用户名: 密码: 验证码:
纳米二氧化钛掺杂、表征与光响应性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化钛(TiO_2)的光诱导特性使其在环境污染物降解、自清洁涂层、光分解水制氢和太阳能电池等环境保护与能源转换领域具有广泛的用途。但受带隙宽度的限制,TiO_2的光诱导特性需要以紫外光为激发光源,这在一定程度上限制了TiO_2的实际工程应用。将TiO_2的光学响应区红移至可见光区,不但可以利用太阳光的可见光成分,而且可以用室内光源作为激发光源,从而促进TiO_2更广泛的应用。近年来,具有可见光响应TiO_2的制备和相关性能研究正成为氧化物半导体研究领域的一个新热点。
     通过掺杂改变TiO_2的电子结构是制备具有可见光响应TiO_2的重要技术途径。本论文基于几种新型掺杂方法,制备了V掺杂、V/N共掺、C掺杂、C/N/F共掺TiO_2。借助各种分析表征手段,对掺杂TiO_2的微观结构、成分和掺杂元素的化学态进行了表征,并探讨了其中的掺杂机理。通过测试掺杂TiO_2的光吸收性能和可见光催化活性(亚甲基蓝:MB;λ>420nm),评价了掺杂TiO_2的光响应性能。论文的主要研究内容和创新点归纳如下:
     1.基于液相沉积法(LPD)制备金属氧化物薄膜的原理,首次将LPD法用于制备V掺杂TiO_2薄膜,研究了V离子浓度对V掺杂TiO_2薄膜晶体结构、V离子化学态和光响应性能的影响,并提出了原位掺杂机理。V掺杂TiO_2薄膜主要由晶粒尺度为8~20nm的锐钛矿TiO_2构成。在V离子浓度较低时,薄膜中V离子按照原位掺杂机制以V~(4+)形式存在于TiO_2晶格。掺V导致TiO_2薄膜的吸收边红移,并具有可见光催化活性。随着V离子浓度提高,薄膜中V~(5+)成分增加、晶粒尺度增大,使V掺杂TiO_2薄膜的可见光催化活性逐渐降低。
     2.根据V掺杂TiO_2和N掺杂TiO_2电子结构的特点,提出以V、N共掺技术来增强TiO_2的可见光吸收并提高其可见光催化活性。将控制水解工艺与室温氮化工艺结合,在室温下成功地制备了V/N共掺纳米晶(4~5nm)锐钛矿TiO_2粉体。V以V~(4+)和V~(3+)形式占据部分Ti~(4+)格点位置,N则以替位N和间隙N的形式存在于TiO_2晶格,V对室温掺N有促进作用。纳米晶TiO_2具有的高度化学活性、以及纳米晶表面和晶粒内大量的缺陷为室温下成功掺N提供了基础。V/N共掺使纳米晶TiO_2的带隙相对于单独掺杂(掺V∶2.91eV;掺N∶2.92eV)进一步窄化至2.76eV。V/N共掺纳米晶TiO_2对可见光更多的吸收和更高的光量子效率导致共掺TiO_2具有比单独掺杂TiO_2更高的可见光催化活性。
     3.首次采用硝酸控制氧化法在低温一步实现了微—介孔结构形成、孔壁晶化和掺C,这种新型掺杂方法避免了常用高温掺C工艺带来的孔洞结构塌陷问题,且具有工艺简单和易于工程化实现等优点。硝酸控制氧化法制备的C掺杂微一介孔双模结构TiO_2,孔壁由纳米晶(3~5nm)锐钛矿TiO_2构成,BET比表面积最高达246.9 m~2/g。晶格C由占据TiO_2点阵中部分O格点的替位C和碳酸盐形式的间隙C两部分组成。高含量的替位C(6.3at%)使粉体的光学吸收边红移至453nm。而且,粉体在整个可见光区都有显著吸收。C掺杂微一介孔双模结构TiO_2具有显著的可见光催化活性。乙醇对C掺杂微—介孔双模结构TiO_2粉体的比表面积、晶格C含量具有重要的控制作用。
     4.首次提出并实现了基于模板剂双功能作用、用于制备非金属元素掺杂介孔TiO_2的PBFT法。与常见模板法制备介孔TiO_2工艺中模板剂仅具有单一功能(形成介孔结构)不同,PBFT法中模板剂具有形成介孔结构和提供掺杂源的双功能作用:高温烧结形成孔洞结构的同时,模板剂分解产物为掺C提供了C源、为掺N提供了部分N源。另一部分晶格N则来自于氟钛酸铵中的铵根离子。基于PBFT法制备的C/N/F共掺介孔TiO_2粉体中高含量的晶格C和晶格N使其吸收边红移至481nm,并在整个可见光区都有显著吸收。这赋予了粉体高的可见光催化活性。TiO_2的快速沉积也使F原子(约1.0at%)被掺入到TiO_2晶格中。掺F有助于增强TiO_2可见光催化活性。深入讨论了PBFT法的掺杂机理,并详细研究了烧结工艺对C/N/F共掺介孔TiO_2的孔洞结构、比表面积、掺杂元素含量以及光响应性能的影响。
     5.研究了掺杂纳米晶TiO_2的磁性。纳米晶TiO_2具有室温铁磁性,掺N和掺V并没有改变纳米晶TiO_2的室温铁磁性本质。纳米晶TiO_2晶胞参数的c/a值越大,其饱和磁化强度越大。基于该实验结果,就氧化物稀磁半导体室温铁磁性的物理起源首次提出了晶格畸变假设:晶格畸变是诱导氧化物稀磁半导体室温铁磁性的重要因数之一。
Due to photoinduced properties,Titanium dioxide(TiO_2) has extensive uses in environment-protection and energy-conversion fields,such as photocatalytic degradation of pollutants,self-cleaning coating,hydregon-production through photochemical water splitting,and fabrication of solar energy cells.However,more widespread practical applications have been hampered by its wide band gap,which requires ultraviolet radiation as the optical excitation source.Shifting the optical response region of TiO_2 towards visible spectral range means that the visible spectrum of sun' rays,even the indoor irradiation,can be used as the optical excitation source of TiO_2.This will extend applications of TiO_2.Therefore,many researches are now focused on the preparation and properties of TiO_2 with visible response.
