用户名: 密码: 验证码:
中国甘薯种质资源遗传多样性分析及高淀粉轮回选择群体改良研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“甘薯——21世纪人类的健康、能源植物”。优质高产多抗专用型甘薯新品种选育是目前和将来众多的育种工作者主攻方向,而甘薯种质资源的发掘、创新和利用是获得突破性甘薯新品种的基础。因此,本研究应用农艺性状、农艺性状与形态特征的合并性状和RAPD标记对我国常用甘薯种质资源的遗传多样性进行分析;在国内率先开展了高淀粉甘薯轮回选择群体改良工作,明确了轮回选择对主要农艺性状改良效果,并结合RAPD标记对基础群体和轮回选择群体进行遗传多样性比较。其主要结果如下:
     1、我国甘薯种质资源的遗传多样性
     (1)基于农艺性状分析甘薯的遗传多样性:对36份种质资源的农艺性状的研究结果表明引进资源的蔓长、藤叶重、鲜薯重的级差、标准差大以及变异系数均最大,而烘干率和淀粉率、茎粗的级差、标准差小,变异系数最小,该类型资源存在丰富的遗传多样性。主推品种的重要农艺性状如蔓长、分枝数、藤叶重和鲜薯重的级差、标准差,变异系数均小于引进资源和国内资源。从农艺性状的角度讲,引进资源的遗传多样性(特别是与蔓长、藤叶重和鲜薯重的遗传多样性)显著高于国内的种质资源。因此引进资源在甘薯育种中将会发挥十分重要的作用。
     (2)基于RAPD标记分析甘薯的遗传多样性:本研究从50条RAPD引物中筛选出带型清晰、稳定的20条引物对36份材料的DNA进行PCR扩增。结果发现20条引物在供试材料中共扩增出177条带,其中172条带具有多态性,多态性频率达97.18%,每个引物扩增出4~15条多态性带,平均为8.7条。不难看出36份供试材料在DNA水平上具有丰富的多样性。
     (3)基于农艺性状的聚类图不能与所用材料的系谱相吻合,而RAPD标记产生的聚类图与系谱关系吻合性好,合并性状的聚类图与系谱关系吻合性较好,与RAPD标记的遗传聚类图基本一致。这表明利用RAPD标记在甘薯育种中进行辅助选择是可靠的。
     (4)根据农艺性状、合并性状得出的遗传距离来看,引进资源品种(系)间的平均遗传距离最大,其次是国内资源,主推品种间变异最小。引进资源与国内资源间的平均遗传距离最大,主推品种与引进资源的平均遗传距离次之,主推品种与国内资源平均遗传距离最小。根据RAPD标记显示的遗传距离来看,主推品种内的遗传差异最大,其次是引进资源,国内资源变异最小;类型之间主推品种与引进资源的遗传差异最大,其次是主推品种与国内资源之间,国内资源与引进资源之间遗传差异最小。
     (5)优异种质资源的筛选与鉴定:本研究发现国内资源中的H11-67、川薯294、绵粉1号、绵薯早秋、川薯27、肇源16、主推品种中的丰收白、潮薯1号、豫薯7号和引进资源中的台农27、内源、澳洲黄,它们的RAPD分子标记的平均遗传距离大于骨干亲本,其中H11-67含近缘野生种一半的血缘,和其它资源的遗传差异最大,具有极大的应用价值。可见,进一步加强近缘野生种资源的研究和利用,对解决甘薯育种中存在的基因源日趋狭窄等问题具有重大意义。
     2、高淀粉甘薯轮回选择群体的改良效果及遗传多样性分析。
     (1)在国内率先开展了高淀粉甘薯轮回选择群体改良研究,确定了基础群体构建和轮回选择的基本原则和方法,即以基础亲本群体的构建为起点,轮回选择为中心,改良创新种质资源、选育优质高效专用型品种为目的,组建优良基因数目多、均值高、遗传变异丰富的高淀粉甘薯品种(系)的基础群体,进行人工混合授粉、集团杂交,并采用轮回选择方法,不断改良群体和筛选优系,试图打破不利基因连锁,增加有利基因重组的频率,使品质性状有新的突破,为选育突破性高淀粉甘薯新品种提供新的种质和技术支撑。
     (2)高淀粉甘薯轮回选择群体改良的过程中,第一轮群体(C1)总的水平比基础群体C0下降,部分性状下降显著。通过第二轮选择后,第二轮群体(C2)水平大幅度提高,远远高于C1,多数性状的平均值达极显著水平,特别是薯干、鲜薯重增益幅度最大,并且超过CO群体,鲜薯增益(10.48%),薯干增益(10.61%)达显著水平,另外藤叶产量增益(29.7%)达极显著。而品质性状的烘干率和淀粉率的变化和其它性状变化不一致,即C1群体退化不严重,C2提高但没有达到C0水平。虽然由此看出要尽快改良提高烘干率和淀粉率的难度较大,但轮回选择群体烘干率和淀粉率与单株薯干重遗传相关系数由基础群体的较强负相关变为弱负相关和正相关。
     (3)随着选择轮次的增加,单株鲜薯重和薯干重得到了显著改进,变异系数降低,同时群体方差也下降,但不显著。烘干率和淀粉率变异不大。
     (4)利用RAPD标记对基础群体及轮回选择群体间(内)材料进行遗传差异研究发现,通过第一轮轮回选择后,群体内的遗传差异变化较小,第二轮选择后,群体内的遗传差异变化明显增加。从聚类结果看出,RAPD分子标记可以较准确地反应和确立各群体间(内)基因型之间的遗传差异和亲缘关系。这进一步表明,利用RAPD标记在甘薯育种中进行辅助选择是合理的、可靠的。
"Sweet potato is the health and energy plants of human in 21st century." To develop new good-quality, high-yielding, resistance and specialized type varieties is the main aim of breeders at anytime. Moreover, exploration, innovation and utilization of the sweet potato germplasm resources are the basis of gained new breakthrough sweet potato varieties. Therefore, the agronomic traits, the integrated index of agronomic and morphological traits and the RAPD markers were used for genetic diversity of the Chinese sweet potato cuurent germplasm. This study was to use recurrent selection in population improvement of high starch sweet potato in China. The results showed the there were obvious effect of recurrent selection method on agronomic traits population improvement effect. At the same time, foundation populations were compared to recurrent selection population in genetic diversity with RAPD markers. The main results were as following:
     1. Genetic diversity of Chinese sweet potato germplasm resources.
     (1) Genetic diversity analysis of 36 germplasm resources based on agronomic traits showed that the introduction resources existed a longest vine leaves, the largest fresh weight of relativity, standard deviation and coefficient of variation and the smallest drying rate and the rate of starch, stem diameter of relativity, the small standard deviation, coefficient of variation, which suggest that they have abundant genetic diversity. Wide planting varieties of important agronomic traits such as a long, the number of branches, leaves and vine stem heavy differential, standard deviation, the coefficient of variation was less than both the domestic and the introduction resources. As far as agronomic traits (especially with a long, vine leaves and fresh weight of the genetic diversity) are concerned, the genetic diversity of the introduced resources was significantly higher than that of domestic germplasm. Therefore, the introduced resources will play a very important role in sweet potato breeding.
     (2) Genetic diversity analysis based on RAPD analysis:Twenty out of 50 stripes of RAPD primers that can produce polymorphic, clear and bright bands, with reliable repeatability, have been used for DNA amplification of 36 genotypes. The results showed that total 177 bands were amplified in these materials and 172 bands were polymorphic among them. The polymorphism frequency was up to 97.18%. Each primer amplified 4~15 polymorphic bands, with an average of 8.7. It was obvious that there were abundant diversity in the 36 materials on the DNA level.
     (3) The cluster dendrogram from the agronomic traits was not consistent with the pedigree of the materials, while the cluster dendrogram based on RAPD markers was not consistent with it. The cluster dendrogram based on the integrated index was also consistent with the pedigree and the cluster dendrogram based on RAPD markers. The results showed that it was reliable to utilize RAPD markers for assisted selection in sweet potato breeding.
     (4) The results derived from agronomic traits and integrated index showed the largest genetic distance was in introduced resources, and the next was in domestic resources, while the smallest was in main planting varieties. Moreover, the largest average genetic distance was between introduced resources and domestic resources, and the second between introduced resources and main planting varieties, while the smallest between domestic resources and main planting varieties. RAPD analysis showed that the largest genetic diversity exists within in main planting varieties, and the next within introduced resources, while the smallest in domestic resources. Moreover, the largest genetic difference existed within types was between main planting varieties and introduced resources, and the next between main planting varieties and domestic resources, while the smallest between domestic resources and introduced resources.
