用户名: 密码: 验证码:
基于Monte Carlo方法的水体二向反射分布函数(BRDF)模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体的二向反射特征是表征海洋光学特性的重要因素之一,对应用遥感系统进行水色参数准确定量反演及海洋水色遥感技术的发展有着重要意义,是进行水质监测、水体温度、海洋生产力估产等方面定量遥感必须解决的问题之一
     二向反射是自然界中最基本的宏观现象之一。水体表面光场的方向分布携带有水体的一些重要的属性信息(如水体各组成含量、类型、粒径分布以及表面粗糙度等),忽略其方向性会带来一定的误差。然而早期的遥感应用,通常假定物体反射表面是朗伯反射,认为反射辐射强度、反射方向与入射辐射方向无关,在各方向上均匀分布。随着定量遥感技术的不断发展,遥感的定量化要求传感器获取的信息能准确反映目标特征,同时对由卫星遥感信号中提取的离水辐亮度的精度要求也越来越高。
     目前,植被、土壤的二向反射特性及模拟模型得到了大量的研究,取得了不少进展,但水体二向反射特性的研究相对较少,能够推广应用的二向反射函数模型则更少。这主要是由于影响海洋光谱因素较多,难以精确模拟;海上原位测量困难较大,风浪、阴影、天空状况等影响因素众多,都可以对结果引起较大误差,难以通过实验测量。而通过构建蒙特卡罗模型模拟计算辐射传输模型则可以很好地解决以上困难。由此可见,开展水体的BRDF的模拟模型及模型验证研究将会成为海洋水色遥感定量研究的热点和难点。
     本研究基于一定的假设,通过采用蒙特卡罗方法模拟追踪光子在水中的运动碰撞,采用散射相函数、单次散射率、衰减系数,并通过随机数选取碰撞的位置和散射角度,建立包含高吸收和高散射水体、分子的散射和大颗粒的散射、太阳入射角度、天空光影响的蒙特卡罗二向反射模型。在此基础上,模拟结果基于四边形网格统计技术,统计大量入射光子在水体表面空间所形成的出射光场,并使用圆柱坐标图,实现出射光场的三维展示。
     通过对模型结果的分析与计算发现,太阳入射角度、天空光所占比例、散射相函数、单次散射率等因素共同决定着二向反射分布函数的数值和形状。具体研究结果如下:
     (1)太阳入射角度,特别是太阳天顶角能改变水体二向反射分布函数的形状。在以悬浮颗粒物散射为主的水体,能量大都集中在后向热点方向,且后向热点的位置与太阳入射方向密切相关,也即后向热点的位置均出现在太阳入射光的反方向上;
     (2)天空光所占比例,本研究采用简单的各向同性天空光,当加入天空光后,二向反射分布函数峰值降低,并随着天空光比例的增大,二向反射分布函数的形状趋于对称,后向热点逐渐消失;
     (3)单次散射率主要影响二向反射分布函数的数值大小。同一条件下,单次散射率越大,水体表面反射光场越强烈,二向反射分布函数值越大;反之,越小。
     (4)散射相函数是影响二向反射分布函数形状的主导因素。水分子散射占主导的水体,其散射相函数采用瑞利相函数,光场能量较分散,其二向反射分布函数形状基本不随入射天顶角的变化而变化。而颗粒散射占主导的水体,其散射相函数为Petzold相函数,光子在水中碰撞之后,前向散射非常强烈,经多次散射逃出水面的光子较少,其能量集中在后向热点位置。
Bi-directional Reflectance Distribution Function (BRDF) of water is one of the most important factors to describe the optical characteristics of ocean, It also plays important roles in the research of remote sensing modelling and inversion. Study of this BRDF of water is meaningful to the quantitative remote sensing and the development of remote sensing technology, which need to be solved for monitoring the quality and temperature of water and assess the ocean productivity.
     BRDF is the most basic macroeconomic phenomenon in nature. The directional distribution of light field on water surface carry the important information of water properties such as the composed of water, concentration of component, minerals, the distribution of particle size and surface roughness. It can bring some errors if we ignoring its direction. However, early applications of remote sensing are usually assumed that the object surface is a Lambert. It is uniformly distributed in all directions and the intensity of reflected radiation, reflection direction are nothing to do with the direction of incident radiance. With the continuous development of quantitative remote sensing technology, it's urgent to obtain the more accurately information.