     The modification of the electronic structures of TiO_2 by doping is one of important routes for preparing TiO_2 with visible response.In this dissertation,several novel doping methods have been successfully developed for preparing V-doped,V/N co-doped,C-doped,and C/N/F co-doped TiO_2 with visible response.By means of various characterization techniques,the microstructures,ingredients,and the chemical states of doping elements of TiO_2 were analysed.The doping mechanisms were in detail discussed.The optical response properties of doped TiO_2 were evaluated thought optical absorption spectra and the photocatalytic degradation of methylene blue under visible light irradiation(λ>420 nm).The main results are as follows:
     1.Based on the mechnsim of the formation of metal oxide thin films by the LPD method,this method was first used for preparing V-doped TiO_2 thin films.The effects of V ions concentration on the microstructures,the chemical states of V,and properties of V-doped TiO_2 thin films were investigated.The in situ doping mechanism was proposed.V-doped TiO_2 thin films consist of anatase nano-crystal TiO_2 with the grain size of 8~20nm.For low concentration of V ions,V is incorporated into the TiO_2 lattice in the form of V~(4+) by in situ doping.The red-shift was observed in the UV-Vis absorption spectra of V-doped TiO_2 thin films.V-doped TiO_2 thin films show visible (Vis-) photocatalytic activities.With the increase of V ions concentration,the content of V~(5+) increases,and the grain size becomes bigger.The latter two factors result in the decrease of Vis-photocatalytic activities of V-doped TiO_2 thin films.
     2.Taking the electronic structures of N-doped TiO_2 and V-doped TiO_2 into account,V/N co-doping was put forward as a route for preparing doped TiO_2 with enhanced Vis-response and photoeatalytic activities.V/N co-doped nanocrystal TiO_2 powders were prepared at room temperature by controlled hydrlysis followed by room-temperature nitridation.The powders are composed of anatase TiO_2 with grain size of 4~5nm.V occupies some Ti~(4+) sites in the forms of V~(4+) and V~(3+),N exists in TiO_2 lattice in the forms of substitutional N and interstitial N.V facilitates room-temperature nitridation.The high reactivity and lots of defects on the surface and in the interiors of nano-erystal TiO_2 contribute to the incorporation of N into TiO_2 lattice at room temperature.V/N co-doped TiO_2(2.76eV)shows more band-gap narrowing compared with mono-doped TiO_2(V-doped:2.91eV;N-doped:2.92eV).The enhanced Vis-photoeatalytie activities of V/N co-doped TiO_2 can be ascribed to more band-gap narrowing and higher quantum efficiency.
     3.The formation of miero-mesoporous structures and C-doping were first achieved at low temperature by the controlled-nitric-acid-oxidation method at one step.This novel method avoids the collapse of porous structures due to the the high-temperature C-doping,a general route for preparing C-doped TiO_2.Moreover,it is simple and easy to sealing up.C-doped micro-mesoporous bimodal TiO_2 prepared by this novel mothod has the pore walls consisting of nanocrystal anatase TiO_2 with the grain size of 3~5nm.The powders has high BET specific surface area up to 246.9 m~2/g.C is incorporated into the TiO_2 lattice in the forms of substitutional C and carboneous species(interstitial C).High content(6.3 at%) of substitutional C causes the optical absorbption edge of 453nm and strong absorption within the whole visible region. C-doped micro-mesoporous bimodal TiO_2 shows high Vis-photocatalytic activities. The content of ethanol influences the specific surface area and the lattice-carbon concentration of C-doped micro-mesoporous bimodal TiO_2 powders.
     4.A novel method,named PBFT method,based on the bi-function of templates was put forward and successfully used for preparing the nonmetal-doped mesoporous TiO_2.For the methods previously reported for preparing C-doped mesoporous TiO_2, templates work with one function as the supports for the formation of porous structures. Differently,for PBFT method,templates function as both the supports for porous structures and the source for the dopants.The high-temperature calcination simultaneously results in the formation of pores,and C-doping and N-doping from the pyrolysis products of templates.Another N source for N-doping comes from the ammonium ions of(NH_4)_2TiF_6.The optical absorption edge of C/N/F co-doped mesoporous TiO_2 prepared by PBFT method is 481nm,along with strong absorption within the whole vigible region,due to high contents of lattice-carbon and lattice-nitrogen.This provides the powders with high Vis-photoeatalytic activities. About 1.0at%F is incorporated into the TiO_2 lattice due to the fast deposition of TiO_2. F-doping further enhances the Vis-photocatalytic activities of TiO_2.The doping mechanism for PBFT method was discussed.The effects of calcinatin on the porous structures,specicific surface areas,content of dopants,and optical response properties of C/N/F co-doped mesoporous TiO_2 were thoroughly investigated.
     5.The magnetism of doped nano-crystal TiO_2 was investigated.The nano-crystal TiO_2 powders are room-temperature ferromagnetic.The ferromagnetic essence is not changed after V-doping and N-doping.The correlation between the lattice parameters (c/a) and the saturated magnetization(Ms) was observed as:the bigger c/a,the bigger Ms.The lattice-distortion theory was proposed for understanding the origin of room-temperature ferromagnetism:the lattice distortion is one of the important factors resulting in the room-temperature ferromagnetism of diluted magnetic semiconductor oxide.
引文
[1]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用.北京:化学工业出版社,2002
    [2]O.Carp,C.L.Huisman,A.Reller.Photoinduced reactivity of titanium dioxide.Progress in Solid State Chemistry,2004,32:33-177