     (5) The results showed that the average genetic distances, based on the RAPD markers with the genotypes including H11-67, chuanshu 294, mianfen 1, mainshuzaoqiu, chuanshu 27 and zhapyuan 16 in domestic resources, fengshoubai, chaoshu 1 and yushu 7 in main planting resources, and tainong 27, neiyuan, and aozhouhuang in introduced resources, were larger than their main parents. Among them, H11-67 was with half blood of the wild species, and was large difference from other resources. This showed that it was significant to further strengthen the study and utilization of the wild relatives resources to broaden the genetic basis in the sweet potato breeding.
     2 Improvement effect and genetic diversity analysis of the high starch sweet potato recurrent selection populations
     (1) To determine basic principles and methods of the construction of high starch sweet potato basic populations and the recurrent selection, it commenced from the construction of basic parents populations, centered the recurrent selection, and aimed at improving innovation germplasm resources and identification of high sweet potato starch based groups and the construction of recurrent selection of the basic principles and breeding good-quality, high-yielding, resistance and specialized varieties. The basic populations of excellent genes, high mean, and rich genetic variation high starch sweet potato varieties or lines had been constructed, with artificial mixture pollination or group hybridizing, recurrent selection to break the linked negative gene, enhance favorable gene recombination frequency and create new breakthrough quality traits.
     (2) During recurrent selecting, the first selection population (C_1) had the reduced agronomic traits compared with the basic population. After the second selecting, the agronomic traits especially the weight of dried potato and fresh potato of the population (C_2) were infinitely improved compared with C_1. The change tendency of quality traits such as the drying rate and starch rate were different from others. Results of selection showed that after a slightly degradation of C_1, C_2 had the improvement but they had not reached the level of C_0. Although it is rather difficult to enhance the drying rate and starch rate in a short period, the genetic correlation coefficient between the drying and starch rate and the dry weight per plant was changed from the strong negative correlation to the weak negative or positive correlation with recurrent selecting.
     (3) Along with the increase of selection times, fresh weight and dry weight per plant were significantly improved with the slightly lowered variation coefficient, and there was the small variation in drying and starch rate.
     (4) RAPD analysis results showed that the genetic difference within populations reduced after the first selection and it was saliently increased after the second selection. Cluster analyses showed that RAPD markers could accurately response and determine the genetic variations and the pedigree relations. The result further indicated that RAPD markers are reasonable and reliable markers in assisted selection breeding of sweet potato.
引文
安康,房伯平,张雄坚,等.2003:甘薯种质资源病毒病调查研究初报.广东农业科学,(4):39-40.
    部景禹,陆国权,盛家廉.1993:中国甘薯种质资源研究进展中国甘薯,(5--6):3一6.
    蔡南通,谢春生,余华,等.1994:,南方甘薯品种资源抗蔓割病鉴定研究,建省农科院学报,9(1):23-17.
    曹靖生,2000:,.黑龙江省主要玉米种质基础现状分析.玉米科学,8(1):21-22.
    常彩霞,宋国安,1987:利用海滨野牵牛在甘薯种质创新上的研究初报.中国甘薯,1:44-47.
    陈彦惠.1996:玉米遗传育种学,.河南科学技术出版社,216-223.
    陈云池,1961:甘薯同化物质积累和块根膨大规律的初步探讨.中国农业科学,9:25-29.
    戴起伟,邱瑞镰,徐品莲等,1988:甘薯若干数量性状遗传参数和高淀粉高产育种策略研讨.中国农业科学,21(4):33-38.
    戴起伟,邱瑞镰,徐品莲等,1989:甘薯配合力和组合生产力综合鉴定指数.中国甘薯,3:30-35.
    戴起伟,张必泰,1988a:甘薯高淀粉高产育种的配合力分析.江苏农业学报,(3):15-18.
    戴起伟,张必泰,1988b:甘薯数量性状遗传距离在亲本选配中的初步应用.遗传,10(3):1-3.
    方正义,叶彦复,李伯权等,1992:利用甘薯块根早期性状筛选早熟性.浙江农业大学学报,18(1):96-102.
    冯启涣,李惟基,陆漱韵等,1988:甘薯配合力分析的若干问题.作物学报,14(2):124-130.
    冯启涣,陆漱韵,李惟基等,1989:用多性状多统计指标的综合分析评价甘薯亲本和组合的方法,中国甘薯,3:116-119.
    傅荣昭、邵鹏柱、高文远,1998:DNA分子标记技术及其在药用植物研究上的应用前景,生物工程进展,(18)4:14-17
    盖钧镒,Fehr W R.1985:大豆产量轮回选择主要农艺性状的遗传响应.作物学报,11(4):236-242.