     Now, The BRDF is widely implemented in land remote sensing, especially for quality assessment of vegetation and soil. However, it has only been occasionally applied in marine optics to date. This is mainly because many factors affect the marine spectrum and it is not easy to simulate accurately; It is very difficult to measure BRDF in situ. Sea waves, shadows, sky conditions can lead to large errors on the results. The Monte Carlo model by constructing simulation of radiation transfer model can solve these problems well. Thus, building the mathematical model and validate the models will become the hot and difficult point in ocean color remote sensing.
     This research was based on certain assumptions, by using Monte Carlo method to track a large number of photon collisions in the water. We use random number to select the location of the collision and the scattering angle of photons by the knowledge of scattering phase function, single scattering albedo, and attenuation coefficient. The Monte Carlo model was built to treat those problems such as highly absorbing and highly scattering waters, scattering by molecules and by particulates, incident sun-zenith, sky light. Based on this, the result was through statistical a large number of the photon which formed the light field using quad-averaged techniques, and present in three-dimensional coordinate.
     Through analysis of the results of the model, both single scattering albedo, solar incident angle, the ratio between sky light and whole light and scattering phase function have an impact on shape and quantity of BRDF. The results are as follows:
     (1) Solar incident angle, especially zenith angle can change the shape of BRDF. When the major scattering particle of water was suspended particles, most of the power was concentrated and the maximum appear near the direction of light incidence (backscattering light).
     (2) The results showed that the ratio of sky to total radiance can also change the shape of BRDF. The peak of BRDF decreased with increasing ratio and the shape tend to be axial symmetrical, the axial of symmetry was identical to the line perpendicular to the horizontal plane. The backward hot spot was gradually disappearing.
     (3) The single scattering albedo has an impact on the BRDF quantity, the number of BRDF increased with the raise of single scattering albedo at the same conditions. On the contrary, BRDF became smaller.
     (4) Scattering phase function was a dominant factor to affect the shape of the BRDF. When the major scattering material was water molecules, a Rayleigh phase function was used to describe the angular scattering properties of the water. The distribution of photon was not concentrated and nothing to do with the incident zenith angle. But for water which major scattering material of water was suspended particles was used to describe the angular scattering properties use Petzold phase function. The Petzold phase function was characterized by a intense forward scattering. So most of photon seldom escaped the water. The picture of BRDF also showed that the most power was concentrated in the backword hot spot.
引文
[1]Ahmad F, Oppenheimer S, Razzaghi M. A discrete bidirectional reflectance model in remote sensing [J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2003,77 (3):335-343.
    [2]Andersen M, Rubin M, Powles R, et al. Bi-directional transmission properties of Venetian blinds: experimental assessment compared to ray-tracing calculations [J]. Solar Energy,2005,78 (2): 187-198.
    [3]Bates DE, JNP. AO3D:A Monte Carlo code for modeling of environmental light propagation [J]. 2008.
    [4]Bricaud A, Babin M, Morel A, et al. Variability in the chlorophyll specific absorption coefficients of natural phytoplankton analysis and parameterization [J]. Journal of Geophysical Research-Oceans, 1995,100 (C7):13321-13332.
    [5]Cabot F, Dedieu G. Surface albedo from space:Coupling bidirectional models and remotely sensed measurements [J]. Journal of Geophysical Research-Atmospheres,1997,102 (D16):19645-19663.
    [6]Concannon BM, Davis JP. Results of a Monte Carlo investigation of the diffuse attenuation coefficient [J]. Applied Optics,1999,38 (24):5104-5107.
    [7]Cornette WM, Shanks JG. Physically reasonable analytic expression for the single-scattering phase function [J]. Appl Opt,1992,31 (16):3152-3160.
    [8]Ding K, Jin W-q. Research on characteristics of forward scattering light based on Monte Carlo simulation [J]. Proceedings of the SPIE-The International Society for Optical Engineering,2007: 662220-662221-662210.
    [9]Dongarra J, Sullivan F. Guest Editors' Introduction:The Top 10 Algorithms [J]. Computing in Science and Engg,2000,2(1):22-23.
    [10]Duntley SQ, Richey F, Culver WH, et al. Reduction of contrast by atmospheric boil [J]. Journal of the Optical Society of America,1963,53 (3):351-&.