    [3]A.Fujishima,T.N.Rao,D.A.Tryk,Titanium dioxide photocatalysis.Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2000,1:1-21
    [4]G.Palmisano,V.Augugliaro,M.Pagliaro,et al.Photocatalysis:a promising route for 21~(st) century organic chemistry.Chemical Communications,2007:3425-3437
    [5]A.Fujishima,K.Honda,Electrochemical photolysis of water at a semiconductor electrode.Nature 1972,238:37-38
    [6]M.Gr(a|")tzel.Photoelectrochemical Cells.Nature,2001,414:338-344
    [7]R.Asahi,T.Morikawa,T.Ohwaki,et al.Visible-light photocatalysis in nitrogen-doped titanium oxides.Science,2001,293:269-271
    [8]Xiaobo Chen,S.S.Mao.Titanium dioxide nanomatedals:synthesis,properties,modifications,and applications.Chemical Reviews,2007,107(7):2891-2959
    [9]Juan Zhao,Xudong Yang.Photocataiystic oxidation for indoor air purification:a literature review.Building and Enviroment,2003,38:645-654
    [10]刘雪峰,张利,涂铭旌.纳米Ce/TiO_2无机抗菌剂的制备及其性能评价.过程工程学报,2004,4(3):256-260
    [11]D.Bahnemann.Photocatalytic water treatment:solar energy applications.Solar Energy,2004,77:445-459
    [12]L.Wang,J.Mao,M.Tu.Killing effect of Ce(Ⅳ) doped TiO_2 nanoparticles on C26 rat colon carcinoma cells.Journal of Rare Earths,2006,24:320-323
    [13]M.Gr(a|")tzel.Dye-sensitized solar cells.Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2003,4:145-153
    [14]U.Diebold.The surface science of titanium dioxide.Surface Science Reports,2003,48:53-229
    [15]R.Wang,K.Hashimoto,A.Fujishima,et al.Light-induced amphiphilic surfaces.Nature,1997,388:431-432
    [16]A.Mills,S.L.Hunte.An overview of semiconductor photocatalysis.Jounal of Photochemistry and Photobiology A: Chemistry, 1997,108:1-35
    [17] H. Tang, K. Prasad, R. Sanjinbs, et al.. Ellectrical and optical properties of TiO_2 anatase thin films. Journal of Applied Physics, 1994,75(4): 2042-2047
    [18] B. Sun, P.G. Smirniotis, P. Booichand. Visible light photocatalysis with platinized rutile TiO_2 for aqueous organic oxidation. Langmuir, 2005,21:11397-11403
    [19] K. Nagaveni, M. S. Hegde, N. Ravishankar, et al.. Synthesis and structure of nanocrystalline TiO_2 with lower band gap showing high photocatalytic activity. Langmuir, 2004, 20:2900-2907
    [20] L. Davydov, E.P. Reddy, Paul France, et al.. Transition-metal-substituted titania-loaded MCM-41 as photocatalysts for the degradation of aqueous organics in visible light. Journal of Catalysis, 2001,203:157-167
    [21] N. Serpone. Is the band gap of pristine TiO_2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? The Journal of Physcial Chemistry B, 2006, 110:24287-24293
    [22] J.L. Gole, J.D. Stout, C. Burda, et al.. Highly efficient formation of visible light tunable TiO_(2-x)N_x photocatalysts and their transformation at the nanoscale. The Journal of Physcial Chemistry B, 2004,108: 1230-1240
    [23] D. Robert. Photosensitization of TiO_2 by M_xO_y and M_xS_y nanoparticles for heterogeneous photocatalysis applications. Catalysis Today, 2007,122: 20-26
    [24] T. Umebayashi, T. Yamaki, H. Itoh, et al.. Analysis of electronic structures of 3d transition metal-doped TiO_2 based on band calculations. Journal of Physics and Chemistry of Solids,2002,63:1909-1920
    [25] W. Choi, A. Termin, M.R. Hoffmann. The role of metal ion in quantum-sized TiO_2: correlation between photoreactivity and charge carrier recombination dynamics. The Journal of Physical Chemistry, 1994, 98: 13669-13679
    [26] Y. Hiromi, I. Yuichi, T. Masato, et al.. Characterization of metal ion-implanted titanium oxide photocatalysts operating under visible light irradiation. Journal of Synchrotron Radiation, 1999,6(3): 451-452
    [27] Y. Hiromi, H. Masaru, M. Junko, et al.. Application of ion beam techniques for preparation of metal ion-implanted TiO_2 thin film photocatalyst available under visible light irradiation: Metal ion-implantation and ionized cluster beam method. Journal of Synchrotron Radiation, 2001,8(2): 569-571
    [28] T. Masato, Y. Hiromi, M. Masaya, et al.. Photocatalytic decomposition of NO under visible light irradiation on the Cr-ion-implanted TiO_2 thin film photocatalyst. Catalysis Letters, 2000,67(2-4):135-137
    [29] H. Yamashita, M. Harada, J. Misaka, et al.. Application of ion beams for preparation of TiO_2 thin film photocatalysts operatable under visible light irradiation: ion-assisted deposition and metal ion-implantation. Nuclear Instruments and Methods in Physics Research, Section B:Beam Interactions with Materials and Atoms, 2003,206: 889-892
    [30] H. Yamashita, M. Harada, J. Misaka, et al.. Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2002,148:257-261
    [31] J.Y. Yu, J. Lin, R.W.M. Kwok. Enhanced photocatalytic activity of Ti_(1-x)V_xO_2 solid solution on the degradation of acetone. Journal of Photochemistry and Photobiology A: Chemistry, 1997,111:199-203
    [32] G. Zhao, H. Kozukaa, H. Lin, et al.. Sol-gel preparation of Ti_(1-x)V_xO_2 solid solution film electrodes with conspicuous photoresponse in the visible region. Thin Solid Films, 1999, 339:123-128
    [33] K. Iketani, R. Sun, M. Toki, et al.. Sol-gel-derived V_xTi_(1-x)O_2 films and their photocatalytic activeties under visible light irradiation. Materials Science and Engineering B, 2004,108: 187-193
    [34] J.C.S. Wu, C.H. Chen. A visible-light response vanadium-doped titania nanocatalyst by sol-gel method. Journal of Photochemistry and Photobiology A: Chemistry, 2004,163: 509-515
    [35] K. Wilke, H.D. Breuer. The infuence of transition metal doping on the physical and photocatalytic properties of titania. Journal of Photochemistry and Photobiology A: Chemistry,1999,121:49-53
    [36] D. Dvoranov, V. Brezov,M. Mazur, et al.. Investigations of metal-doped titanium dioxide photocatalysts. Applied Catalysis B: Environmental, 2002,37:91-105