    盖钧镒主编,1996:作物育种学(各论).中国农业出版社.
    盖树鹏,孟祥栋,1999:利用RAPD技术进行植物性状标记及辅助选择,生物技术通报,,(6):33-39
    郭小丁,马代夫,李秀英,1995:甘薯与近缘野生植物嫁接的研究初报.植物学通报,12(1):57-59.
    郭小丁,邬景禹,唐君等.1994:甘薯品种资源田间耐盐性鉴定研究.作物品种资源,(3):34-36.
    黄湛,陈友荣,冯祖虾等,1987:广东甘薯品种耐寒性鉴定及其生理研究.中国农业科学,(3):56一59.
    贾继增、王天宇,1999:分子标记的种类及其发展,生物技术通报,(4):19-23
    江苏省农业科学院,山东省农业科学院主编,1984:中国甘薯栽培学,上海科学技术出版社.
    江苏省徐州地区农科所主编,1984:全国甘薯品种资源目录,农业出版社.
    江苏徐州甘薯研究中心主编,1993:中国甘薯品种志,农业出版社.
    李良,1975:甘薯随机交配集团数量性状遗传之研究,农业研究,23:255-262.
    李良,1977:甘薯蛋白质含量之遗传及其与块根收量相关之研究,中华农学会报,100;78-86.
    李良,廖嘉信,1994:台湾省甘薯品种改良之成就与展望,根茎作物生产改进及加工利用研讨会专刊,11-28.
    李秀英,马代夫,朱祟文等,1996:嫁接砧木与甘薯亲本的交互亲和性,作物杂志,(1):35-36.
    李秀英,马代夫,李洪民,谢逸萍,李强,马飞(2003),抗病高干特异资源材料徐781的特性鉴定和亲本利用评价,植物遗传资源学报,4(3):232-237
    廖林,刘玉芝,卢亦军等,1997:吉林省大豆品种(系)血缘组成分析.吉林农业科学,,(2):1-6.
    林礼辉,刘慧瑛,1987:甘薯藤叶浓缩叶蛋白研究.中华农业研究,36(2):207-215.
    林美莺,谢春生,冯祖虾,1994:中国南方部分甘薯品种资源耐湿性鉴定.中国甘薯,(7):144一148.
    林妙娟,1994:甘薯之营养与食用法.根茎作物生长改进及加工利用研究讨会专刊,319-327.
    林汝湘,谢春生,冯祖虾等,1995:我国南方甘薯品种资源部分营养成分分析研究.中国农业科学,(4):39一45.
    林祖军,杨中萃,崔广琴等,1990:甘薯亲本配合力分析及亲本选配,中国甘薯,4:38-41.
    陆国权,1990:中国甘薯育成品种系谱,中国甘薯,4:26-28.
    陆国权,1996:日本甘薯育种研究新动向,国外农学:杂粮作物.(4):20-23.
    陆漱韵,1965:甘薯育种的新途径——辐射育种.第一次甘薯生产和学术会议,青岛.
    陆漱韵,冯启涣,武崇光等,1985:关于甘薯亲本配合力的研究,中国农业科学,16(3):40-45.
    陆漱韵,国分桢二,佐藤宗治,1989:关于甘薯属甘薯组中A群和B群之间可交配性的研究,作物学报,15(1);45-52.
    陆漱韵,李太元,1992:甘薯组(Section Batatas)种间、种内交配不亲和特性研究,作物学报,18(3):161-168.
    陆漱韵,李太元,王克通等,1994a:克服甘薯品种间杂交不亲和性方法研究,作物学报,20(5):548-556.
    陆漱韵,刘庆昌,李惟基,1998:甘薯育种学.中国农业出版社.
    马代夫,邱军,房伯平,孙近友等,2004:国家甘薯区试考察与产业发展建议,杂粮作物,24(5):306-308
    马代夫,谢逸萍,李洪民等,2003,高淀粉甘薯新品种徐薯22的选育与栽培技术要点,江苏农业科学,6:22-24
    马代夫,朱崇文,李秀英等,1990:甘薯主要品质性状配合力和相关性分析,中国甘薯,4:58-66.
    马代夫等,2001:甘薯脱毒特性鉴定及亲本利用评价,中国农业科学,34(2):146-152
    南京农学院,1979:田间试验和统计方法.农业出版社.182-191.
    彭泽斌,田志国.2004:改良HS2相互轮回选择与玉米育种.玉米科学,,12(1):18-20.