    [11]Gallie EA, Murtha PA. Specific absorption and backscattering spectra for suspended minerals and chlorophyll-a in chilko lake, british columbia [J]. Remote Sensing of Environment,1992,39 (2): 103-118.
    [12]Georgiev GT, Butler JJ. Laboratory-based bidirectional reflectance distribution functions of radiometric tarps [J]. Appl Opt,2008,47 (18):3313-3323.
    [13]Gilerson A, Zhou J, Fortich R, et al. Spectral dependence of the bidirectional reflectance function in coastal waters and its impact on retrieval algorithms [J]. Igarss:2007 Ieee International Geoscience and Remote Sensing Symposium, Vols 1-12,2007:3777-3780.
    [14]Gordon. Dependence of the diffuse reflectance of natural waters on the sun angle [J]. Limnology and Oceanography,1989,34 (8):1484-1489.
    [15]Gordon HR. Ship perturbation of irradiance measurements at sea.1:Monte Carlo simulations [J]. Appl Opt,1985,24 (23):4172.
    [16]Gordon HR. Bio-optical model describing the distribution of irradiance at the sea surface resulting from a point source embedded in the ocean [J]. Appl Opt,1987,26 (19):4133-4148.
    [17]Gordon HR. Can the Lambert-Beer law be applied to the diffuse attenuation coefficient of ocean water [J]. LimnolOceanogr,1989,34 (8):1389-1409.
    [18]Gordon HR, Brown OB. Irradiance reflectivity of a flat ocean as a function of its optical properties [J]. Appl Opt,1973,12 (7):1549-1551.
    [19]Gordon HR, Brown OB, Jacobs MM. Computed relationships between inherent and apparent optical properties of a flat homogeneous ocean [J]. Applied Optics,1975,14 (2):417-427.
    [20]Gordon HR, Castano DJ. Coastal zone color scanner atmospheric correction influence of elchichon [J]. Applied Optics,1988,27 (16):3319-3322.
    [21]Gordon HR, Franz BA. Remote sensing of ocean color:Assessment of the water-leaving radiance bidirectional effects on the atmospheric diffuse transmittance for SeaWiFS and MODIS intercomparisons [J]. Remote Sensing of Environment,2008,112 (5):2677-2685.
    [22]Graaff R, Koelink MH, de Mul FFM, et al. Condensed Monte Carlo simulations for the description of light transport [J]. Appl Opt,1993,32 (4):426-434.
    [23]Hapke B. Bidirectional reflectance spectroscopy 4. the extinction coefficient and the opposition effect [J]. Icarus,1986,67 (2):264-280.
    [24]Hasegawa Y, Yamada Y, Tamura M, et al. Monte Carlo simulation of light transmission through living tissues [J]. Appl Opt,1991,30 (31):4515-4520.
    [25]Hayot F, Morel A. Amplitudes and model for pi-n backward scattering at 6 gev-c [J]. Physical Review D,1973,8 (1):223-232.
    [26]Hendricks J,Booth T. MCNP variance reduction overview.1985:83-92.
    [27]Huete AR, Jackson RD, Post DF. Spectral response of a plant canopy with different soil backgrounds [J]. Remote Sensing of Environment,1985,17 (1):37-53.
    [28]J.Petzold T. volume scattering functions for selected ocean waters [M],1972.
    [29]Jaillon F, Saint-Jalmes H. Description and Time Reduction of a Monte Carlo Code to Simulate Propagation of Polarized Light through Scattering Media [J]. Appl Opt,2003,42 (16):3290-3296.
    [30]Jerlov NG, Fukuda M. Radiance distribution in the upper layers of the sea [J]. Tellus,1960,12 (3): 348-355.
    [31]Kenneth Wood BW, Jon Bjorkman;. introduction to monte carlo radiation transfer [J].2001.
    [32]Kopelevich OV, Mezhericher EM. Calculation of the spectral characteristics of light scattering by seawater [J]. Izvestiya Akademii Nauk Sssr Fizika Atmosfery I Okeana,1983,19 (2):195-202.
    [33]Krik JTO. light and photosynthesis in aquatic ecosystems [M]. New York:Cambridge University Press,1983.
