用户名: 密码: 验证码:
太阳能电池TiO_2陷光薄膜的制备与特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提高光电转换效率是当前太阳能电池亟待解决的问题,在电池表面涂覆一层或多层光学性质匹配的陷光薄膜,减少电池表面光的反射损失,增加光的透射,是一种理想的解决方案。TiO2薄膜在可见光谱区内具有较高的折射率和较低的吸收率,透明波段中心(X=550nm)与太阳光的可见光谱波段相符合,是一种极具竞争力的陷光薄膜材料。
     本文利用直流反应磁控溅射法在玻璃和硅衬底上制备了TiO2薄膜,优化了工艺条件;用原子力显微镜、X射线衍射仪、紫外-可见光分光光度计等对样品的表面形貌、晶体结构、可见光透过率等特性进行了表征分析,研究了制备工艺与TiO2薄膜结构性能间的影响规律,提出了通过改变制备工艺单步制备双层陷光薄膜的方法,为降低陷光薄膜的制备成本、提高太阳能电池转换效率提供了新途径。
     实验结果表明,薄膜沉积速率随着氧流量比的增大先增大后减小,随着溅射功率的增加而增大,随着溅射气压的增加而减小。用直流反应磁控溅射方法可以制备出表面平整、无缺陷的TiO2薄膜。薄膜经500℃退火后,晶粒大小趋于一致,表面平滑致密,经900℃退火后,原子发生位移,TiO2薄膜由原先的柱状晶粒转变成了棱状晶粒,表面粗糙。在常温下制备的TiO2薄膜为非晶态,300℃退火后薄膜为锐钛矿结构,900℃退火后薄膜由锐钛矿结构转化为金红石结构。
     制备的TiO2薄膜在可见光及近红外光范围内均有较高的透射率。薄膜折射率在1.51~2.72(λ=600nm)之间,增加氧气流量比可以制备出低折射率的TiO2薄膜,高温退火可得到高折射率的TiO2薄膜。薄膜消光系数随着退火温度的升高而增大。比起金红石薄膜,锐钛矿薄膜具有更优的光学性能,更适合作陷光薄膜。60nm厚的TiO2薄膜具有很好的减反射效果,平均反射率仅为3.37%。
At present, improving conversion efficiency of solar cells is an imperative problem to be solved, depositing a light trapping thin film matching with optical property on solar cells to reduce the solar cells' light reflection and increase light transmission is an ideal scheme. TiO2 thin films have optimal optical characteristics with optimal refractive index and low absorption index in the visible region, and its transparent center wavelength (λ=550nm) well coincides with the visible band of sunlight. Therefore, TiO2 is a very competive material as a light trapping thin film.
     In this paper, TiO2 thin films were deposited on glass and Si wafers substrates by direct current (DC) reactive magnetron sputtering, and its process conditions were optimized. The morphology, structure, optical properties of TiO2 thin films were analyzed by atomic force microscopy, X-ray diffraction, ultraviolet and visible spectrophotometer, respectively. Effects of deposition conditions on thin films structure and properties were investigated. The method of one-step preparing double lays light trapping thin film by changing process conditions was proposed, which can be applied to reduce cost and improve conversion efficiency of solar cells.
     The experimental results show that the deposition rate first increases and then decreases as increasing of oxygen flow ratio, and increases as increasing of sputtering power, and decreases as increasing of sputtering pressure. Surface of the TiO2 thin films is flat and no defect. After RTA at 500℃, the grain size tends to be uniform, and surface of thin films becomes smooth and compact; after RTA at 900℃, atom displacement takes place, TiO2 thin films transform from columnar grain to prismatic grain, and its surface becomes rough. As-deposited TiO2 thin films are amorphous, and after RTA at 300℃were identified to become anatase, another transition from anatase to rutile occurred at 900℃.
     TiO2 thin films with a high transmission in visible and near infrared spectrum, as well as refractive indices ranging from 1.51 to 2.72 at a wavelength of 600 nm, were obtained. The low refractive index thin films were obtained by increasing oxygen flow ratio, while the high refractive index thin films were achieved by annealing the as-deposited samples at high temperature. The extinction coefficient increases as increasing of anneal temperature. The optical property of anatase is better than rutile's, therefore, anatase is more suitable for light trapping thin film. When the thickness of thin film is 60nm, TiO2 thin films as light trapping thin films show good antireflection performance, and the weighted average reflectance is only 3.37%.