    钱惠荣,郑康乐 1998:DNA标记和分子育种[J],生物工程进展,,(18),3:12-18
    钱利生,朱芸初,叶彦复,1990:甘薯亲本筛选和强优组合选配的研究,中国甘薯,4:32-37.
    全国农业技术推广服务中心等,中国甘薯品种鉴定年鉴 2000-2003
    荣廷昭,1998:田间试验与统计分析.中国农业出版社.250-259.
    沈稼青,1982a:甘薯近缘植物三浅裂野牵牛(I.trifida)杂交不亲和性的研究,作物学报,8(1):9-14.
    沈稼青,陈应东,冯祖虾等,1992:广东甘薯品种资源杂交不亲和群的鉴定及分析研究,中国农业科学,(1):22一31
    沈稼青,王庆南,1990:提高甘薯杂交结实率的有效途径,中国农学通报,6(4):32-35.
    盛家廉,王意宏,薛启汉,1987:我国甘薯生产与科研现状,中国甘薯,1:1-5.
    宋启建,吴天侠,盖钧镒,1996:熟期选择对大豆轮回群体质量、数量性状及不育率的影响.中国农业科学,29(3):49-54.
    孙世贤,2005:全国农作物审定品种名录,北京,农业科技出版社,
    谭民化,1998:四川甘薯高产育种探析.西南农业学报,11:50-55.
    王寒,周端敏,宗江,1988:甘薯品质育种,1988年全国甘薯会议论文,48-49.
    王家旭,陆漱韵,李惟基,1992:甘薯及其近缘野生种花药愈伤组织诱导和器官分化.北京农业大学学报,18(4):381-384.
    王家旭,陆漱韵,李惟基等,1993:甘薯组(Section Batatas)A系列与B系列种间杂种植株形态变异观察,北京农业大学学报,19(增):134-137.
    王晶珊,刘庆昌,田浦悟等,1997:甘薯胚性愈伤组织原生质体的高频率植株再生.农业生物技术学报,5(3):259-263.
    王敏.1997:轮回选择对大豆籽粒性状的改良.种子,,77(3):31-34.
    王铁华,1988:对我国甘薯杂交育种技术改进的几点我见,中国甘薯,2:79-81.
    王铁华,任枢庭,张耀斌等,1987:甘薯“计划集团”育种法研究初报.农业科技通讯,(7):10-11.
    邬景禹,孙近友,1989:我国甘薯种质资源研究的发展战略,中国甘薯,3:19-22.
    邬景禹,陆国权,盛家廉.1993:中国甘薯种质资源研究进展.中国甘薯,(5~6):3-6.
    西北农学院主编,1979:作物育种学,农业出版社.
    谢春生,黄宏城,冯祖虾,等.1994:我国甘薯品种资源耐旱性鉴定研究.中国甘薯,(7):149-154.
    邢继英,杨永嘉,孙爱根等.2002:甘薯种质资源抗(耐)病毒病评价研究.江苏农业科学,(2):46-48.
    阎文昭,王大一,李晋涛,1997:22个甘薯品种(系)遗传背景的图谱分析,农业生物技术学报.5(1):4-46
    叶兴国,王连铮,1995:黄淮海地区大豆品种亲缘关系概势分析.大豆科学,14(8):214-220.
    袁宝忠,1989:中国甘薯科技工作40年(1949-1989)大事纪,中国甘薯,3:1-5.
    曾三省,1996:黄早四在我国玉米育种和生产中的重要地位[J].玉米科学,4(1):1-6.
    张必泰,邱瑞镰,徐品莲等,1981:甘薯的产量,干率和抗病性的遗传趋势,遗传,3(1):28-30.
    张得水,1998:DNA分子标记基因组作图及其在植物遗传育种上的应用,生物技术通报,(5):15-23
    张黎玉,谢一芝,1987:甘薯块根中类胡萝卜素含量的遗传分析,中国甘薯,1:97-98.
    张黎玉,谢一芝,1988:甘薯块根肉色遗传以及其它性状的相关分析,江苏农业学报,4(2):30-34.
    张黎玉,徐品莲,邱瑞镰等,1987:甘薯近缘野生种的搜集和利用研究,中国甘薯,1:26-29.
    郑康乐主编,1991:分子标记在作物遗传育种中的应用,江苏科学技术出版社,
    朱成松,顾和平,陈新.1997:轮回选择的原理及其在大豆育种中的应用.大豆通报,(5):24-25.
