用户名: 密码: 验证码:
环氧树脂及尼龙66基复合材料的摩擦磨损性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,聚合物基减摩耐磨纳米复合材料由于具有重量轻、强度高、耐腐蚀等优良的特性正逐步代替一些金属材料制造高精度运动部件,获得了越来越广泛的应用。本文研究了环氧树脂及尼龙66基复合材料的摩擦磨损性能,为聚合物基纳米复合材料在汽车、航空、机械轻量化以及提高服役寿命等方面的应用提供了重要的理论和实验依据。
     采用MM-200型磨损实验机,分别考察了环氧树脂及尼龙66基复合材料在干摩擦及水润滑条件下的摩擦磨损性能,综合分析了接触载荷、磨损时间对环氧树脂及尼龙66基复合材料摩擦磨损性能的影响,利用各种相关的试验设备对材料的磨损表面进行了观察与分析;探讨了其磨损失效机理;研究了聚合物的热降解过程和降解动力学,揭示了摩擦化学反应机制。首次开展了尼龙66基复合材料的微观摩擦学性能的研究,结果表明SEBS-g-MA橡胶颗粒增强的尼龙66基复合材料具有最好的耐磨性。
     本文利用有限元分析软件ANSYS/LS-DYNA对尼龙66进行了滑动磨损过程的三维有限元分析,获得了摩擦温度场,并且将摩擦接触温度的计算值、测量值和有限元分析值进行了对比,三者基本一致。
     上述研究结果对于探索滑动磨损过程、磨损机理和如何减轻树脂基复合材料的磨损以及进行磨损预报等都有一定的指导意义。
In recent years, polymers and their nanocomposites are being increasingly used in the field of tribology because of their low frictional coefficient, light weight, high strength, and erosive resistance in comparison with metal. Therefore, more and more researchers spent their emphases on the improvement of the friction and wear properties of polymers and their composites. As an important member of polymer family, epoxy exhibits outstanding mechanical, electrical and adhesive properties and excellent resistance to solvent attack. And it is a kind of thermoset resin used widely. Polyamide is a kind of typical thermoplastic resin and important engineering plastics and has been widely investigated by many researchers. As a result, it possesses not only theoretical significance but important practical value to study the friction and wear properties of epoxy and polyamide matrix composites.
     For the purposes of improving the tribological properties of epoxy resin and polyamide 66, three kinds of rubber particulates and nano-organoclay were introduced into the resins as modifiers. The following researches were carried out in this dissertation:
     Firstly, polyoxyalkyleneamine (denoted Jeffamine D2000) and polyurea were introduced to epoxy resin. The tribological behaviors of epoxy composites under dry and water lubricating conditions were investigated. The surface microhardness, morphologies and chemical compositions of epoxy resin and its composites before and after wear were analyzed. The results were as follows:
     1. Wear mass losses of the pristine epoxy and epoxy/rubber nanocomposites increase with increasing wearing time. The content of Jeffamine D2000 particles has influence on the wear mass losses and friction coefficients of epoxy nanocomposites. The content of 5wt.% nano-rubber is the most effective in reducing the wear mass loss and friction coefficient of the nanocomposites.
     2. Oxidation occurred on the surfaces of epoxy and epoxy/rubber nanocomposites during dry sliding wear.
     3. There are marked differences in the response of the wear materials when water lubricator is added in the sliding of polymer composites/steel contact. The friction coefficients of epoxy resin and epoxy/rubber nanocomposites under water lubricating are lower than those during dry friction but the wear mass losses are higher than those during dry friction.
     4. Wear mass losses of epoxy and epoxy/polyurea composites increase with increasing wearing time at the same load. And the frictional coefficients and wear mass losses of epoxy/polyurea composites are lower than those of pristine epoxy resin. SEM micrographs of worn surfaces of epoxy/polyurea composites indicated that the plastic deformation in part polyurea particulates occurred. This indicated that the toughness of epoxy/polyurea composites was improved with the addition of polyurea, and thus the wear resistance was improved.
     Secondly, the tribological behavior and wear mechanisms of PA66 and its composites consisting of styrene-ethylene/butylene-styrene triblock rubber particles (SEBS-g-MA) and nano-organoclay under dry and water lubricating conditions were investigated. The glass transition temperature (Tg) and heat stability of PA66 and its composites were also studied. At the same time, the effects of the blending sequence of SEBS-g-MA and nano-organoclay on the tribological behaviors of PA66 and its nanocomposites were studied. The results were as follows:
     1. The blending sequence affects the wear resistance of the PA66/SEBS-g-MA/organoclay ternary nanocomposites through affecting the microstructure and the final dispersion of the nano-organoclay. The friction coefficients and wear mass losses of PA66+(SEBS-g-MA+organoclay) ternary nanocomposites, in which SEBS-g-MA was first mixed with nano-organoclay and then the SEBS-g-MA/organoclay mixture was blended with PA66, are the smallest under dry and water lubricating conditions.
     2. The friction coefficients and wear mass losses of PA66+(SEBS-g-MA+organoclay) ternary nanocomposite are the smallest under dry sliding, whereas those of PA66/SEBS-g-MA binary composite are the smallest under water lubricating conditions.
     3. Pristine PA66, PA66/SEBS-g-MA binary composites and PA66/organoclay nanocomposites could not form a uniform and adherent transfer film on the steel counterface during dry sliding. The transfer films of PA66+(SEBS-g-MA+organoclay) ternary nanocomposites is thin, uniform and coherent compared to that of pristine PA66. This should be responsible for the reduced friction coefficient and wear mass loss.
     4. The Fe element on the steel counterface surface took part in the tribochemical reaction and was oxidized to the iron oxide Fe2O3 under dry sliding. The transfer film formed by the PA66+(SEBS-g-MA+organoclay) nanocomposites implies that the steel wheel could be more severely oxidized.
     5. The depression of Tg of PA66/SEBS-g-MA binary composites can be attributed to the presence of the rubber, while Tg of PA66/organoclay can be improved with the addition of organoclay.