引文
[1]Goswami Y D. A review and future prospects of renewable energy in the global energy system. Proceedings of ISES Solar World Congress 2007[C]. 清 华大学出版社,2007.3-9
    [2]黄惠良、曾百亨.太阳能电池[M].台湾:五南图书出版社,2008.1-9
    [3]Photovoltaic Technology Research Advisory Council (PV-TRAC) of European Commision. A vision for photovoltaic technology [Z],2005.11-22
    [4]王晓泉,太阳电池用氮化硅及氢钝化研究:[硕士学位论文].杭州:浙江大学,2003
    [5]Pelanchon F, Mialhe P. Toward a theoretical limit of solar cell efficiency with light trapping and sub-structure [J]. Solar Energy,1995,54(6):381-385
    [6]王海燕,硅基太阳能电池陷光材料及陷光结构的研究:[博士学位论文].郑州:郑州大学,2005
    [7]Richards B S. Novel Uses of Titanium Dioxide for Silicon Solar Cells:[Doctor Degree Paper]. Sydney:New South Wales,2002
    [8]Mei L K, David J P, Yong S K, et al. Realization of a near-perfect antireflection coating for silicon solar energy utilization [J]. Optics Letters, 2008,33(21):2527-2529
    [9]Abdelhakim, Mahdjoub. Graded refraction index antireflection coatings based on silicon and titanium oxides [J]. Semiconductor Physics, Quantum Electronics & Optoelectronics,2007,10(1):60-66
    [10]Farooq M, Hutchins M G. A novel design in composities of various materials for solar selective coatings [J]. Solar Energy Materials & Solar Cells,2002, 71(4):523-535
    [11]Southwell W H. Gradient-index antireflection coatings [J]. Optical Letter, 1983,8(11):584
    [12]Zhou W, Tao M, Chen L, et al. Microstructured surface design for omnidirectional antireflection coatings on solar cells [J]. Journal of Applied Physics,2007,102(9):103-105
    [13]Lo S S, Chen C C, Garwe F. Broad-band anti-reflection coupler for a-Si thin-film solar cell [J]. Journal of Physics D:Applied Physics,2007,40(3): 754-758
    [14]Liena S Y, Wuua D S, Yehb W C, et al. Tri-layer antireflection coatings(SiO2/SiO2-TiO2/TiO2) for silicon solar cells using a sol-gel technique [J]. Solar Energy Materials & Solar Cells,2006,90(16):2710-2719
    [15]Chakravartya B C, Vinoda P N, Singha S N, et al. Design and simulation of antireflection coating for application to silicon solar cells [J]. Solar Energy Materials & Solar Cells,2002,73(1):59-66
    [16]王武育,王溪晶,杨太礼.TiO2薄膜的光电性能及应用[J].稀有金属,2008,32(6):781-787
    [17]Wang H Y, Yu F T S, Simms V L. Optimum design of antireflection coatingfor silicon solar cells[C]. In 10th IEEE Photovoltaics Specialists Conference,1973.168-173
    [18]Narayanan S, Creager J, Roncin S, et al. Process improvementsfor large area polycrystalline silicon buried contact solar cell sequence[C]. In 1st World Conference on Photovoltaic Energy Conversion,1994.1319-1322
    [19]Nagel H, Aberle A G, Hezel R. Optimised antireflection coatings for planar silicon solar cells using remote PECVD silicon nitride and porous silicon dioxide [J]. Progress in Photovoltaics,1999,7(4):245-260
    [20]Wenham S R, Honsberg C B, Edmiston S, et al. Simplified Buried-Contact solar cell process [C]. In 25th Photovoltaics Specialists Conference,1996. 389-392
    [21]David A B, Martin P J, kawa H T. Deposition and modification of titanium dioxide thin films by filtered arc deposition [J]. Thin Solid Films,2000, 360(1-2):241-249