    朱祟文,马代夫,李秀英等,1992:甘薯育种亲本筛选程序的建立,作物杂志,(2):30-32.
    Austin DF, 1977: Hybrid polyploids in Ipomoea section Batatas. J Hered, 68: 259-260.
    Austin DF, 1978: The Ipomoea batatas complex-Ⅰ. Taxonomy, Bull Torrey Bot Club, 105: 114-129.
    Austin DF, 1987: The taxonomy, evolution and genetic diversity of sweet potatoes and related wild species. Report of the 1st Sweet Potato Planning Conference, CIP, Lima, Peru, 27-59.
    Bader RF, Zamora AB, Manguiat PH, 1995: Mutation breeding of sweet potato in the Philippines. Proceedings in Improvement of Root and Tuber Crops in Tropical Countries of Asia by Induced Mutations, IAEA·TECDOC, 809: 65-82.
    Belarmino MM, Abe T, Sasahara T, 1994: Plant regeneration from stem and petiole protoplasts of sweet potato (Ipomoea batatas) and its wild relative, I. lacunosa. Plant Cell Tiss Org Cult, 37: 145-150.
    Bidney DL, Shepard JF, 1980: Colony development from sweet potato petiole protoplasts and mesophyll cells. Plant Science Letters, 18: 335-342.
    C. McGregor, M. Greyling, J. Banda, S. Laurie.2001 DNA Fingerprinting of Sweetpotato (Ipomoea batatas L.): Two case Studies in Africa ISHS Acta Horticulturae 546: International Symposium on Molecular Markers for Characterizing Genotypes and Identifying Cultivars in Horticulture
    Cantliffe DJ, Liu JR, Schultheis JR, 1987: Development of artificial seeds of sweet potato for elonal propagation through somatic embryogenesis. In: Methane from biomass: a system approach. Smith WH, Frank JR (Eds.), Elsevier Applied Science, New York, pp500.
    Charles WB, Hoskin DG, Cave PJ, 1974: Overcoming cross-and self-incompatibility in Ipomoea batatas(L.) Lam. and Ipomoea trichocarpa(Elliot). J Hort Sci, 49: 113-121.
    Cheng CF, 1958: The fact of radiation on the first irradiated generation of sweet potato and peanut. Proc 2nd UN Int Conf Peaceful Use in Atomic Energy, A/Cont. 15/P. 1131: New York, 1-6.
    Dapeng Zhang, 2000: Genoveva Rossel, Luis Ojeda AFLP Revealed Genetic Diversity and Relationship in Sweetpotato Cultivars From Oceania and Tropical America Plant & Animal Genome Ⅷ Conference:P531(San Diego, CA, January 9-12)
    Fujise K, 1964: Studies on flowering seed setting and self-and cross-incompatibility in the arieties of sweet potato. KNAES MAFF Japan, 9(2): 124-129.
    He X-Q, Liu Q-C, Wang Y-P,Zhai Hong. 2005: Analysis of genetic diversity of sweet potato landraces in China. Scientia Agricultura Sinica (中国农业科学),38(2):250-257 (in Chinese with English abstract)
    HeG, Prakash CS, Jarret RL. 1995: Analysis of genetic diversity in a sweetpotato(Ipomoea batatas) germplasm collection usingDNA amplification fingerprinting.Genome ct;38(5):938-945.
    Huang, J., and S. M. (2000) Genetic diversity and relationships of sweetpotato and its wild relatives in Ipomoea series Batatas (Convolvulaceae) as revealed by inter-simple sequence repeat (ISSR) and restriction analysis of chloroplast DNA. Theor Appl Genet 100:1050-1060.
     Hwang LS, Skirvin RM, Casyao J et al., 1983: Adventitious shoot formation from sections of sweet potato grown in vitro. Scientia Horti-cuhurae, 20: 119-129.
    Iwanaga M, 1987: Use of wild germplasm for sweet potato breeding, Report First Sweet Potato Planning Conference, CIP: 199-210.
    Jarret RL, Salazar S, Fernandez RZ, 1984: Somatic embryogenesis in sweet potato. Hort Science, 19: 397-398.
    
    Jones A, 1964: Chromosome numbers in the genus Ipomoea. J Hered, 54(55): 216-219.
    Jones A, 1965a: A proposed breeding procedure for sweet potato, Crop Science, 5: 191-192.
    Jones A, 1968: Chromosome numbers in Ipomoea and related genera. J Hered, 59: 99-102.