    [37] M. Anpo, M. Takeuchi. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. Journal of Catalysis, 2003, 216:505-516
    [38] Z.L. Liu, Z.L. Cui, Z.K. Zhang. The structural defects and UV-Vis spectral characterization of TiO_2 particles doped in the lattice with Cr~(3+) cations. Materials Characterization, 2005, 54:123-129
    [39]S.Karvinen,R.-J.Lamminm(a|")ki.Preparation and characterization of mesoporous visible-light-active anatase.Solid State Sciences,2003,5:1159-1166
    [40]J.Zhu,Z.Deng,F.Chen.Hydrothermal doping method for preparation of Cr~(3+)-TiO_2photocatalysts with concentration gradient distribution of Cr~(3+).Applied Catalysis B:Environmental,2006,62:329-335
    [41]C.H.Ao,M.K.H.Leung,R.C.W.Lam,et al..Photocatalytic decolorization of anthraquinonic dye by TiO_2 thin film under UVA and visible-light irradiation.Chemical Engineering Journal,2007,129:153-159
    [42]42 R.C.W.Lam,M.K.H.Leung,D.Y.C.Leung,et al..Visible-light-assisted photocatalytic degradation of gaseous formaldehyde by parallel-plate reactor coated with Cr ion-implanted TiO_2 thin film.Solar Energy Materials & Solar Cells,2007,91:54-61
    [43]J.O.Carneiroa,V.Teixeiraa,A.Portinhaa,et al..Study of the deposition parameters and Fe-dopant effect in the photocatalytie activity of TiO_2 films prepared by dc reactive magnetron sputtering.Vacuum,2005,78:37-46
    [44]Y.Matsumoto,J.Kurimoto,T.Shimizu,et al..Photoelectrochemical properties of polycrystalline TiO_2 doped with 3d transition metals.Journal of the Electrochemical Society,1981,128(5):1040-1044
    [45]C.Chen,X.Li,W.Ma,et al..Effect of transition metal ions on the TiO_2-assisted photodegradation of dyes under visible irradiation:a probe for the interfacial electron transfer process and reaction mechanism.The Journal of Physical Chemistry B,2002,106:318-324
    [46]X.H.Wang,J.-G.Li,H.Kamiyama,et al..Wavelength-sensitive photocatalytic degradation of methyl orange in aqueous suspension over iron(Ⅲ)-doped TiO_2 nanopowders under UV and visible light irradiation.The Journal of Physical Chemistry B,2006,110:6804-6809
    [47]藉宏伟,马万红,黄应平,等.可见光诱导TiO_2光催化的研究进展.科学通报,2003,48(21):2199-2204
    [48]方晓明,张正国,陈清林.具有可见光活性的氮掺杂二氧化钛光催化剂.化学进展,2007,19(9):1282-1290
    [49]S.Sato.Photocatalytic activity of NO_x-doped TiO_2 in the visible light region.Chemical Physics Letters,1986,123(1-2):126-128
    [50]T.Lindgrena,J.Lu,A.Hoel,et al..Photoelectrochemical study of sputtered nitrogen-doped titanium dioxide thin films in aqueous electrolyte.Solar Energy Materials & Solar Cells,2004:84:145-157
    [51]S.Sato,R.Nakamura,S.Abe.Visible-light sensitization of TiO_2 photocatalysts by wet-method N doping.Applied Catalysis A:General,2005,284:131-137
    [52]S.Sakthivel,H.Kisch.Photocatalytic and photoelectrochemical properties of nitrogen-doped titanium dioxide.Chemphyschem 2003,(4):487-490
    [53]T.Ihara,M.Miyoshi,Y.Iriyama,et al..Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping.Applied Catalysis B:Environmental,2003,42:403-409
    [54]Z.Wang,W.Cai,X.Hong,et al..Photocatalytic degradation of phenol in aqueous nitrogen-doped TiO_2 suspensions with various light sources.Applied Catalysis B:Environmental,2005,57:223-231
    [55]Y.Liu,X.Chen,J.Li.Photocatalytic degradation of azo dyes by nitrogen-doped TiO_2nanocatalysts.Chemosphere,2005,61:11-18
    [56]杨松旺,高濂.简单有效掺氮氧化钛纳米晶的制备及其可见光催化性能.无机材料学报,2005,20(4):785-788
    [57]C.Burda,X.Chen,Y.Lou,et al..Enhanced nitrogen doping in TiO_2 nanoparticles.Nano Letters,2003,3(8):1049-1051
    [58]X.Chen,Y.Lou,A.C.S.Samia,et al..Formation of oxynitride as the photocatalytic enhancing site in nitrogen-doped titania nanocatalysts:comparison to a commercial nanopowder.Advanced Functional Materials,2005,15(1):41-49
    [59]S.M.Prokes,J.L.Gole,X.Chen,et al.Defect-related optical behavior in surface-modified TiO_2nanoparticles.Advanced Functional Materials,2005,15(1):161-167
    [60]S.Kumar,A.G.Fedorov,J.L.Gole.Photodegradation of ethylene using visible light responsive surfaces prepared from titania nanoparticle slurries.Applied Catalysis B:Environmental,2005,57:93-107
    [61]C.D.Valentin,G.Pacchioni,A.Selloni,et al..Characterization of paramagnetic species in N-doped TiO_2 powders by EPR spectroscopy and DFT calculations.The Journal of Physical Chemistry B,2005,109:11414-11419
    [62]O.Diwald,T.L.Thompson,T.Zubkov,et ai..Photochemical activity of nitrogen-doped rutile TiO_2(110) in visible light.The Journal of Physical Chemistry B,2004,108(19):6004-6008
    [63]S.Livraghi,M.C.Paganini,E.Giamello.et al..Origin of photoactivity of nitrogen-doped titanium dioxide under visible light.Journal of the American Chemical Society,2006,128:15666-15671
    [64] Y. Nakano, T. Morikawa, T. Ohwaki, et al.. Deep-level optical spectroscopy investigation of N-doped TiO_2 films. Applied Physics Letters, 2005, 86:132104
    [65] J.Y. Lee, J. Park, J.H. Cho, et al.. Electronic properties of N- and C-doped TiO_2. Applied Physics Letters, 2005, 87:011904
    [66] H. Irie, Y. Watanabe, K. Hashimoto. Nitrogen-concentration dependence on photocatalytic activity of TiO_(2-x)N_x powders. The Journal of Physical Chemistry B, 2003,107: 5483-5486
    [67] C.D. Valentin, G. Pacchioni, A. Selloni. Origin of the different photoactivity of N-doped anatase and rutile TiO_2. Physical Review B, 2004,70: 085116
    [68] Z. Lin, A. Orlov, R.M. Lambert, et al.. New insights into the origin of visible light photocatalytic activity of nitrogen-doped and oxygen-deficient anatase TiO_2. The Journal of Physical Chemistry B, 2005,109:20948-20952
    [69] V.N. Kuznetsov, N. Serpone. Visible light absorption by various titanium dioxide specimens. The Journal of Physical Chemistry B, 2006,110: 25203-25209
    [70] M. Batzill, E.H. Morales, U. Diebold. Influence of nitrogen doping on the defect formation and surface properties of TiO_2 rutile and anatase. Physical Review Letters, 2006, 96: 026103