    [22]Ottermann C R, Bange K. Correlation between the density of TiO2 films and their properties [J]. Thin Solid Films,1996,286(1-2):32-34
    [23]Laube M, Rauch F, Ottermann C, et al. Density of thin TiO2 films [J]. Nuclear Instruments and Methods in Physics Research B,1996,113(1-4):288-292
    [24]Mergel D, Buschendorf D, Eggert S, et al. Density and refractive index of TiO2 films prepared by reactive evaporation [J]. Thin Solid Films,2000,371(1-2): 218-224
    [25]Biswas S, Majumder A, Hossain M F, et al. Effect of annealing temperature on the photocatalytic activityof sol-gel derived TiO2 thin films [J]. American Vacuum Society,2008,26(4):678-682
    [26]DeLoach J D, Scarel G, Aita C R. Correlation between titania film structureand near ultraviolet optical absorption [J]. Journal of Applied Physics, 1999,85(4):2377-2384
    [27]Yoo D S, Kim I, Kim S S, et al. Effects of annealing temperature and method on structural andoptical properties of TiO2 films prepared by RF magnetronsputtering at room temperature [J]. Applied Surface Science,2007, 253(8):3888-3892
    [28]Barrera M, Pla J, Bocchi C, et al. Antireflecting- passivating dielectric films on crystalline silicon solar cells for space applications [J]. Solar Energy Materials & Solar Cells,2008,92(9):1115-1122
    [29]Biswas S, Majumder A, Hossain M F, et al. Effect of annealing temperature on the photocatalytic activity of sol-gel derived TiO2 thin films [J]. Journal of Vacuum Science and Technoloyg A,2008,26(4):678-382
    [30]DongsunY, Ilgon K, Chang H H, et al. Effects of annealing temperature and method on structural and optical properties of TiO2 films prepared by RF magnetron sputtering at room temperature [J]. Applied Surface Science,2007, 253(8):3888-3892
    [31]王鹤,杨宏,于化丛,等.单晶硅太阳能电池纳米减反射膜的研究[J].固体电子学研究与进展,2003,23(3):316-319
    [32]Richards B S. Single-material TiO2 double-layer antireflection coatings [J]. Solar Energy Materials & Solar Cells,2003,79(3):369-390
    [33]Zayim E O. Optical and electrochromic properties of sol-gel made anti-reflective WO3-TiO2 films [J], Solar Energy Materials & Solar Cells, 2005,87(1-4):695-703
    [34]贾巧英,乐月琴,唐永兴,等.溶胶—凝胶法制备耐磨宽带SiO2/TiO2增透膜[J]. 光学学报,2004,24(1):65-69
    [35]Strehlke J S, S Bastide, Guillet J. Design of porous silicon antireflection coatings for silicon solar cells [J]. Materials Science and Engineering, 2000,69(70):81-86
    [36]Lipinslci M, Panek P, Towska E B. Reduction of surface reflectivity by using porous silicon layers [J]. Materials Science and Engineering B,2003,101(1-3): 297-299
    [37]Jeong S H, Kim J K, Kim B S, et al. Characterization of SiO2 and TiO2 films prepared using rf magnetron sputtering and their application to anti-reflection coating [J].Vacuum,2004,76(40):507-515
    [38]林喜斌,林安中.丝网印刷制减反射膜[J].中国稀土学报,2003,21(Z1): 160-161
    [39]吕玉娟,洪伟良,李继贞,等.溶胶-凝胶法制备TiO2薄膜及其光催化性能的研究[J].广州环境科学,2006,21(3):15-17
    [40]陈南春,韦翠美.溶胶-凝胶法制备纳米Ti02薄膜[J].稀有金属材料与工程,2007,36(1):973-975
    [41]郭清萍.CVD法TiO2薄膜的制备条件及光学性质的研究[J].太原理工大学学报,1998,29(3):240-243