    [34]Liang S, Strahler AH. Summary of the International Forum on BRDF [J].1999.
    [35]Lihong Wang SLJ. Monte Carlo modeling of light transport in multi-layered tissues in standard c [J]. 1992.
    [36]Liu Q, Weng F. Combined Henyey-Greenstein and Rayleigh phase function [J]. Appl Opt,2006,45 (28):7475-7479.
    [37]Maffione RA, Dana DR. Instruments and methods for measuring the backward-scattering coefficient of ocean waters [J]. Applied Optics,1997,36 (24):6057-6067.
    [38]Marchesini R, Bertoni A, Andreola S, et al. Extinction and absorption coefficients and scattering phase functions of human tissues in vitro [J]. Appl Opt,1989,28 (12):2318-2324.
    [39]. Maria Tzortziou AS, Jay R. Herman, Charles L. Gallegos, Patrick J. Neale and Lawrence W. Harding, Jr. Remote sensing reflectance and inherent optical properties in the mid Chesapeake Bay [J]. Estuarine, Coastal and Shelf Science,2007,72 (1-2):16-32.
    [40]Mobley CD. A numerical model for the computation of radiance distributions in natural waters with wind-roughened surfaces. Part 2:User's guide and code listing [J].1988.
    [41]Mobley CD. A numerical-model for the computation of radiance distributions in natural waters with wind-roughened surfaces [J]. Limnology and Oceanography,1989,34 (8):1473-1483.
    [42]Mobley CD. Light and Water:Radiative Transfer in Natural Waters [M]:Academic Press,1994.
    [43]Mobley CD, Gentili B, Gordon HR, et al. Comparison of numerical models for computing underwater light fields [J]. Appl Opt,1993,32 (36):7484-7504.
    [44]Mobley CD, Sundman LK. Effects of Optically Shallow Bottoms on Upwelling Radiances: Inhomogeneous and Sloping Bottoms [J]. Limnology and Oceanography,2003,48 (1):329-336.
    [45]Mobley CD, Sundman LK, Boss E. Phase Function Effects on Oceanic Light Fields [J]. Appl Opt, 2002,41 (6):1035-1050.
    [46]Moon S, Kim D, Sim E. Monte Carlo study of coherent diffuse photon transport in a homogeneous turbid medium:a degree-of-coherence based approach [J]. Appl Opt,2008,47 (3):336-345.
    [47]Morel A. Optical properties of pure water and pure seawater [M]. New York:Academic Press,1974.
    [48]Morel A. Optical modeling of the upper ocean in relation to its biogenous matter content (case-I waters) [J]. Journal of Geophysical Research-Oceans,1988,93 (C9):10749-10768.
    [49]Morel A, Antoine D, Gentili B. Bidirectional reflectance of oceanic waters:accounting for Raman emission and varying particle scattering phase function [J]. Applied Optics,2002,41 (30):6289-6306.
    [50]Morel A, Gentili B. Diffuse reflectance of oceanic waters:its dependence on Sun angle as influenced by the molecular scattering contribution [J]. Appl Opt,1991,30 (30):4427-4438.
    [51]Morel A, Gentili B. Diffuse reflectance of oceanic waters. Ⅱ Bidirectional aspects [J]. Appl Opt,1993, 32 (33):6864-6879.
    [52]Morel A, Gentili B. Diffuse reflectance of oceanic waters.Ⅲ. Implication of bidirectionality for the remote-sensing problem [J]. Appl Opt,1996,35 (24):4850-4862.
    [53]Morel A, Prieur L. Analysis of variations in ocean color [J]. Limnology and Oceanography,1977,22 (4):709-722.
    [54]Morel A, Voss KJ, Gentili B. Bidirectional reflectance of oceanic waters:A comparison of modeled and measured upward radiance fields [J]. J Geophys Res,1995,100.
    [55]Munk CCaW. Measurement of the Roughness of the Sea Surface from Photographs of the Sun's Glitter [J]. Journal of the Optical Society of America,1954,44 (11):838-850.
    [56]Myneni RB, Ross J, Asrar G. A review on the theory of photon transport in leaf canopies [J]. Agricultural and Forest Meteorology,1989,45 (1-2):1-153.
    [57]Nicodemus FE, Richmond JC, Hsia JJ, et al. Geometrical considerations and nomenclature for reflectance [M]:Jones and Bartlett Publishers, Inc.,1977.