     6. The friction coefficients of PA 66 and its composites under water lubricating sliding are lower than those under dry sliding condition, but the wear mass losses are higher than those under dry sliding.
     7. The contact temperatures of pristine PA66 in dry sliding systems were simulated by ANSYS/LS-DYNA system, and a comparison between analytical, calculated and experimental results for the flash temperature is presented. The results indicated that the analytical results and calculated results agreed with the experimental results.
     Finally, the micro-tribology properties of PA66 and its nanocomposites under dry sliding were measured on a Universal Micro-Tribometer, and the wear scars were analyzed. The effects of the normal load and the sliding velocity on the tribological behaviors of PA66 and its nanocomposites were investigated. The results were as follows:
     1. The volume wear rates of PA66 and its composites decrease with increasing normal load under the same velocity. Under the same conditions, the friction coefficients and wear mass losses of PA66/SEBS-g-MA binary composites are the smallest under dry sliding.
     2. SEM micrographs of the worn surfaces of PA66 and its nanocomposites indicated that a few fine wear debris attached on the worn surfaces of PA66/SEBS-g-MA composites, whereas flake wear debris were formed by PA66+(SEBS-g-MA+organoclay) nanocomposites. The attachment of wear debris on the worn surfaces resulted in higher surface roughness under dry sliding.
引文
[1] 温诗铸。摩擦学原理。北京:清华大学出版社,1990。
    [2] 王学浩。摩擦学概论。北京:水利电力出版社,1990。
    [3] 夏延秋,乔玉林。纳米粒子在摩擦学领域的应用发展现状。沈阳工业大学学报,2002,24(4):279-286。
    [4] 张剑峰,周志芳。摩擦磨损 Yu 抗磨技术。天津:天津科技翻译出版社,1993。
    [5] 陈战。水润滑轴承的摩擦磨损性能及润滑机理的研究。重庆大学,博士学位论文,2002。
    [6] 王家序,李太福。用水为介质的摩擦副研究现状与发展趋势。99 全国流体动力与机电一体化技术学术年会论文专辑,1999。
    [7] 贺小峰,李铁华等。以海、淡水作工作介质的液压传动技术,液压气动与密封,2000,(2):18-20。
    [8] 史维祥。流体传动几个重要方面的发展。液压气动与密封,2000,1:2-6。
    [9] 于淑丽。纳米 SiO2/环氧树脂复合材料摩擦磨损性能研究。中山大学硕士学位论文,2001。
    [10] 刘维民,薛群基。摩擦学研究及发展趋势。中国机械工程,2000,11(1-2):77-80。
    [11] 王吉会,路新春,温诗铸。材料微观摩擦磨损的研究进展。润滑与密封,1998,5:8-14。
    [12] 何奖爱,王玉玮。材料磨损与耐磨材料。沈阳:东北大学出版社,2001。
    [13] 谢友柏。摩擦学的三个公理。摩擦学学报,2001,21(3):161-166。
    [14] 徐国材,张立德。纳米复合材料。北京:化学工业出版社,2002。
    [15] 温诗铸,黄平。摩擦学原理(第 2 版)。北京:清华大学出版社,2002。
    [16] I.M. Hutchings. New Direction in Tribology: D. Dowson, Progress in Tribology-a Historical Perspective, 1997: 3-20.
    [17] 刘维民,薛群基。摩擦学研究及发展趋势。中国机械工程,2000,11(1-2):77-80。
    [18] 温诗铸。纳米摩擦学。北京:清华大学出版社,1998。
    [19] 周仲荣,钱茂林。摩擦学尺寸效应及相关问题的思考。机械工程学报,2003,39(8):22-26。
    [20] A.M. Homola, J.N. Israelachvili, P.M. McGuiggan, et al.. Proceeding of "Eurotribology 89", 5th International Congress on Tribology, Finland, 1989, 1: 28-29.
    [21] 李娜。摩擦学研究的前沿领域—纳米摩擦学。航空精密制造技术。1996,32(4):14-17。
    [22] 温诗铸。纳米摩擦学研究进展。机械工程学报,2007,43(10):1-8。
    [23] 聂时春,王洪波。原子力显微镜在纳米摩擦学中应用的进展。摩擦学学报,1998,18(1):88-96。
    [24] 路新春,雒建斌,温诗铸。纳米级摩擦磨损实验研究进展。仪器仪表学报,1995,16(1):60-64。
    [25] R. Kaneko. Tribology and Mechanics of Magnetic Storage System. ASLE Specical Technical Publication, SP-21, 1986, 3: 8.
    [26] 温诗铸。世纪回顾与展望—摩擦学研究的发展趋势。机械工程学报,2000,36(6):1-6。
    [27] W.O. Winer. Future trends in tribology. Wear, 1990, 136: 19-27.
    [28] B. Bhushan, V.N. Koinkar. Tribological Studies of Silicon for Magnetic Recording Applications. Journal of Applied Physics, 1994, 75: 5741-5746.
    [29] F.P. Bowdon, D. Tabor. The Friction and Lubrication of Solid. Oxford: Clarendon, 1964.
    [30] Q. Guo, J.D. Ross, H.M. Pollock. What part do adhesion and deformation play in fine-scale static and sliding contact? Symbol Proceeding of MRS. Boston, 1988, 140: 51-66.
    [31] B.J. Briscoe, P.D. Evans, L.K. Lancaster. Single point deformation and abrasion of γ-irradiated poly(tetrafluoroethylene). Journal of Physics D: Applied Physics, 1987, 20: 346-353.
    [32] T. Miyamoto, S. Miyake, R. Kaneko. Wear resistance of C+-implanted silicon investigated by scanning probe microscopy. Wear, 1993, 162-163: 733-738.
    [33] Z. Jiang, C.J. Lu, D.B. Bogy, et al.. An investigation of the experimental conditions and characteristics of a nano-wear test. Wear, 1995, 181-183: 777-783.