    [42]曹亚安,黄英.TiO2纳米粒子膜的制备,表面态性质和光催化活性[J].催化学报,1999,20(3):353-355
    [43]Sung H K, Chang K H. Influence of Ar ion-beam assistance and annealing temperatures on properties of TiO2 thin films deposited by reactive DC magnetron sputtering [J]. Thin Solid Film,2005,475(1-2):155-159
    [44]Takeda S, Suzuki S, Odaka H, et al. Photocatalytic TiO2 thin films deposited onto glass by DC magnetron sputtering [J]. Thin Solid Film,2001,392(2): 338
    [45]Okada M, Yarnada Y, Jin P, et al. Fabrication of multifunctional coating which combines low-e property and visible-light-responsive photocatalytic activity [J]. Thin Solid Films,2003,442(1-2):217
    [46]罗海燕.减反膜的研究与制备[硕士学位论文].广州:华南理工大学,2008
    [47]Heavens O S. Optical proper of thin solid films [M]. London:1965.45-48
    [48]唐晋发,顾培夫,刘旭等.现代光学薄膜技术[M].浙江:浙江大学出版社,2006.5-59
    [49]杨文华,李红波,吴鼎祥.太阳能电池减反射膜设计与分析[J].上海大学学报,2004,10(1):39-42
    [50]万刚,叶得军,崔容强.硅太阳能电池减反射膜的优化设计[J].上海交通大学学报,1998,32(12):21-23
    [51]王文静.硅基太阳电池的发展[J].高科技与产业化,2007.26-27
    [52]徐万劲.磁控溅射技术进展及应用上[J].现代仪器,2005,(5):1-4
    [53]Franssila S著,陈迪,刘景兰,朱军译.微加工导论[M].北京:电子工业出版社,2006.378-379
    [54]刘刚.AlN基板表面处理对薄膜附着力的影响[J].电子元件与材料,2005,24(9): 45-47
    [55]许小红等.溅射沉积AlN薄膜结构与基片种类的关系[J].压电与声光,2000,22(4):256-258
    [56]张西鹏,范洪远,李伟.物理气相沉积薄膜附着性的影响因素[J].新技术新工艺,2003,(2):42-45
    [57]袁安富,王珉.薄膜沉积中基片的清洗方法探讨[J].材料开发与应用,1999,14(3):44-46
    [58]张有纲,张永祥,许恒生.电子材料现代分析概论[M].西安:电了科技大学出版社,1999.21-30
    [59]周玉,武高辉.材料分析测试技术[M].哈尔滨:哈尔滨工业大学出版社,2003.2-12
    [60]刘粤惠,刘平安.X射线衍射分析原理与应用[M].北京:化学工业出版社,2003.35-44.
    [61]王力衡,黄运添.薄膜技术[M].北京:清华大学出版社,1991.117-118
    [62]李云,王六定.电子束蒸发法制备TiO2薄膜的折射率研究[J].真空,2008,45(5):35-37
    [63]LiS Z G, Miyake, Makino M, et al. Metallic sputtering growth of crystalline titanium oxide films on unheated glass substrate using inductively coupled plasma assisted direct current magnetron sputtering [J]. Thin Solid Films,2008, 128(8):1-5
    [64]王贺权,沈辉,巴德纯,等.氧流量对直流反应磁控溅射制备TiO2薄膜的光学性质的影响[J].中山大学学报(自然科学版),2005,44(6):36-39
    [65]张永熙,沈杰,杨锡良,等.沉积速率及相关工艺条件对直流反应磁控溅射制备TiO2薄膜性质的影响[J].真空科学与技术,2000,20(1):13-18
    [66]周继承,荣林艳,赵保星,等.氧气流量对TiOx薄膜结构和光学特性的影响[J].中南大学学报(自然科学版),2010,41(1):138-143
    [67]惠迎雪,杭凌侠,徐均琪.磁控溅射薄膜沉积速率的研究[J].西安工业学院学报,2005,25(4):307-310
    [68]Gou L, Qi C S, Ran J G, et al. SiC film deposition by DC magnetron sputtering [J]. Thin Solid Films,1999,345(1):42-44
    [69]Shen Y M, Yu H, Yao J K, et al. Investigation on properties of TiO2 thin films deposited at different oxygen pressures [J]. Optics & Laser Technology,2008, 40(3):550-554
    [70]赵青南.溅射法玻璃基TiO2膜、TiO2/TiN/TiO2复合膜制备及其结构和性能表征[硕士学位论文].武汉:武汉理工大学,2004
    [71]Bally A R, Hones P, Sanjines R, et al. Mechanical and electrical properties of TiO1+x thin films prepared by rf reactive sputtering [J]. Surface and Coatings Technology,1998,108-109(1-3):166-170
    [72]Miyake S, Kobayash T, Satou M, et al. Titanium oxide formation by dynamic ion beam mixing [J]. Journal of Vacuum Science and Technology,1991,9(6): 3036-3040
    [73]朱凤,赵坤,赵夔,等.氧分压对TiO2膜结构与光学性质的影响[J].膜科学与技术,2002,22(3):29-33