    [71] C. Lettmann, K. Hildenbrand, H. Kisch, et al.. Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst. Applied Catalysis B: Environmental,2001,32:215-227
    [72] S.U.M. Khan, M. Al-Shahry, W.B. Ingler Jr.. Effient photochemical water splitting by a chemically modified n-TiO_2. Science, 2002,297: 2243-2245
    [73] K. Shankar, M. Paulose, G.K. Mor, et al.. A study on the spectral photoresponse and photoelectrochemical properties of flame-annealed titania nanotube-arrays. Journal of Physics D: Applied Physics, 2005,38: 3543-3549
    [74] J.H. Park, S. Kim, A.J. Bard. Novel carbon-doped TiO_2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Letters, 2006,6(1): 24-28
    [75] S. Sakthivel, H, Kisch. Daylight photocatalysis by carbon-modified titanium dioxide. Angewandte Chemie International Edition, 2003,42: 4908-4911
    [76] Y. Li, D. Hwang, N.H. Lee, et al.. Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst. Chemical Physics Letters, 2005,404: 25-29
    [77] H. Irie, Y. Wananabe, K. Hashimoto. Carbon-doped anatase TiO_2 powders as a visible light sensitive photocatalyst. Chemistry Letters, 2003, 32(8): 772-773
    [78] Y. Choi, T. Umebayashi, M. Yoshikawa. Fabrication and characterization of C-doped anatase TiO_2 photocatalysts.Journal of Materials Science,2004,39:1837-1839
    [79]Y.Nakano,T.Morikawa,T.Ohwaki,et al..Electrical characterization of band gap states in C-doped TiO_2 films.Applied Physics Letters,2005,87:052111
    [80]H.Kamisaka,T.Adachi,K.Yamashita.Theoretical study of the structure and optical properties of carbon-doped rutile and anatase titanium oxides.The Journal of Chemical Physics,2005,123:084704
    [81]C.D.Valentin,G.Pacchioni,A.Selloni.Theory of carbon doping of titanium dioxide.Chemistry of Materials,2005,17:6656-6665
    [82]K.Madhusudan Reddy,Babita Baruwati,M.Jayalakshmi,et al..S-,N- and C-doped titanium dioxide nanoparticles:synthesis,characterization and redox charge transfer study.Journal of Solid State Chemistry,2005,178:3352-3358
    [83]T.Ohnoa,M.Akiyoshi,T.Umebayashi,et al..Preparation of S-doped TiO_2 photocatalysts and their photocatalytic activities under visible light.Applied Catalysis A:General,2004,265:115-121
    [84]周武艺,曹庆云,唐绍裘,等.硫掺杂纳米TiO_2的掺杂机理及其可见光催化活性的研究.无机材料学报,2006,21(4):776-782
    [85]T.Umebayashi,T.Yamaki,H.Itoh,et al..Band gap narrowing of titanium dioxide by sulfur doping.Applied Physics Letters,2002,81(3):454-456
    [86]T.Umebayashi,T.Yamaki,S.Yamanoto,et al..Sulfur-doping of rutile-titanium dioxide by ion implantation:Photocurrent spectroscopy and first-principles band calculation studies.Journal of Applied Physics,2003,93(9):5156-5160
    [87]H.Li,X.Zhang,Y.huo,et al..Supercritical preparation of a highly active S-doped TiO_2photocatalyst for methylene blue mineralization.Environmental Science & Technology,2007,41(12):4410-4414
    [88]J.-G.Yu,J.C,Yu,B.Cheng,et al..The effect of F-doping and temperature on the structural and textural evolution of mesoporous TiO_2 powders.Journal of Solid State Chemistry,2003,174:372-380
    [89]J.C.Yu,J.Yu,W.Ho,et al..Effects of F-doping on the photocatalytic activity and microstructures of nanoerystalline TiO_2 powders.Chemistry of Materials,2002,14:3808-3816
    [90]D.Li,H.Haneda,S.Hishita.et al..Fluorine-doped TiO_2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde.Journal of Fluorine Chemistry,2005,126:69-77
    [91] D. Li, H. Haneda, S. Hishita. et al.. Visible-light-driven N-F-codoped TiO_2 photocatalysts. 1.synthesis by spray pyrolysis and surface characterization. Chemistry of Materials, 2005, 17:2588-2595
    [92] D. Li, H. Haneda, S. Hishita. et al.. Visible-light-driven N-F-codoped TiO_2 photocatalysts. 2.optical characterization, photocatalysis, and potential application to air purification. Chemistry of Materials, 2005,17:2596-2602
    [93] S. Kim, S.-J. Hwang, W. Choi. Visible light active platinum-ion-doped TiO_2 photocatalyst. The Journal of Physical Chemistry B, 2005,109:24260-24267
    [94] E. Stathatos, P. Lianos, P. Falaras, et al.. Photocatalytically deposited silver nanoparticles on mesoporous TiO_2 films. Langmuir, 2000,16: 2398-2400
    [95] J. Okumu, C. Dahmena, A.N. Sprafke, et al.. Photochromic silver nanoparticles fabricated by sputter deposition. Journal of Applied Physics, 2005,97:094305
    [96] M.S. Lee, S.-S. Hong, M. Mohseni. Synthesis of photocatalytic nanosized TiO_2-Ag particles with sol-gel method using reduction agent. Journal of Molecular Catalysis A: Chemical, 2005,242:135-140
    [97] Y. Tian, T. Tatsuma. Mechanisms and applications of plasmon-induced charge separation at TiO_2 films loaded with gold nanoparticles. Journal of the American Chemical Society, 2005,127: 7632-7637
    [98] S.X. Liu, Z.P. Qu, X.W. Han, et al.. A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide. Catalysis Today, 2004,93-95: 877-884
    [99] H. Tsuji, H. Sugahara, Y. Gotoh, et al.. Improvement of photocatalytic efficiency of rutile titania by silver negative-ion implantation. Nuclear Instruments and Methods in Physics Research B, 2003,206:249-253
    [100] I.M. Arabatzis, T. Stergiopoulos, M.C. Bernard, et al.. Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange. Applied Catalysis B: Environmental,2003,42:187-201
    [101] B. Xin, L. Jing, Z. Ren, et al.. Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of TiO_2. The Journal of Physical Chemistry B, 2005,109: 2805-2809
    [102] D.B. Hamal, K.J. Klabunde. Synthesis, characterization, and visible light activity of new nanoparticle photocatalysts based on silver, carbon, and sulfur-doped TiO_2. Journal of Colloid and Interface Science, 2007, doi:10.1016/j.jcis.2007.03.001
    [103] F.B. Li, X.Z. Li. The enhancement of photodegradation efficiency using Pt-TiO_2 catalyst. Chemosphere, 2002,48:1103-1111