    Jones A, 1970: Asynapsis in Ipomoea gracilis. J Hered, 61: 151-152.
    Jones A, 1971: The use of correlated responses in sweet potato selection. J Amer Soc Hort Sci, 96 (4): 538 541.
    Jones A, Deonier MT, 1965: Interspecific crosses among Ipomoea tacunosa, I. rarnoni, I. trichocarpa and I. triloba. Bot Gaz, 126 (3): 226-232.
    
    Jones A, Dukes PD, 1982: Longevity of stored seed of sweet potato. Hortscience, 17 (5): 756-757.
    King JR, Bamford R, 1937: The chromosome number in Ipomoea and related genera. J Hered, 28:278-282.
    Kobayashi RS, Sinden SL, Bouwkamp C, 1993: Ovule culture of sweet potato (Ipomoea batatas) and closely related species. Plant Cell Tiss Org Cult, 32: 77-82.
    Kokubu T, Liu QC, Sato M, 1993a: Somatic embryogenesis and plant regene-ration in shoot tip cultures of sweet potato, Ipomoea batatas (L.) Lam., Mem Fac Agr Kagoshima Univ, 29: 53-57.
    Kokubu T, Sugita T, Liu QC, et al., 1993b: Plant regeneration in leaf and petiole explant cultures of Ipomoea littoralis Blune. Memoirs of the Faculty of Agriculture, Kagoshima University. 29: 49-52.
    Kokubu T, Uedo T, Liu QC, et al., 1993c: Plant regeneration in tissue cultures of Ipomoea tiliacea (Willd.) Choisy. Memoirs of the Faculty of Agriculture, Kagoshima University. 29: 59-63.
    Kokuhu T, Sato M, 1988: Isolation and culture of petiole protoplasts of sweet potato, Ipomoeabatatas (L.) Lam. and its related species. Mem Fac Agr Kagoshima Univ, 24: 83-89.
    Kowyama T, Shimano N, Kawase T, 1980: Genetic analysis of incompatibility in the diploid Ipomoea species closely related to the sweet potato. Theor Appl Genet, 58: 149-155.
    Kriegner A, Cervantes JC, Burg K, et al.. 2003, A genetic linkage map of sweetpotato [Ipomoea batatas (L.) Lam.] based on AFLP markers. Molecular breeding 11 (3): 169-185 APR
    Kukimura H, 1986: Mutation breeding in root and tuber cropsa review. Gamma Field Symposia, 25: 172-173.
    Kukimura H, Kouyama Y, 1982: Study on mutation breeding in sweet potato (Ipomoea batatas (L.) Lam. ). Induced Mutations in Vegetatively Propagagated Plants I, IAEA, Vienna, 199-233.
    Kukimura H, Takemata T, 1975: Induced quantitative variation by Gamma -rays and ethyleneimine in tubering plants. Gamma Field Symposia, 14: 25-38.
    Lam SL, Cordner HB, 1955: Flowering hormone in relation to blooming in sweet potato. Science, 121: 140-141.
    Lardizabal RD, Thompson PG, 1988: Hydroponic culture, grafting, and growth regulators to increasing flowering in sweet potato. Hortscience, 23 (6): 993-995.
    Lardizabal RD, Thompson PG, 1990: Growth regulators combined with grafting increase flower number and seed production in sweet potato. Hortscience, 25 (1): 79-81.
    Liu JR, Canttiffe DJ, 1984: Somatic embryogenesis and plant regeneration in tissue cultures of sweet potato (Ipomoea batatas Poir.). Plant Cell Rep, 3: 112-115.
    Magoon ML, Krishnan R, Vijaya Bai K, 1970: Cytological evidence on the origin of sweet potato. Theor Appl Genet, 40: 360-366.
    
    Martin FW, 1970: Sterility in some species related to the sweet potato. Euphytica, 19: 451-456.
    Martin FW, 1974: Jones A, Ruberte RM, A wild Ipomoea species closely related to the sweet potato. Econ Bot, 28: 287-292.
    Martin FW, 1982: Analysis of the incompatibility and sterility of sweet potato. Proc 1st Intl SyrupSweet Potato, Taiwan, 275-283.
    Martin FW, Jones A, 1972: The species of Ipomoea closely related to the sweet potato. EconBot. 28: 287-292.
    Marumine S, Sekai K, 1961: Studies on induction of artificial mutation in sweet potato I. X-ray irradiation. Report of the Kyushu Branch of the Crop Society of Japan, 16: 4-6.