    [34] 路新春,温诗铸,雒建斌等。微观摩擦磨损研究的新进展。摩擦学学报,1995,15(2):177-183。
    [35] 王承鹤。塑料摩擦学-塑料的摩擦、磨损、润滑理论与实践。北京:机械工业出版社,1994。
    [36] 王克惠。塑料材料学。西安:西北工业大学出版社,2000。
    [37] 刘少琼,蹇锡高,黄河等。新型耐热树脂基复合材料的性能研究。高分子材料科学与工程,2002,18(6):97-100
    [38] 叶昌明,余考明,乐启发。工程塑料在轴承上的应用。工程塑料应用,2000,28(4):41-43
    [39] K. Friedrich, Z. Lu, A.M. Hager. Recent advances in polymer composites’ tribology. Wear, 1995, 190: 139-144.
    [40] D. Dowson, in: D.T. Clark,W.J. Feast (Ed), Polymer Surfaces, Wiley, Cnichester, UK, 1978, 399-424.
    [41] W. Bonfield, B.C. Edwards, A.J. Markham, et al.. Wear transfer films formed by carbon fibre reinforced epoxy resin sliding on stainless steel. Wear, 1976, 37: 113-121.
    [42] Jr.N.S. Eiss,H. Czichos. Tribological studies on rubber-modified epoxies: influence of material properties and operating conditions. Wear, 1986, 111(4): 347-361.
    [43] 薛群基,党鸿辛。摩擦学研究的发展概况与趋势。摩擦学学报,1993,13(1):73-81。
    [44] 柯扬船,[美]皮特·斯壮。聚合物—无机纳米复合材料。北京:化学工出版社,2003。
    [45] 张玉龙,李长德等。纳米技术与纳米塑料。北京:中国轻工业出版社,2002。
    [46] R.W. Hertzherg, J.A. Manson. Fatigue of Engineering Plastics. New York, Acadmic Press, 1980: 83.
    [47] H.L. Lieng. “Fracture Energetics and Surface Energetics of Polymer Wear” in:L.H. Lee (Ed.), Polymer Wear and I is Control. ACS Symposium Series. American Chemical Society, Washington D.C, 1985, pp36.
    [48] I.M. Hutchings. New Direction in Tribology: D. Dowson, Progress in Tribology-a Historical Perspective, 1997: 3-20.
    [49] 孙莉。尼龙 6/纳米 Al2O3 复合材料制备及摩擦磨损性能研究。浙江工业大学硕士学位论文,2003。
    [50] P.M. Dickens, J.L. Suilivan, J.K. Lancaster. Speed effects on the dry and lubricated wear of polymers. Wear, 1986, 112: 273-289.
    [51] 张招柱,薛群基,沈维长。金属填充 PTFE 复合材料的摩擦磨损性能研究。高分子材料科学与工程,1999,15:68-72。
    [52] 李飞,胡克鳌。纳米 ZnO 填充 PTFE 基复合材料摩擦学性能研究。润滑与密封,2000,6:37-39。
    [53] L. Yu, Dimitrienko. Thermo mechanical behaviors of composites materials and structure under high temperatures. Composites PartA, 1997, 28A: 453-458.
    [54] T. anaka, Kyuichiro. Effect of temperature on the friction and wear of heat-resistant polymer-based composites. Journal of Synthetic Lubrication, 1992, 8 (4): 281-294.
    [55] 丛培红,李同生,刘旭军等。温度对聚酰亚胺摩擦磨损性能的研究。摩擦学学报,1997,117(3):220-226。
    [56] C.Z. Liu, L.Q. Ren, J. Tong, et al.. Statistical wear analysis of PA-6/UHMWPE, UHJMWPE and PA-6. Wear, 2001, 249: 31-36.
    [57] 齐皖霖。摩擦与磨损。北京:高等教育出版社,1986。
    [58] S. Bahadur. The development of transfer layers and their role in polymer tribology. Wear, 2000, 245: 92-99.
    [59] 胡元中,王慧,邹鲲等。超滑和界面摩擦及耗散过程-关于摩擦机理微观研究的思考与展望。摩擦学学报,2000,20(4):313-316.
    [60] 潘泽波。热塑性聚酰亚胺复合材料的摩擦磨损性能。南京工业大学硕士学位论文,2004。
    [61] S.R. Ge, W.H. Wang, J.X. Wang. Study on tribological behaviors of glassfiber reinforced nylon1010-based composites. Tribology, 2000, 20(6): 423-430.
    [62] J.N. Sultan, R.C. Laible, F.J. McGarry. Microstructure of two phase polymers. Applied Polymer Symposium, 1971, 16: 12.
    [63] J.N. Sultan, R.C. Laible, F.J. McGarry. Effect of Rubber Particle Size on Deformation Mechanisms in Glassy Epoxy. Polymer Engineering and Science, 1973, 13(1): 29-34.
    [64] R.A. Pearson, A.F. Yee. Toughening mechanisms in elastomer modified epoxies. Journal of Materials Science, 1986, 21: 2462-2474.
    [65] R.A. Pearson, A.F. Yee. Toughening mechanisms in elastomer modified epoxies. Journal of Materials Science, 1986, 21: 2475-2488.
    [66] R.A. Pearson, A.F. Yee. Influence of particle size and particle size distribution on toughening mechanisms in rubber modified epoxies. Journal of Materials Science, 1991, 26: 3828-3844.
    [67] F.J. Guild, A.J. Kinloch. Modelling the properties of rubber-modified epoxy polymers. Journal of Materials Science, 1995, 30(7): 1689-1697.
    [68] 王胜国。环氧树脂颗粒相增韧与均相增韧的研究及比较。复旦大学硕士学位论文,2002。
    [69] 吕润生,顾国芳。高分子材料科学与工程。1991,3:70-75。
    [70] 朴光哲,韩孝族等。合成橡胶工业。1989,12(6):390-394。
    [71] V.K. Kryzhanovskii, O.V. Konava. Effect of structure and physical state of epoxy polymers on their tribological behavior. Soviet J. F riction Wear, 1993, 14(5): 74 -78.
    [72] W. Bascom, R. Ting, R. Moulton, et al.. The Fracture of Epoxy Polymer Containing Elastomeric Modifiers. Journal of Materials Science, 1981, 16: 2657-2664.