    [104] E. Borgarello, N. Serpone, M. Graetzel, et al.. Production of hydrogen through microheterogeneous photocatalysis of hydrogen sulfide cleavage: the thiosulfate cycle. Advances in Hydrogen Energy, 1984,3:1039-1046
    [105] L. Wu, J.C. Yu, X. Fu. Characterization and photocatalytic mechanism of nanosized CdS coupled TiO_2 nanocrystals under visible light irradiation, Journal of Molecular Catalysis A:Chemical, 2006,244:25-32
    [106] H. Fujii, M. Ohtaki, K. Eguchi, et al.. Preparation and photocatalytic activities of a semiconductor composite of CdS embedded in a TiO_2 gel as a stable oxide semiconducting matrix. Journal of Molecular Catalysis A: Chemical, 1998,129:61-68
    [107] J. Li, L. Liu, Y. Yu, et al.. Preparation of highly photocatalytic active nano-size TiO_2-Cu_2O particle composites with a novel electrochemical method. Electrochemistry Communications,2004,6:940-943
    [108] W. Ho, J.C. Yu, J. Lin, et al.. Preparation and photocatalytic behavior of MoS_2 and WS_2 nanocluster sensitized TiO_2. Langmuir 2004, 20: 5865-5869
    [109] Y. Bessekhouad, D. Robert, J.-V. Weber. Photocatalytic activity of Cu_2O/TiO_2, Bi_2O_3/TiO_2 and ZnMn_2O_4/TiO_2 heterojunctions. Catalysis Today, 2005,101:315-321
    [110] M. Sathish, R.P. Viswanath. Photocatalytic generation of hydrogen over mesoporous CdS nanoparticle: effect of particle size, noble metal and support. Catalysis Today, 2007,doi:10.1016/j.cattod.2006.12.008
    [111] W. Zhao, W. Ma, C. Chen, et al.. Efficient degradation of toxic organic pollutants with Ni_2O_3/TiO_(2-x)B_x under visible irradiation. Journal of the American Chemical Society, 2004,126:4782-4783
    [112] Y. Sakatani, H. Ando, K. Okusako, et al.. Metal ion and N co-doped TiO_2 as a visible-light photocatalyst. Journal of Materials Research, 2004,19(7): 2100-2108
    [113] Y. Sakatani, J. Nunoshige, H. Ando, et al.. Photocatalytic decomposition of acetaldehyde undervisible light irradiation over La~(3+) and N co-doped TiO_2. Chemistry Letters, 2003, 32(12):1156-1157
    [114] H. Ozaki, S. Iwamoto, M. Inoue. Improved visible-light responsive photocatalytic activity of N and Si co-doped titanias. J Mater Sci, 2007, DOI 10.1007/sl0853-006-0236-z
    [115] H. Ozaki, S. Iwamoto, M. Inoue. Effect of the addition of a small amount of vanadium on the photocatalytic activities of N- and Si- co-doped titanias under visible-light irradiation. Catalysis Letters, 2007, 113(3-4): 95-98
    [116] P. Wu, J. Tang, Z. Dang. Preparation and photocatalysis of TiO_2 nanoparticles doped with nitrogen and cadmium. Materials Chemistry and Physics, 2007,103:264-269
    [117] Y. Cong, J. Zhang, F. Chen, et al.. Preparation, photocatalytic activity, and mechanism of nano-TiO_2 co-doped with nitrogen and iron (III). The Journal of Physical Chemistry C, 2007,111(28): 10618-10623
    [118] T. Ohno, T. Tsubota, M. Toyofuku, et al.. Photocatalytic activity of a TiO_2 photocatalyst doped with C~(4+) and S~(4+) ions having a rutile phase under visible light. Catalysis Letters, 2004,98(4): 255-258
    [119] D. Chen, Z. Jiang, J. Geng, et al.. Carbon and nitrogen co-doped TiO_2 with enhanced visible-light photocatalytic activity. Industrial & Engineering Chemistry Research, 2007, 46:2741-2746
    [120] D. Li, N. Ohashi, S. Hishita, et al.. Origin of visible-light-driven photocatalysis: a comparative study on N/F-doped and N-F-codoped TiO_2 powders by means of experimental characterizations and theoretical calculations. Journal of Solid State Chemistry, 2005, 178:3293-3302
    [121] N.A. Dubrovinskaia, L.S. Dubrovinsky, R. Ahuja, et al.. Experimental and theoretical identification of a new high-pressure TiO_2 polymorph. Physical Review Letters, 2001, 87(27):275501
    [122] J.K. Dewhurst, J.E. Lowther. High-pressure structural phases of titanium dioxide. Physical Review B, 1996, 54(6): R3673-R3675
    [123] M. Mattesini, J.S. de Almeida, L. Dubrovinsky, et al.. Cubic TiO_2 as a potential light absorber in solar-energy conversion. Physical Review B, 2004,70:115101
    [124] R.G. Breckenridge, W.R. Hosler.Electrical properties of titanium dioxide semiconductors.Physical Review, 91, (1953)793-802.
    [125] I.N. Martyanov, S. Uma, S. Rodrigues. et al.. Structural defects cause TiO_2-based photocatalysts to be active in visible light. Chemical Communications, 2004,2476-2477
    [126] I. Nakamura, N. Negishi, S. Kutsuna, et al.. Role of oxygen vacancy in the plasma-treated TiO_2 photocatalyst with visible light activity for NO removal. Journal of Molecular Catalysis A:Chemical, 2000,161:205-212
    [127] G. Burgeth, H. Kiscn. Photocatalytic and photoelectrochemical properties of titania chloroplatinate(Ⅳ).Coordination Chemistry Reviews,2002,230:41-47
    [128]W.Macyk,H.Kisch.Photosensitization of crystalline and amorphous titanium dioxide by platinum(ⅳ) chloride surface complexes.Chemistry-A European Journal,2001,7(9):1862-1867
    [129]H.Gleiter.Nanostructured materials:basic concepts and microstructurc.Acta Materialia,2000,48:1-29
    [130]T.Trindade,P.O'Brien,N.L.Pickett.Nanocrystalline semiconductors:synthesis,properties,and perspectives.Chemistry of Materials,2001,13:3843-3858
    [131]H.B(o|")nnemann,K.S.Nagabhushana.Chemical synthesis of nanoparticles.Encyclopedia of Nanoscience and Nanotechnology,2004:777-813
    [132]C.N.R.Rao,G.U.Kulkarni,P.J.Thomas,et al..Size-dependent chemistry:properties of nanocrystals.Chemistry-A European Journal,2002,8(1):27-35
    [133]M.Ferna'ndez-Garca,A.Martnez-Arias,J.C.Hanson,et al..Nanostructured oxides in chemistry:characterization and properties.Chemical Reviews,2004,104:4063-4104
    [134]C.Q.Sun.Size dependence of nanostructures:impact of bond order deficiency.Progress in Solid State Chemistry,2007,35:1-159
    [135]H.Zhang,J.F.Banfield.Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates:insights from TiO_2.The Journal of Physical Chemistry B,2000,104(15):3481-3487.