    [58]Otremba Z. Modelling the bidirectional reflectance distribution functions (BRDF) of sea areas polluted by oil [J]. Oceanologia,2004,46 (4):505-518.
    [59]Otremba Z. Influence of oil dispersed in seawater on the bi-directional reflectance distribution function (BRDF) [J]. Optica Applicata,2005,35 (1):99-109.
    [60]Otremba Z, Krol T. Modeling of the crude oil suspension impact on inherent optical parameters of coastal seawater [J]. Polish Journal of Environmental Studies,2002,11 (4):407-411.
    [61]Otremba Z, Piskozub J. Modelling the bidirectional reflectance distribution function (BRDF) of seawater polluted by an oil film [J]. Optics Express|Optics Express,2004,12 (8).
    [62]Ottaviani M, Spurr R, Stamnes K, et al. Improving the description of sunglint for accurate prediction of remotely sensed radiances [J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2008, 109 (14):2364-2375.
    [63]Park YJ, Ruddick K. Model of remote-sensing reflectance including bidirectional effects for case 1 and case 2 waters [J]. Applied Optics,2005,44 (7):1236-1249.
    [64]Plass GN, Kattawar GW. Monte Carlo Calculations of Light Scattering from Clouds [J]. Appl Opt, 1968,7 (3):415-419.
    [65]Plass GN, Kattawar GW. Radiative Transfer in an Atmosphere-Ocean System [J]. Appl Opt,1969,8 (2):455-466.
    [66]Plass GN, Kattawar GW. Monte Carlo Calculations of Radiative Transfer in the Earth's Atmosphere-Ocean System:I. Flux in the Atmosphere and Ocean [J]. Journal of Physical Oceanography,1972,2 (2):139-145.
    [67]Pope RM, Fry ES. Absorption spectrum (380-700 nm) of pure water.2. Integrating cavity measurements [J]. Applied Optics,1997,36 (33):8710-8723.
    [68]Preisendorfer RW,Mobley CD. Albedos and Glitter Patterns of a Wind-Roughened Sea Surface [J]. Journal of Physical Oceanography,1986,16(7):1293-1316.
    [69]Prieur L, Sathyendranath S. An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials [J]. Limnology and Oceanography,1981,26 (4):671-689.
    [70]Ramamoorthi R, Hanrahan P. On the relationship between radiance and irradiance:determining the illumination from images of a convex Lambertian object [J]. J Opt Soc Am A,2001,18 (10): 2448-2459.
    [71]Richardson AJ, Wiegand CL. Distinguishing vegetation from soil background information [J]. Photogrammetric Engineering and Remote Sensing,1977,43 (12):1541-1552.
    [72]Roesler CS, Perry MJ, Carder KL. Modeling in-situ phytoplankton absorption from total absorption-spectra in productive inland marine waters [J]. Limnology and Oceanography,1989,34 (8): 1510-1523.
    [73]Rossi A, Botti L, Sasse C, et al. Scattering Phase Function Measurements on Single Particles and on Particle Ensembles [J]. Appl Opt,2004,43 (36):6673-6679.
    [74]S. A. Prahl MK, S.L.Jacques, A.J.Welch. A Monte Carlo Model of Light Propagation in Tissue [J]. 1989.
    [75]Sathyendranath S, Lazzara L, Prieur L. Variations in the spectral values of specific absorption of phytoplankton [J]. Limnology and Oceanography,1987,32 (2):403-415.
    [76]Sathyendranath S, Prieur L, Morel A. A 3-component model of ocean color and its application to remote-sensing of phytoplankton pigments in coastal waters [J]. International Journal of Remote Sensing,1989,10 (8):1373-1394.
    [77]Schaaf C, Strahler A, Gao F, et al. Global albedo, BRDF and nadir BRDF-Adjusted reflectance products from MODIS. Igarss 2002:Ieee International Geoscience and Remote Sensing Symposium and 24th Canadian Symposium on Remote Sensing, Vols I-Vi, Proceedings-Remote Sensing: Integrating Our View of the Planet,2002:1188-1190.
    [78]Schaaf CB, Gao F, Strahler AH, et al. First operational BRDF, albedo nadir reflectance products from MODIS [J]. Remote Sensing of Environment,2002,83 (1-2):135-148.