    [73] Y. Huang, A. Kinloch. Modeling of the Toughening Mechanisms in Rubber- Modified Epoxy Polymers. Journal of Materials Science, 1992, 27: 2753-2762.
    [74] Y. Huang, A. Kinloch. A quantitative description of the microstructure fracture property relationships. Journal of Materials Science, 1992, 27:2763-2769.
    [75] 李绍英,韩孝族,张庆余。丁腈羟增韧环氧树脂形态与力学性能。高等学校化学学报,1997,9:1541-1545。
    [76] L. Chang, Z. Zhang. Tribological properties of epoxy nanocomposites Part Ⅱ. A combinative effect of short carbon fiber with nano-TiO2. Wear, 2006, 260(7-8): 869-878.
    [77] 石光。减磨耐磨纳米粒子/环氧树脂复合材料。中山大学博士学位论文,2003。
    [78] 胡幼华,高辉,阎逢元等。纳米 ZnO/环氧树脂复合材料的力学性能和摩擦学性能。摩擦学学报,2003,3:216-220。
    [79] M. Shlmbo, M. Ochi, N. Ohoyama. Frictional behaviour of cured epoxied resins, Wear, 1983, 91(1):89-100.
    [80] Z.E liezer, C.J. Schulz, J.W. Barlow. Fricton and wear properties of an epoxy-steel system. Wear, 1978, 46 (2): 397-403.
    [81] 石安富,龚云表。工程塑料。上海科学技术出版社,1986。
    [82] 邓如生。聚酰胺树脂及其应用。北京:化学工业出版社,2002。
    [83] S. Bahadur, D.L. Gong, J.W. Anderegg. The role of copper compounds as fillers in Transfer film formation and wear of Nylon 11. Wear, 1992, 154: 207-223.
    [84] S. Bahadur, A. Kapoor. The effect of ZnF2, ZnS, PbS fillers on the tribological Behavior of Nylon 11.Wear, 1992, 155: 49-61.
    [85] S. Bahadur, D.L. Gong. The transfer and wear of nylon and CuS-nylon composites: filler proportion and counterface characteristics. Wear, 1993, 162-164: 397-406.
    [86] S. Bahadur, D.L. Gong. Formulation of the model for optimal proportion of filler in polymer for abrasive wear resistance, in K.C. Ludema and R.G. Bayer(eds.), Wear of Materials 1991, ASME, New York, 1991, pp. 177-185.
    [87] S. Bahadur, D.L. Gong. Tribochemical studies by XPS analysis of transfer films of Nylon 11 and its composites containing copper compounds. Wear, 1993, 165: 205-212.
    [88] A. Kapoor, S. Bahadur. Transfer film bonding and wear studies on CuS-Nylon composite sliding against steel. Tribology Internationa1, 1994, 27: 323-329.
    [89] B. Bhushan, V.N. Koinkar. Tribological Studies of Silicon for Magnetic Recording Applications. Journal of Applied Physics, 1994, 75: 5741-5746.
    [90] 路新春,温诗铸,雒建斌等。微观摩擦磨损研究的新进展。摩擦学学报,1995,15(2):177-183。
    [91] 戴雄杰著。摩擦学基础。上海:上海科学技术出版社,1984。
    [92] 桂长林。Archard 的磨损设计计算模型及其应用方法。润滑与密封,1990(1):12-21。
    [93] R. Holm. Electrical Contact. Stockholm: H. Gerbers, 1946.
    [94] J.T. Burwell, C.D. Strang. On the Empirical Law of Adhesive Wear. Journal of Applied Physics, 1952, 23(1): 18-28.
    [95] B.B.格利布(著),孟宪堂,宋琦(译)。数值法解摩擦学技术问题。北京:机械工业出版社,1989。
    [96] P. Wriggers, T.V. Van, E. Stein. Finite element formulation of large deformation impact-contact problems with friction. Computers and Structures, 1990, 37: 319-331.
    [97] P. Wriggers. Finite element methods for contact problems with friction. Tribology International, 1996, 29: 651-658.
    [98] K. Varadi, Z. Neder, K. Friedrich. Evaluation of the real contact areas, pressure distributions and contact temperatures during sliding contact between real metal surfaces. Wear, 1996, 200: 79-85.
    [99] J.R. Jiang, F.H. Stott, M.M. Stack. A mathematical model for sliding wear of metals at elevated temperatures. Wear, 1995, 181: 20-31.
    [100] N.S. Muller, K.D. Van. Numerical Simulation of the sliding wear test in relation to material properties. Wear, 1997, 203: 180-186.
    [101] P. Priit, A. Soren. Simulating sliding wear with finite element method. Tribology Inernational, 1999, 32: 71-81.
    [102] N.K. Myshkin, M.L. Petrokovets, S.A. Chizhik. Simulation of real contact in tribology. Tribology International, 1998, 31: 79-86.
    [103] 袁成清,严新平,彭中笑。关于第 14 届材料磨损国际会议的简要评述。摩擦学学报,2003,23(4):356-360。
    [104] 江亲瑜,董美云。数值仿真技术及其在磨损研究中的应用。大连铁道学院学报,1997,18(2):39-44。
    [105] 江亲瑜。零件磨损过程及寿命预测的数值仿真。润滑与密封,1997,(6):29-30。
    [106] 江亲瑜,李曼林,董美云。线接触零件磨损过程的数值仿真及实验研究。大连铁道学院学报,1998,19(3):27-32。
    [107] 严立,徐久军。磨损问题的仿真求解研究。摩擦学学报,1999,19(1):50-55。
    [108] 徐久军,严立。船舶柴油机缸套活塞环磨损实验智能化仿真系统研究。大连:大连海事大学,1996,25(3):10-13。
    [109] 徐久军,严立。船舶柴油机缸套活塞环磨损实验智能化仿真系统。交通与计算机,1997,15(2):1-4。
    [110] 徐久军,王鹏,刘宗利等。缸套活塞环摩擦副的模拟磨损实验研究。大连海事大学学报,1999,25(1):88-91。
    [111] 吴国清,张晓峰,方亮等。两体磨料磨损的三维动态模拟。摩擦学学报,2000,20(5):360-364。
    [112] 吴国清,方亮,邢建东等。磨料尺寸对磨料磨损过程影响的随机模拟。西安交通大学学报,2001,35(5):527-531。
    [113] 王新华,张嗣伟,樊启蕴。基于分形几何理论的粘着磨损模型。石油大学学报(自然科学版),1999,23(6):50-52。
    [114] 王新华,张嗣伟,樊启蕴。基于分形理论的磨粒磨损模型。润滑与密封,2002,3:2-4。
    [115] 林纲,谢敬佩,杨茹萍等。疲劳磨损和压碎磨损的应力计算。洛阳工学院学报,1994,15(3):13-18。
    [116] 王勖成。有限元单元法。北京:清华大学出版社,2003。
    [117] 王国强。实用工程数值模拟技术及其在 ANSYS 上的实践。西安西北工业大学出版社,1999。
    [118] R.A. Pearson, A.F. Yee. Toughening mechanisms in elastomer-modifiedepoxies. Journal of Matereals Science, 1989, 24(7): 2571-2580.