    [136]W.P.Tong,N.R.Tao,Z.B.Wang,et al..Nitriding iron at lower temperatures.Science,2003,299:686-688
    [137]D.Tasis,N.Tagmatarchis,A.Bianco,et al..Chemistry of carbon nanotubes.Chemical Reviews,2006,106:1105-1136
    [138]J.Zhao,X.Wang,T.Sun.Crystal phase transition and properties of titanium oxide nanotube arrays prepared by anodization.Journal of Alloys and Compounds,2007,434-435:792-795
    [139]J.M.Macak,P.Schmuki.Anodic growth of self-organized anodic TiO_2 nanotubes in viscous electrolytes.Electrochimica Acta,2006,52:1258-1264
    [140]R.Beranek,H.Hildebrand,P.Schmuki.Self-organized porous titanium oxide prepared in H2SO_4/HF electrolytes.Electrochemical and Solid-State Letters,2003,6(3):B12-B14
    [141]J.M.Macak,H.Tsuchiya,P.Schmuki.High-aspect-ratio TiO_2 nanotubes by anodization of titanium.Angewandte Chemie-International Edition,2005,44(14):2100-2102
    [142]A.Ghicov,H.Tsuchiya,J.M.Macak,et al..Titanium oxide nanotubes prepared in phosphate electrolytes.Electrochemistry Communications,2005,7:505-509
    [143]Y.Xie,L.M.Zhou,H.Huang.Enhanced photoelectrochemical current response of titania nanotube array.Materials Letters,2006,60:3558-3560
    [144]C.Ruan,M.Paulose,O.K.Varghese,et al..Enhanced photoelectrochemical-response in highly ordered TiO_2 nanotube-arrays anodized in boric acid containing electrolyte.Solar Energy Materials & Solar Cells,2006,90:1283-1295
    [145]G.K.Mor,K.Shankar,M.Paulose,et al..Enhanced photocleavage of water using titania nanotube arrays.Nano Letters,2005,5(1):191-195
    [146]S.P.Albu,A.Ghicov,J.M.Macak,et al..Self-organized,free-standing TiO_2 nanotube membrane for flow-through photocatalytic applications.Nano Letters,2007,7(5):1286-1289
    [147]L.H.Huang,C.Sun,Y.L.Liu.Pt/N-codoped TiO_2 nanotubes and its photocatalytic activity under visible light.Applied Surface Science,2007,doi:10.1016/j.apsusc.2007.02.048
    [148]J.-C.Xua,M.Lua,X.-Y.Guo,et al..Zinc ions surface-doped titanium dioxide nanotubes and its photocatalysis activity for degradation of methyl orange in water.Journal of Molecular Catalysis A:Chemical,2005,226:123-127
    [149]T.Kasuga,M.Hiramatsu,A.Hoson,et al..Formation of titanium oxide nanotube.Langmuir,1998,14:3160-3163
    [150]S.Zhang,L.-M.Peng,Q.Chen,et al..Formation mechanism of H_2Ti_3O_7 nanotubes.Physical Review Letters,2003,91(25):256103
    [151]X.H.Li,W.M.Liu,H.L.Li.Template synthesis of well-aligned titanium dioxide nanotubes.Applied Physics A Materials Science & Processing,2005,80:317-320
    [152]R.P.Vitiello,J.M.Maeak,A.Ghicov,et al..N-doping of anodic TiO_2 nanotubes using heat treatment in ammonia.Electrochemistry Communications,2006,8:544-548
    [153]S.K.Mohapatra,M.Misra,V.K.Mahajan,et al..A novel method for the synthesis of titania nanotubes using sonoelectrochcmical method and its application for photoelectrochemical splitting of water.Journal of Catalysis,2007,246:362-369
    [154]王岩,张纪伟,金振声,等.新型N-TiO_2亚甲基蓝的可见光脱色研究.科学通报,2007,52(16):1973-1976
    [155]J.Xu,Y.Wang,Z.Li,et al..Preparation and electrochemical properties of carbon-doped TiO_2nanotubes as an anode material for lithium-ion batteries.2007,doi:10.1016/j.jpowsour.2007.10.014
    [156]Y.Wan,D.Zhao.On the controllable soft-templating approach to mesoporous silicates.Chemical Reviews,2007,107(7):2821-2860
    [157]C.Liu,L.Fub,J.Economy.A simple,template-free route for the synthesis of mesoporous titanium dioxide materials.Journal of Materials Chemistry.2004,14:1187-1189
    [158]S.Y.Choi,M.Mamak,N.Coombs,et al..Thermally stable two-dimensional hexagonal mesoporous nanocrystalline anatase,meso-nc-TiO_2:bulk and crack-free thin film morphologies.Advanced Functional Materials,2004,14(4):335-344
    [159]D.P.Serrano,G.Calleja,R.Sanz,et al..Preparation of bimodal micro-mesoporous TiO_2 with tailored crystalline properties.Chemical Communications,2004,1000-1001
    [160]H.Shibata,T.Ogura,T.Mukai,et al..Direct synthesis of mesoporous titania particles having a crystalline wall.Journal of the American Chemical Society,2005,127:16396-16397
    [161]H.Shibata,H.Mihara,T.Mukai,et al..Preparation and formation mechanism of mesoporous titania particles having crystalline wall.Chemistry of Materials,2006,18:2256-2260
    [162]S.Yuan,Q.Sheng,J.Zhang,et al..Synthesis of thermally stable mesoporous TiO_2 and investigation of its photocatalytic activity.Microporous and Mesoporous Materials,2007,doi:10.1016/j.micromeso.2007.06.039
    [163]范晓星,于涛,邹志刚.介孔TiO_2的材料合成及其在光催化领域的应用.功能材料,2006,37(1):6-9
    [164]H.Li,Z.Bian,J.Zhu,et al..Mesoporous Au/TiO_2 nanocomposites with enhanced photocatalytic activity.Journal of the American Chemical Society,2007,129:4538-4539
    [165]165S.Yuan,Q.Sheng,J.Zhang,et al..Synthesis of La~(3+) doped mesoporous titania with highly crystallized walls.Microporous and Mesoporous Materials,2005,79:93-99
    [166]1L.Wu,J.C.Yu,X.Wang,et al..Characterization of mesoporous nanocrystalline TiO_2photocatalysts synthesized via a sol-solvothermal process at a low temperature.Journal of Solid State Chemistry,2005,178:321-328
    [167]D.S.Kim,S.J.Han,S.-Y.Kwak.Synthesis and photocatalytic activity of mesoporous TiO_2with the surface area,crystallite size,and pore size.Journal of Colloid and Interface Science,2007,doi:10.1016/j.jcis.2007.07.037
    [168]B.Choi,L.Zhao,T.Jin.One-step template-free routes for synthesisi of mesoporous N-doepd titania spheres.The Journal of Physical Chemistry C,2007,111:6189-6183
    [169]W.Ren,Z.Ai,F.Jia,et al.Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO_2.Applied Catalysis B:Environmental,2007,69:138-144
    [170]Y.Hu,J.Ge,Y.Sun,et al..A self-templated approach to TiO_2 microcapsules.Nano Letters, 2007, 7(6): 1832-1836
    [171] D. Wang, C. Song, Y. Lin, et al.. Preparation and characterization of TiO_2 hollow spheres. Materials Letters, 2006, 60 : 77 -80
    [172] A.-H. Pei, Z.-W. Shen, G.-S. Yang. Preparation of TiO_2 nanocapsules for loading and release of antimicrobial triclosan molecules. Materials Letters, 2007,61: 2757-2760
    [173] L. Zhang, D. Xia, Q. Shen. Synthesis and characterization of Ag@TiO_2 core-shell nanoparticles and TiO_2 nanobubbles. Journal of Nanoparticle Research, 2006, 8: 23-28
