low temperature on the photoperiodic clock in Drosophila triauraria. Physiological Entomology, 1994, 19, 303-308.
    213. Yoshida, M. T., and Kimura, M. T. The photoperiodic clock in Chymomyza costata. Journal of Insect Physiology, 1995, 41,217-222.
    214. Yoshida, M. T. and Kimura, M. T. Complex effects of thermoperiod and temperature pulse on the photoperiodic clock in Drosophila triauraria (Diptera: Drosophilidae). Applied Entomology and Zoology, 1999, 34, 303-308.
    215. Zaslavsky, V. A., Sem' yanov, V. P., and Vagina, N. P. Food as a cue factor controlling adult diapause in the lady beetle, Harmonia sedecimnotata (Coleoptera, Coccinellidae). 1998, 77, 1383-1388 (in Russian with English Abstract).
    216. Zhou, X., Honek, A., Powell, W., and Carter, N. Variations in body length, weight, fat content and survival in Coccinella septempunctata at different hibernation sites. Entomoiogia Experimentalis et Applicata, 1995, 75, 99-107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700