    [119] ASM Handbook. ASM International, Materials Park, USA, 1992, 18.
    [120] 李国莱,张蔚盛,管从盛。重防腐涂料。北京:化学工业出版社,1999。
    [121] R.P.谢尔登。聚合物基复合材料。北京:机械工业出版社,1989。
    [122] 陈平,刘胜平等。环氧树脂。北京:化学工业出版社,1997。
    [123] L. Chang, Z. Zhang. Tribological properties of epoxy nanocomposites Part II. A combinative effect of short carbon fibre with nano-TiO2. Wear, 2005, 1-10.
    [124] G. Shi, M. Q. Zhang, M. Z. Rong, et al.. Friction and wear of low nanometer Si3N4 filled epoxy composites. Wear, 2003, 254: 784-796.
    [125] F. Li, K. Hu, J. Li, B. Zhao. The friction and wear characteristics of nanometer ZnO filled polytetrafluoroethylene. Wear, 2002, 249: 877-882.
    [126] C.B. Ng, L.S. Schadler, R.W. Siegel. Synthesis and mechanical properties of TiO2-epoxy nanocomposites. Nanostructured Materials, 1999, 12: 507-510.
    [127] 石光,章明秋,容敏智等。纳米 Al2O3 填充环氧树脂复合材料的摩擦学性能。摩擦学学报,2003,23(3):212-215。
    [128] C.J. Huang, S.Y. Fu, Y.H. Zhang, et al.. Cryogenic properties of SiO2/epoxy nanocomposites. Cryogenics, 2005, 45: 450-454.
    [129] A.J. Gu, G.Z. Liang. Thermal degradation behaviour and kinetic analysis of epoxy/montmorillonite nanocomposites. Polymer Degradation and Stability 80 (2003): 383-391.
    [130] C. Kaynak, O. Orgun, T. Tincer. Matrix and interface modification of short carbon fiber-reinforced epoxy. Polymer Testing, 2005, 24: 455–462.
    [131] F.J. McGarry. IPNs and full IPNs for three different compositions. Proceedings of the Royal Society. London, A319, 59, 1970.
    [132] J.N. Sultan, R.C. Laible, F.J. McGarry. Microstructure of Two-Phase Polymers. Applied Polymer Symposium, 1971, 16: 127-136.
    [133] J.N. Sultan, F.J. McGarry. Effect of rubber particle size on deformation mechanisms in glassy epoxy. Polymer Engineering and Science, 1973, 13(1): 29-34.
    [134] Z. Zhang, K. Friedrich. Tribological characteristics of micro- and nanoparticlefilled polymer composites.in: K. Friedrich, S. Fakirov, Z. Zhang (Eds.), Polymer Composites—from Nano- to Macro-Scale, 169–185, Springer, 2005 (Chapter 10).
    [135] N.S. Eiss Jr., H. Czichos. Tribological studies on rubber-modified epoxies: influence of material properties and operating conditions. Wear, 1986, 111: 347-361.
    [136] B. Russell, R. Chartoff. The influence of cure conditions on the morphology and phase distribution in a rubber-modified epoxy resin using scanning electron microscopy and atomic force microscopy. Polymer, 2005, 46: 785-798.
    [137] M.Z. Rong, M.Q. Zhang, H. Liu, et al.. Microstructure and tribological behavior of polymeric nanocomposites. Industrial Lubrication and Tribology, 2001, 53(2):72-77.
    [138] Q.H. Wang, Q.J. Xue, W.C. Shen. Friction and wear properties of PEEK filled with nano-SiC and micro-SiC. Functional Materials, 1998, 29(5):558-560.
    [139] A. Lowe, O.H. Kwon, Y.W. Mai. Fatigue and Fracture behavior of novel rubber modified epoxy resins. Polymer, 1996, 37(4): 565-572.
    [140] R. Bagheri, R. A. Pearson. Role of particle cavitation in rubber toughened epoxies: 1. Microvoid toughening. Polymer, 1996, 37: 4529-4538.
    [141] S. Kunz-Douglass, P.W.R. Beaumont, M.F. Ashby. A model for the toughness of epoxy-rubber particulate composites. Journal of Materials Science, 1980, 15: 1109-1123.
    [142] Q.H. Wang, Q.J. Xue, W.C. Shen. Friction and wear properties of PEEK filled with nano-SiC and micro-SiC. Functional Materials, 1998, 29(5): 558-560.
    [143] Q. Wang, Q. Xue, W. Shen, J. Zhang, The friction and wear properties of nanometer ZrO2-filled polyetheretherketone, Journal of Applied Polymer Science, 1998, 69:135-141.
    [144] M.Z. Rong, M.Q. Zhang, H. Liu, et al.. Microstructure and tribological behavior of polymeric nanocomposites. Industrial Lubrication and Tribology. 2001, 53(2): 72-77.