    Miller JC, 1935: Further studies of mutations of the aport rico sweetpotato. Proc Amer Soc Hort Sci, 33: 460-465.
    Muramatsu M, Shiotani I, 1974: Closely relaled wild Ipomoea species of the sweet potato in Mexico and Guatemala. Rep Hunt Germ Plasma Inst Fac Agr Kyoto Univ, 1:9-13.
    Murata T, Hoshino K, Miyaji Y, 1987: Callus formation and plant regeneration from petiole protoplast of sweet potato, Ipomoea batatas (L.) Lam., Japan J Breed, 37: 291-298.
    Nakanishi T, Kobayashi M. 1979: Geographie distribution of sweet potato cross-incompatibility. Incompatibility Newsletter, 11: 72-75.
    Nishimaki T, Nozue M, 1985, Isolation and culture of protoplasts from high anthocyanin-producing callus of sweet potato. Plant Cell Rep, 45: 248-251.
    Oracion MZ, Niwa K, Shiotani I, 1990: Cytological analysis of tetraploid hybrids between sweet potato and dipoid Ipomoea triflda H. B. K.) Don., Theor Appl Genet, 80: 617-624.
    Perera SC, Ozias-Akins P, 1991: Regeneration from sweet potato protoplasts and assessment of growth conditions for flowsorting of fusion mixtures. J Amer Soc Hort Sci, 116: 917-922.
    Prakash CS, He GH & Jarret RL (1996) DNA marker-based study of genetic relatedness in United States sweetpotato cultivars. Journal of the American Society for Horticultural Science, 121: 1059-1062.
    Prakash CS, Varadarajan U, 1992a: Genetic transformation of sweetpotato byparticle bombardment. Plant Cell Rep, 11.-53-57.
    Prakash CS, Varadarajan U, 1992b: Genetic transformation of sweetpotato. Sweet potato Tech 21st Century, 27-37.
    Schaal S A, Leverich W J,Rogstad S H 1991: Comparison of methods for assessing genticvariation in plant conservation biology in:Folk D A, Holsinger K E,eds. Gentics and conservation of Rare Plants. New York;Oxford University Press.
    Schultheis JR, Cantliffe DJ, 1992: Growth of somatic embryos of sweet potato (Ipomoea batatas (L.) Lam) in hydroxyethyl cellulose gel amended with salts and carbohydrates. Scientia Horticulturae. 50: 1-2: 21-33.
    Sihachaky D, Haicour R, Cavalcante AJM et al., 1997: Plant regeneration in sweet potato (Ipomoea batatas). Euphytica, 96(1): 143-152.
    Teramura T, 1979: Phylogenetic study of Ipomoea species in the section Batatas. Mem coil Agr Kyoto Univ, 114:29-48.
    Ting YC, Kehr AE, Miller JC, 1957: A cytological study of the sweet potato plant Ipomoea batatas(L.) Lam. and its related species. Amer Natura list, 91: 197-202.
    Villordon,Arthur Q,et al.,Jewel1995: 甘薯无性系的任意扩增标记和贮藏块根产量的变异[J],J.Amer.Soc.Hort.Sci,,120,(5),734-740.
    Vimala B, 1989: Fertility and incompatibility in sweet potato(Ipomoea batatas L.). Ann Agr Res, 10(2): 109-114.
    Wang J, He G, Prakash CS, Lu S. 1998,Analysis of genetic diversity in Chinese sweetpotato [Ipomoea batatas (L.) Lam.] germplasm using DNA amplification fingerprinting.Plant Genet Resour Newsl.; 113:13-6.
    Williams J ,G, K., Kubelik A., R., Livak K.J., Rafalski J. A., Tingey S, V., 1980, DNA polymorphisms amplified by arbitrary primers are useful as geneticmarkers. Nucl. Acids Res 18:6531-6535
    
    Yen DE, 1961: Evolution of the sweet potato(Ipomoea batatas(L.)Lam.). Nature, 191: 93-94.
    Zhang LM, Wang QM, Xi GH et al., 1995: Overcoming sweet potato cross-incompatability with plant growth regulators. Proc 1st Chinese-Japanese Symp Sweetpotato & Potato, 132.
    Zhang, D. P., M. Ghislain., Z. Huarnan, A. Golmirzaie, and R. J. Hijmans. 1998. RAPD variation in sweetpotato (Ipomoea batatas L.) cultivars from South America and Papua New Guinea. Genetic Resources and Crop 45: 271-277.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700