    [79]Shifrin KS. Physical optics of ocean water [M]. New York:American Institute of Physics,1988.
    [80]Smith RC, Baker KS. Optical-properties of the clearest natural-waters (200-800 nm) [J]. Applied Optics,1981,20 (2):177-184.
    [81]Stavn RH. Effects of Raman scattering across the visible spectrum in clear ocean water:a Monte Carlo study [J]. Appl Opt,1993,32 (33):6853-6863.
    [82]Stavn RH, Weidermann AD. Optical modeling of clear ocean light fields:Raman scattering effects [J]. Applied Optics,1988,27 (19):4002-4011.
    [83]Sundman CDMaL. Effects of optically shallow bottoms on water-leaving radiances [D].
    [84]Takase K, Tsumura N, Nakaguchi T, et al. Measurement of bidirectional reflectance distribution function with a linear light source [J]. Optical Review,2008,15 (4):187-195.
    [85]Todd SW, Hoffer RM. Responses of spectral indices to variations in vegetation cover and soil background [J]. Photogrammetric Engineering and Remote Sensing,1998,64 (9):915-921.
    [86]Toublanc D. Henyey-Greenstein and Mie phase functions in Monte Carlo radiative transfer computations [J]. Appl Opt,1996,35 (18):3270-3274.
    [87]Tyler JE. Radiance distribution as a function of depth in the submarine environment [J]. Journal of the Optical Society of America,1957,47 (11):1046-1046.
    [88]Tyler JE. Measurement of the volume scattering function of hydrosols [J]. Journal of the Optical Society of America,1960,50 (5):505-505.
    [89]Tyler JE, Howerton R. Instrument for measuring the forward scattering coefficient of sea water [J]. Limnology and Oceanography,1962,7 (3):393-395.
    [90]Voss KJ, Chapin A, Monti M, et al. Instrument to Measure the Bidirectional Reflectance Distribution Function of Surfaces [J]. Appl Opt,2000,39 (33):6197-6206.
    [91]Wang L, Jacques SL, Zheng L. MCML--Monte Carlo modeling of light transport in multi-layered tissues [J]. Computer Methods and Programs in Biomedicine,1995,47 (2):131-146.
    [92]Z. O, J. P. Modelling the bidirectional reflectance distribution function (BRDF) of seawater polluted by an oil film [J]. Optics Express,2004,12 (8):1671-1676.
    [93]Zhang, Hongxin, Wu, et al. Improving reflectance estimation by BRDF-consistent region clustering [J]. 自然科学进展:英文版,2006,16 (3):313-320.
    [94]Zhaohongying, Zhaohu, Yanlei, et al. Model of reflection spectra of rock surface in 2π space [J].地 质学报:英文版,2004,78 (3):843-847.
    [95]曹静,康颖,王江安.水中气泡光学特性的蒙特卡罗模拟[J].激光与红外,2006,36(5):392-395.
    [96]陈军,丰佳佳,陈峰.关于底质二向性反射分布函数[J].海洋地质动态,2008,24(5):35-39.
    [97]陈良富,柳钦火.用Monte Carlo方法模拟连续植被热辐射方向性[J].遥感学报,2000,4(4):261-265.
    [98]程街亮,史舟,李洪义.不同类型土壤的二向反射光谱特性及模拟[J].光谱学与光谱分析,2008,28(5):1007·1011.
    [99]戴永宁,李素菊,王学军.巢湖水体的表观光学特性测量与分析[J].中国环境科学,2008,28(11):979-983.
    [100]杜竹峰,卢益民.散射相位函数的近似计算[J].光电子.激光,1998,9(5):422-425.
    [101]冯晓波,杨桦.用matlab实现蒙特卡罗法计算结构可靠度[J].中国农村水利水电,2002,8:50-51.
    [102]桂劲松,康海贵.结构可靠度计算的最优化方法及其Matlab实现[J].四川建筑科学研究,2004,30(2):18-20.
    [103]黄健熙,吴炳方,曾源.基于蒙特卡罗方法的森林冠层brdf模拟[J].系统仿真学报,2006,18(6):1671-1676.
    [104]黄健熙,吴炳方,田亦陈.作物冠层BRDF的Monte Carlo模拟与分析[J].农业工程学报,2006,22(6):1-6.