    [145] G. Shi, M.Q. Zhang, M.Z. Rong, et al.. Sliding wear behavior of epoxy containing nano-Al2O3 particles with different pretreatments. Wear, 2004, 256: 1072-1081.
    [146] Q. Wang, Q.J. Xue, W. Shen. The friction and wear properties of nanometer SiO2 filled polyetheretherketone. Tribological International, 1997, 30: 193-197.
    [147] C.J. Pouchert (Ed.). The Aldrich Library of Infra-red Spectra, 3rd ed. [M], Aldrich Chemical Company, Milwaukee, USA, 1981.
    [148] S. Kinugasa, K. Tanabe, T. Tamura. Integrated Spectral Data Base System forOrganicCompounds.http://www.aist.go.iv/RIODB/SDBS/sdbs/owa/sdbs-sea.cre-frae-disvisdbsno=9283.
    [149] H.K.巴拉姆鲍伊姆。高分子化合物力化学。汪畹兰译。北京:化学工业出版社,1982。
    [150] 张士齐。塑料、橡胶的力化学反应。青岛:青岛出版社,1991。
    [151] G. Shi, M.Q. Zhang, M.Z. Rong, et al.. Friction and wear of low nanometer Si3N4 filled epoxy composites. Wear, 2003, 254: 784-796.
    [152] L. Corte, V. Rebizant, G. Hochstetter, et al.. Toughening with little stiffness loss: Polyamide filled with ABC triblock copolymers. Macromolecules, 2006, 39(26): 9357-9364.
    [153] Z.B. Chen, T.S. Li, Y.L. Yang, et al.. The Effect of Phase Structure on the Tribological Properties of PA66/HDPE Blends. Macromolecular Materials and Engineering, 2004, 289: 662-671.
    [154] L. Chang, Z. Zhang, H. Zhang, et al.. On the sliding wear of nanoparticle filled polyamide 66 composites. Composites Science and Technology, 2005, 1-11.
    [155] Y. Kojima, A. Usuki, M. Kawasumi, et al.. Mechanical properties of nylon-6-clay hybrid. Journal of Materials Research, 1993, 8: 1185-1189.
    [156] S. Bahadur, D.L. Gong. The transfer and wear of nylon and CuS-nylon composites: filler proportion and counterface characteristics. Wear, 1993, 162-164: 397-406.
    [157] W.F. Dong, X.H. Zhang, Y.Q. Liu, et al.. Preparation and mechanical properties of nylon6/rubber/unmodified clay nanocomposites. New Chemical Materials, 2006, 34: 45-48.
    [158] J.W. Gilman, T. Kashiwagi, J.D. Lichtenhan. Nanocomposites: A Revolutionary New Flame Retardant Approach. SAMPE Journal, 1997, 33: 40-46.
    [159] G.M. Chen, Q.Li, Z.N. Qi, et al.. Advance in Polymer Layered Silicate Nanocomposites. Chinese Polymer Bulletin, 1999, 4: 1-10.
    [160] R.A. Vaia, G. Price, P.N. Ruth, et al.. Polymer/layered silicate nanocomposite as high performance ablative materials. Applied Clay Science. 1999, 15(1-2): 67-92.
    [161] X. Liu, Q. Wu, A. Lars, et al.. Polyamide 6 clay nanocomposites/polypropylene-graft-maleic anhydride alloys. Polymer, 2001, 42: 8235-8239.
    [162] I. Kelnar, J. Kotek, L. Kaparalkova, et al.. Polyamide nanocomposites with improved toughness. Journal of Applied Polymer Science, 2005, 96: 2288-2293.
    [163] R. Bagheri, R.A. Pearson. Role of particle cavitation in rubber toughened epoxies: 1. Microvoid toughening. Polymer, 1996, 37: 4529-4538.
    [164] N. Chikhi, S. Fellahi, M. Bakar. Modification of epoxy resin using reactive liquid (ATBN) rubber. European Polymer Journal, 2002, 38: 251–264.
    [165] M.Z. Rong, M.Q. Zhang, H. Liu, et al.. Microstructure and tribological behavior of polymeric nanocomposites. Industrial Lubrication and Tribology, 2001, 53(2): 72-77.
    [166] Q.H. Wang, Q.J. Xue, W.C. Shen. Friction and wear properties of PEEK filled with nano-SiC and micro-SiC. Functional Materials, 1998, 29(5): 558-560.
    [167] M. Modic. Journal of Plastic Engineering, 1991, 2: 37.
    [168] W. Dong, Y. Liu, X. Zhang, et al.. Preparation of high barrier and exfoliated type nylon 6/ultrafine full vulcanized powdered rubber/clay nanocomposites. Macromolecules, 2005, 38(11): 4551-4553.
    [169] M.Y. Gelfer, H.H. Song, L. Liu, et al.. Journal of Polymer Science Part B: Polymer Physics, 2003, 41:44-54.
    [170] B.B. Khatua, D.J. Lee, H.Y. Kim, et al.. Effect of Organoclay Platelets on Morphology of Nylon-6 and Poly (ethylene-ran-propylene) Rubber Blends. Macromolecules, 2004, 37: 2454-2459.
    [171] D. Aravind, Z.Z. Yu, Y.W. Mai. Effect of blending sequence on microstructure of ternary nanocomposites. Polymer, 2005, 46: 5986-5991.
    [172] C.Q. Yuan, J. Li, X.P. Yan. Tribological testing technology and its development. Tribology, 2002, 22 (4): 447 - 450.
    [173] 毛起广。表面粗糙度的评定和测量。北京机械工业出版社,1991。
    [174] T.N. Li, C.X. Zhou. Polyamide/Clay Nanocomposites. Journal of Functional Polymers, 2000, 1: 112-118.
    [175] S. Bahadur, C. Sunkara. Effect of transfer film structure, composition and bonding on the tribological behavior of polyphenylene sulfide filled with nano- particles of TiO2, ZnO, CuO and SiC. Wear, 2005, 258: 1411-1421.
    [176] S. Bahadur, D.L. Gong. The transfer and wear of nylon and CuS-nylon composites: filler proportion and counterface characteristics. Wear, 1993, 162-164: 397-406.