    [74]Toku H, Pessoa R S, Maciel H S, et al. The effect of oxygen concentration on the low temperature deposition of TiO2 thin films [J]. Surface and Coatings Technology,2008,202(10):2126-2131
    [75]Meng L J, Santos M P. The effect of substrate temperature on the properties of dc reactive magnetron sputtered titanium oxide films [J]. Applied Surface Science,1993,233(2):242-247
    [76]Radecka M, Zakrzewska K, Czternastek H, et al. The influence of thermal annealing on the structural, electrical and optical properties of TiO2-x thin films. Applied Surface Science,1993,65-66(5):227-234
    [77]侯亚奇,庄大明,张弓,等.退火温度对TiO2薄膜结构和表面形貌的影响[J].真空科学与技术,2002,22(4):247-251
    [78]Pulker H K. Characterization of optical thin films [J]. Applied Optics,1979, 18(12):1969-1977
    [79]Chen G S, Lee C C, Niu H, et al. Sputter deposition of titanium monoxide and dioxide thin films with controlled properties using optical emission spectroscopy [J]. Thin Solid Films,2008,516(23):8473-8478
    [80]Tigau N. Crystal Research Technology,2006,41(5):474-480
    [81]Swanepoel R. Determination of surface roughness and optical constants of inhomogeneous amorphous silicon films [J]. Journal of Physics E,1984, 17(10):896-903
    [82]孟凡明,周明飞,宋学萍,等.退火温度对TiO2薄膜结构与光学性能的影响[J].功能材料,2007,38(11):1773-1776
    [83]查全性.电极过程动力学导论[M].北京:科学出版社,2002
    [84]Wang W H, Chao S, Annealing effect on ion-beam-sputtered titanium dioxide Film [J]. Optics Letters,1998,23(18):1417-1419
    [85]Mannifacier J C, Gasiot J, Fillard J P. A simple method for the determination of the optical contants n, k and the thickness of a weekly absorbing thin film [J]. Journal of Physics E:Scientific Instruments,1976,9(11):1002-1004
    [86]Swanepoel R. Determination of the thickness and optical constants of amorphous silicon [J]. Journal of Physics E:Scientific Instruments,1983, 16(12):1214-1222
    [87]Marquz E, Ramirez M J, Villares P. Calculation of the thickness and optical constants of amorphous arsenic sulphide films from their transmission spectra [J]. Journal of Physics D:Applied Physics,1992,25(3):535-541
    [88]Kim J H, Lee S, Im H S. The effect of different ambient gases, pressures and substrate temperatures on TiO2 thin films grown on Si (100) by laser ablation technique [J]. Applied Physics A,1999,69:629-632
    [89]Ottermann C R, Bange K. Correlation between the density of TiO2 films and their properties [J]. Thin Solid Films,1996,286(1-2):32-34
    [90]Mergel D, Buschendorf D, Eggert S, Grammes R, et al. Density and refractive index of TiO2 films prepared by reactive evaporation [J]. Thin Solid Films, 2000,371(1-2):218-224
    [91]Neubert T, Neumann F, Sehiffillann K, et al. Investigations on oxygen diffusion in annealing processes of non-stoiehiometrie amorphous indium tin oxide thin films[J]. Thin solid Films,2006,513(1-2):319-324
    [92]伞海生,李斌,冯博学,等.由缺陷引起的Burstein-Moss和带隙收缩效应对CdIn2O4透明导电薄膜光带隙的影响[J].物理学报,2005,54(2):842-847
    [93]Wang W H, Chao S. Annealing effect on ion-beam-sputtered titanium dioxide film [J]. Optics Letters,1998,23(18):1417-1419

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700