    [105]姜璐,朱海,于运治.基于蒙特卡罗方法的水下目标光学隐蔽性影响凶素分析[J].弹箭与制导学报2006,26(4):401-404.
    [106]景微娜,左信.基于Matlab和Visual Basic仿真软件开发[J].系统仿真学报,2008,20(6):1459-1461,1465.
    [107]劳彩莲,严泰来,李保国.基于蒙特卡罗光线跟踪方法的植物三维冠层辐射传输模型[D],2005.
    [108]雷桂媛,王兴华.关于蒙特卡罗及拟蒙特卡罗方法的若干研究[J].2003,博.
    [109]李细荣,刘木华,黎静.水果组织中光子传输的蒙特卡罗模拟[J].农业机械学报,2007,38(6):103-106.
    [1l0]李先华,杨肖琪.Gis支持下地物brdf卫星遥感研究[J].科学技术与工程,2002,3:63-64.
    [111]李小文,王锦地.植被光学遥感模型与植被结构参数化[M].北京:科学出版社,1995.
    [112]刘广员,邱金桓.一个三维Monte-Carlo地气耦合辐射传输模式[J].大气科学,2004,28(1): 69-77.
    [113]刘佳,范文义Brdf模型及其反演研究的现状及展望[J].遥感技术与应用,2008,23(1):104-110.
    [114]刘子龙,王煜,李平.双向反射分布函数(Brdf)及其测量[J].中国计量,2008,3:68-69.
    [115]卢彤九,敖发良.利用蒙特卡罗法描述光在水中多前向散射[J].桂林电子工业学院学报,2001,21(1):5-9.
    [116]梅安新,彭望碌,秦其明.遥感导论[M].北京:高等教育出版社,2001.
    [117]牛铮.光学遥感大气订正总体思路与最新进展[J].遥感技术与应用,1998:6.
    [118]裴鹿成,张孝泽.蒙特卡罗方法及其在粒子输运问题中的应用[M],1980.
    [119]孙尚新,高精先,张林.用natlab实现蒙特卡罗法评定大型复杂系统平均寿命[J].中国安全生产科学技术,2006,2(6):24-26.
    [120]唐军武.海洋光学特性模拟与遥感模型[J].1999.
    [12l]唐军武,田国良,陈清莲.离水辐射非朗伯特性的Monte Carlo模拟及分析[J].海洋学报(中文版),2000,(02).
    [122]王繁,周斌.河口水体悬浮物固有光学性质及浓度遥感反演模式研究[D],2008.
    [123]王锦地,李小文,朱重光.地面目标的多角度遥感观测实验研究.遥感新进展与发展战略[M].北京:中国科学技术出版社,1996.
    [124]王人潮,黄敬峰.水稻遥感估产[M].北京:中国农业出版社,2002.
    [125]夏新林,任德鹏,谈和平.介质吸收散射对半透明涂层表面双向反射特性的影响[J].红外与毫米波学报,2005,24(5):361-365.
    [126]徐希孺.遥感物理[M].北京:北京大学出版社,2006.
    [127]阎旭光,彭复员.基于蒙特卡罗模拟的海水光信道特性研究[J].华中科技大学-硕,2004.
    [128]杨春平,杨克成.激光雷达回波信号、水下光束扩散的蒙特卡罗方法及遥测海水光学性质的研究[J].2003,硕士.
    [129]杨虹,杨小丽.激光在云层信道中传输的蒙特卡罗模拟[J].激光杂志,2008,29(2):44-46.
    [130]杨自强.你也需要蒙特卡罗方法——提高应用水平的若干技巧[J].数理统计与管理,2007,26(2):365-376.
    [131]张百顺,刘文清,魏庆农.典型目标的brdf实验室测量与模型验证[J].量子电子学报,2006,23(4):533-536.
    [132]张前前,王磊,类淑河.浮游植物吸收光谱特征分析[J].光谱学与光谱分析,2006,26(9):1676-1680.
    [133]章慧健.工程结构可靠度计算的Matlab实现[J].四川建筑,2007,27(1):154-156.
    [134]赵祥,刘素红,唐义闵.Brdf模型参数分阶段鲁棒性反演方法[J].遥感学报,2006,10(6):901-909.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700