    [177] J.X. Wang, M.Y. Gu. Investigation of the Influence of CuO filler and carbon fiber on wear and transfer film of Nylon composites. Journal of Applied Polymer Science, 2004, 91: 2397-2401.
    [178] S. Bahadur, D.L. Gong, J.W. Anderegg. Tribochemical studies by XPS analysis of transfer films of Nylon 11 and its composites containing copper compounds. Wear, 1993, 165: 205-212.
    [179] S. Bahadur, D.L. Gong, J.W. Anderegg. The role of copper compounds as fillers in transfer film formation and wear of nylon. Wear, 1992, 154: 207-223.
    [180] S. Bahadur, A. Kapoor. The affects of ZnF2, ZnS, PbS fillers on the tribological Behavior of Nylon 11. Wear, 1992, 155: 49-61.
    [181] D.L. Gong, Q.L. Xue, H.L. Wang. Physical model of adhesive wear of PTFE and its composites. Wear, 1991, 147: 9-24.
    [182] J.T. Gao. Tribochemical effects in formation of polymer transfer film. Wear, 2000, 245(1-2): 100-106.
    [183] S. Bahadur, D.L. Gong. The transfer and wear of nylon and CuS-nylon composites: filler proportion and counterface characteristics. Wear, 1993, 162-164: 397-406.
    [184] J.T. Gao, S.L. Mao, J.Z. Liu, et al.. Tribochemical effects of some polymers/stainless steel. Wear, 1997, 212: 238-243.
    [185] A. Kapoor, S. Bahadur. Transfer film bonding and wear studies on CuS-Nylon composite sliding against steel. Tribology Internationa1, 1994, 27: 323-329.
    [186] S. Bahadur, D. Gong, J.W. Anderegy. Tribochemical studies by XPS analysis of transfer films of nylon1l and its composites containing copper compounds, Wear, 1993, 165: 205-212.
    [187] S. Bahadur, D. Gong. The role of copper compounds as fillers in the transfer and wear behavior of polyetheretherketone. Wear, 1992, 154: 151- 165.
    [188] S. Bahadur, D. Gong, J.W. Anderegy. The investigation of the action of fillers by XPS studies of the transfer films of PEEK and its composites containing CuS and CuF2. Wear, 1993, 160: 131-138.
    [189] O. Zhao, S. Bahadur. The mechanism of filler action and the criterion of filler selection for reducing wear. Wear, 1999, 225-229: 660-668.
    [190] A.P. Pijpers, R.J. Meier. Oxygen-induced secondary substituent effects in polymer XPS spectra. Journal of Electron Spectroscopy and Related Phenomena, 1987, 43:131-137.
    [191] S. Bahadur, D. Gong, J.W. Anderegg. Studies of worn surfaces and the transfer film formed in sliding by CuS-filled and carbon fiber-reinforced nylon against a steel surface. Wear, 1995, 181-183: 227-35.
    [192] J. An, Y.B. Liu, Y. Lu, et al.. Dry sliding wear behavior of hot extruded Al-Si-Pb alloys in the temperature range 25-200°C. Wear, 2004; 256: 374–385.
    [193] S.R. Yu, Z.Z. Yu, Y.W. Mai. Effects of SEBS-g-MA on tribological behaviour of nylon 66/organoclay nanocomposites. Tribological International, 2007, 40:855-862.
    [194] J.T. Gao, S.L. Mao, J.Z. Liu, et al.. Tribochemical effects of some polymers/stainless steel. Wear, 1997, 212: 238–243.
    [195] S. Sasgupta, W.B. Hammond, W.A. Goddard. Journal of the American Chemical Society, 1996; 118: 12291.
    [196] 陈业,韩克清,林江滨等。PA66/MMT 纳米复合材料的制备及结构与性能研究。工程塑料应用,2002,30(12):5-7。
    [197] H.V. Olphen. An introduction to clay colloid chemistry. New York: Wiley; 1977.
    [198] B. Majumdar, H. Keskkula, D.R. Paul. Morphology development in toughened aliphatic polyamides. Polymer, 1994, 35(7): 1386-1398.
    [199] B. Majumdar, H. Keskkula, D.R. Paul. Mechanical-behavior and morphology of toughened aliphatic polyamides. Polymer, 1994, 35(7): 1399-1408.
    [200] D. Ratna, A.K. Banthia. Toughened epoxy adhesive modified with acrylate based liquid rubber. Polymer International, 2000, 49: 281-287.
    [201] D. Ratna. Phase separation in liquid rubber modified epoxy mixture, Relationship between curing conditions, morphology and ultimate behavior. Polymer, 2001, 42: 4209-4218.
    [202] 栗原福次著,吴三硕译。塑料的老化。北京:国防出版社,1977:253。
    [203] 王玉东,赵清香,刘民英等。尼龙 1212/SEBS-g-MA/DIDP/BSBA 共混体系热行为的研究。塑料工业,2005,33(5):43-45。
    [204] A.W. Coats, J. P. Redfern. Kinetic parameters from thermogravivimetric data. Nature, 1964, 201: 68-69.
    [205] 王玉东,刘民英,赵清香等。尼龙 109 的热降解过程与动力学研究。高分子材料科学与工程,1999,15:78-80。
    [206] W.L. Huo 著,吕世光译。聚合物的稳定化。北京:轻工业出版社,1986:182。
    [207] R. Bassani, G. Levita, M. Mezzi et al.. Friction and wear of epoxy resin on inox steel: remarks on the influence of velocity, load and induced thermal state. Wear, 2001, 247: 125-132.
    [208] H. Blok. Theoretical study of temperature rise at surfaces of actual contact under oiliness lubricating conditions. Proceeding of General Discuss Lubrication, Institute of Mechanical Engineers (Lond) 1937, 2: 222-235.
    [209] J.C. Jaeger. Moving sources of heat and the temperature at sliding contact. Proc. Roy. Soc.NSW, 1942, 76: 203-224.
    [210] J.F. Archard. The temperature of rubbing surface. Wear, 1959, 2: 438-455.
    [211] A. Floquet. Temperatures de contact en frottement set, determinations theorique et experimental. In: Docteur-Ingenier thesis. Lyon: Universite Claude Bernard, 1978.
    [212] F.E. Kennedy. Surface temperature in sliding systems-A finite element analysis. Transactions of the ASME, 1981, 103: 90-96.
    [213] K. Mitjan. Influence of flash temperatures on the tribological behaviour in low-speed sliding: a review. Materials Science and Engineering A, 2004, 374: 390-397.
    [214] B. Bhushan. Principles and Applications of Tribology, Wiley-Interscience, New York, ISBN: 0-471-59407-5, 1999.
    [215] Surjeet, K. Sinha, in “Wear failure of Plastics”, ASM Handbook, Vol.11. Failure Analysis and Prevention, edited by W. T. Becker and R. J. Shipley, ASM International, Ohio, 2002, P.1020.
    [216] M. Watanabe, H. Yamaguchi. The friction and wear properties of nylon. Wear, 1986, 110: 379-388.
    [217] X. Tian, F.E. Kennedy Jr.. Contact surface temperature models for finite bodies in dry and boundary lubricated sliding. Transantions ASME Journal of the Tribology, 1993, 115:411-418.
    [218] M. Shimbo, M. Ochi, N. Ohoyama. Frictional behaviour of cured epoxy resins. Wear, 1983, 91: 89-101.
    [219] M.E. Merchant. Mechanics of the Metal Cutting Process. Journal of Applied Physics, 1945, 16(5): 267-275.
    [220] F.E. Kennedy. Thermomechanical phenomena in high speed rubbing. Wear, 1980, 59: 149-163.
    [221] M. Kalin, Jozˇe Vizˇintin. Comparison of different theoretical models for flash temperature calculation under fretting conditions. Tribology International, 2001, 34: 831-839.
    [222] S. Pieter, Q. Jan, D.B. Patrick, et al. Characterisation of polyimides under high-temperature sliding. Materials letters, 2005, 59: 2850-2857.
    [223] A.L. Hitchcox. Water hydraulics continues steady growth. Hydraulics & Pneumatics, 1999, 19(2): 33-34.
    [224] C.J. Murray. Water makes a comeback. Design News, 1995, 29(8):81-86.
    [225] 苏逢荃,王优强。水润滑动压橡胶轴承的实验研究与误差分析。青岛建筑工程学院学报,1997,18(1):39-44。
    [226] 袁晓梅。油尼龙在船舶艉轴承上的应用。中国修船,1996,(3):14-16。
    [227] 罗松承。水润滑陶瓷轴承的试验研究。润滑与密封,1997,(3):49-51。
    [228] S. S. Kim, H.G. Lee, D.G. Lee. The tribological behavior of polymer coated carbon composites under dry and water lubricating conditions. Composite structures, 2007, 77: 364-372.
    [229] J.H. Jia, H.D. Zhou, S.Q. Gao et al.. A comparative investigation of the friction and wear behavior of polyimide composites under dry sliding and water-lubricated condition. Materials Science and Engineering A, 2003, 356: 48-53.
    [230] R. Prehn, F. Haupert, K. Friedrich. Sliding wear performance of polymer composites under abrasive and water lubricated conditions for pump applications. Wear, 2005, 259: 693-696.
    [231] G. Srinath, R. Gnanamoorthy. Sliding wear performance of polyamide 6–clay nanocomposites in water. Composites Science and Technology, 2007, 67: 399-405.
    [232] D.C. Evans. Polymer-fluid interaction in relation to wear. In: Proceedings of the third Leeds-Lyon symposium on tribology, the wear of non-metallic materials. Mechanical Engineering Publication Ltd., 1978, 47-55.
    [233] J.H. Byett, C. Allen. Dry sliding wear behavior of polyamide 66 and polycarbonate composites. Tribology International, 1992, 25: 237-246.
    [234] 薛群基,张军。微观摩擦学研究进展。摩擦学学报,1994,14(4):360-369。
    [235] 王吉会,温诗铸,路新春。材料微观摩擦磨损的研究进展。润滑与密封,1998,5:8-14。
    [236] R. Kaneko. Microtribology. JSME International Journal, Series C, 1994, 37(1): 1-6.
    [237] 温诗铸。我国摩擦学研究的现状与发展。机械工程学报,2004,40(11):1-6。
    [238] 薛涛,赵俊民。化学镀技术。北京:国防大学出版社,1982,82-192。
    [239] E. Hamada, R. Kaneko. Microtribological evaluation of a polymer suface by atomatic force microscopes. Ultramicroscopy, 1992, 42-44(Part A): 184-190.
    [240] E. Hamada, R. Kaneko. Microdistoration of polymer surfaces by friction. Journal of Physics D: Applied Physics, 1992, 25: A53-A56.
    [241] R. Kaneko, E. Hamada. Microwear process of polymer surfaces. Wear, 1993, 162-164: 370-377.
    [242] 罗启富,陈雪梅。氮化硅陶瓷高温摩擦学性能。硅酸盐通报,1996,(5): 9-14。
    [243] 孙兴伟,李包顺,黄莉萍。氧化锆陶瓷的摩擦磨损性能。硅酸盐通报,1996,24(2):166-172。
    [244] 张朝阳,魏锡文,张海东。Ni-P 化学镀的机理及其研究方法。中国有色金属学报,2001,5:199-201。
    [245] J. Tong, L.Q. Ren, J.Q. Li et al.. Abrasive wear behaviour of bamboo. Tribology International, 1995, 28: 323-328.
    [246] J. Tong, R.D. Arnell., L.Q. Ren. Dry sliding wear behaviour of bamboo. Wear, 1998, 221: 37-46.
    [247] S. Bahadur, D.L. Gong. The Role of copper compounds as filler in the transfer and wear behavior of poly-etheretherketone. Wear, 1992, 154: 151-165.
    [248] 曲建俊,张凯,姜开利等。超声马达转子摩擦材料磨损特性研究。摩擦学学报,2001,21(4):283-287。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700