    [174] A. Syoufian, O.H. Satriya, K. Nakashima. Photocatalytic activity of titania hollow spheres:photodecomposition of methylene blue as a target molecule. Catalysis Communications, 2007,8: 755-759
    [175] A. Syoufian, Y. Inoue, M. Yada, et al.. Preparation of submicrometer-sized titania hollow spheres by templating sulfonated polystyrene latex particles. Materials Letters, 2007, 61:1572-1575
    [176] J.M Wu, B. Huang, M. Wang, et al.. Titania nanoflower with high photocatalytic activity. Journal of American Ceramics Society, 2006, 89(6): 2660-1663
    [177] O.K. Varghese, G.K. Mor, M. Paulose, et al.. A titania nanotube-array room-temperature sensor for selective detection of low hydrogen concentrations. Materials Research Society Symposium Proceedings, 2005, 828:117-125
    [178] J. Sheng, N. Yoshida, J. Karasawa, et al.. Platinum doped titania film oxygen sensor integrated with temperature compensating thermistor. Sensors and Actuators, B: Chemical,1997,B41(1-3): 131-136
    [179] M.T.Wu, X. Yao, Z.H. Yuan, H.T. Sun, et al.. Effect of noble metal catalyst on titania exhaust gas oxygen sensor. Sensors and Actuators, B: Chemical, 1993, B14(1-3): 491
    [180] S. Hasegawa, Y. Sasaki, S. Matsuhara. Oxygen-sensing factor of TiO_2 doped with metal ions. Sensors and Actuators, B: Chemical, 1993, B14(1-3): 509-510
    [181] R.K. Sharma, M.C. Bhatnagar, G.L. Sharma. Mechanism in Nb doped titania oxygen gas sensor. Sensors and Actuators, B: Chemical, 1998, B46(3): 194-201
    [182] A.N. Ruiz, A. Cornet, J.R. Morante. Performances of La-TiO_2 nanoparticles as gas sensing material. 2005, 111-112: 7-12
    [183] A.M. Ruiz, A. Cornet, K. Shimanoe. et al.. Effects of various metal additives on the gas sensing performances of TiO_2 nanocrystals obtained from hydrothermai treatments. Sensors and Actuators, B: Chemical, 2005,108(1-2): 34-40
    [184]G.S.Devi,T.Hyodo,Y.Shimizu,et al..Synthesis of mesoporous TiO_2-based powders and their gas-sensing properties.Sensors and Actuators,B:Chemical,2002,87(1):122-129
    [185]R.Janisch,P.Gopal,N.A.Spaldin.Transition metal-doped TiO_2 and ZnO-present status of the field.Journal of Physics:Condensed Matterials,2005,17:R657-R689
    [186]N.H.Hong,J.Sakai,A.Hassini,et al..Ferromagnetism at room temperature with a large magnetic moment in anatase V-doped TiO_2 thin films.Applied Physics Letters,2004,84(14):2602-2604
    [187]N.H.Hong,A.Ruyter,F.Gervais,et al..Magnetic structure of V:TiO_2 and Cr:TiO_2 thin films from magnetic force microscopy measurements.Journal of Applied Physics,2005,97:10D323
    [188]Z.M.Tian,S.L.Yuan,S.Y.Yin,et al..Synthesis and magnetic properties of vanadium doped anatase TiO_2 nanoparticles.Journal of Magnetism and Magnetic Materials,2008,320:L5-L9
    [189]J.M.D.Coey,M.Venkatesan,C.B.Fitzgerald.Donor impurity band exchange in dilute ferromagnetic oxides.Nature Materials,2005,4:173-179
    [190]K.A.Griffin,A.B.Pakhomov,C.M.Wang,et al..Intrinsic ferromagnetism in insulating cobalt doped anatase TiO_2.Physical Review Letters,2005,94:157204
    [191]L.A.Errico,M.Renteria,M.Weissmann.Theoretical study of magnetism in transition-metal-doped TiO2 and TiO_(2-δ).Physical Review B,2005,72:184425
    [192]H.Weng,X.Yang,J.Dong,et al..Electronic structure and optical properties of the Co-doped anatase TiO_2 studied from first principles.Physical Review B.2004,69:125219
    [193]G.Y.Gao,K.L.Yaoa,Z.L.Liu,First-principles study on magnetism and electronic structure of V-doped rutile TiO_2.Physics Letters A,2006,359:523-527
    [194]X.Du,Q.Li,1,H.Su,et al..Electronic and magnetic properties of V-doped anatase TiO_2 from first principles.Physical Review B,2006,74:233201
    [195]K.H.Hea,G.Zheng,G.Chen,et al..Effects of single oxygen vacancy on electronic structure and ferromagnetism for V-doped TiO_2.Solid State Communications,2007,144:54-57
    [196]K.Kikoina,V.Fleurov.On the nature of ferromagnetism in non-stoichiometric TiO_2 doped with transition metals.Journal of Magnetism and Magnetic Materials,2007,310:2097-2098
    [197]N.H.Hong,J.Sakai,N.Poirot,et al..Room-temperature ferromagnetism observed in undoped semiconducting and insulating oxide thin films.Physical Review B,2006,73:132404
    [198]陈欢欢.科学时报年终专稿之物理学篇:从IT到ET.科学网,2008,1,10:http://www.sciencenet.cn/html/shownews.aspx?id=198985
    [199]H.Kawahara,H.Honda.Japanese patent 59141441,A(Nippon Sheet Glass),1984,August 14
    [200]H.Nagayama,H.Honda,H.Kawahara.New process for silica coating.Journal of the Electrochemical Society,1988,135(8):2013-2016.
    [201]A.Hishinuma,T.Goda,M.Kitaoka,et al..Formation of silicon dioxide films in acidic solutions.Applied Surface Science,1991,48-49(4):405-408
    [202]T.P.Niesen,M.R.D.Guire.Review:Deposition of ceramic thin films at low temperatures from aqueous solutions.Journal of Electroceramics,2001,6:169-207
    [203]K.Shimizua,H.Imaia,H.Hirashima,et al..Low-temperature synthesis of anatase thin films on glass and organic substrates by direct deposition from aqueous solutions.Thin Solid Films,1999,351:220-224
    [204]Y.Sakala,H.Norimatsu,Y.Saito,et al..Silica coating on plastics by liquid phase deposition (LPD) method.Thin Solid Films 2001,392:294-298
    [205]T.Horiuchi,K.Kanba,T.Homma,et al..A 7-mask CMOS process with selective oxide deposition.Ieee Transactions on Electron Devices,1993,40(8):1455-1460
    [206]N.Ozawa,Y.Kumazawa,T.Yao.Effect of seed crystal and composition of solution on the formation of TiO_2 thin film from aqueous solution.Thin Solid Films,2002,418:102-111
    [207]S.Deki,Y.Aoi,Y.Miyake,et al..Novel wet process for preparation of vanadium oxide thin film.Materials Research Bulletin,1996,31(11):1399-1406
    [208]K.Tsukuma,T.Akiyama,H.Imai.Liquid phase deposition film of tin oxide.Journal of non-crystalline solids,1997,210:48-54
    [209]T.Yao,T.Inui,A.Ariyoshi.Novel method for zirconium oxide synthesis from aqueous solution.Journal of the American Ceramic Society,1996,79(12):3329-3330
    [210]S.Deki,K.Kuratani,M.Uemura,et al..Aqueous solution-based synthesis of rare earth-doped metal oxide thin films.Thin Solid Films,2004,460:83-86
    [211]H.Y.Y.Ko,M.Mizuhata,A.Kajinami,et al..Preparation of Au nanoparticle dispersed Nb_2O_5composite film by liquid phase deposition.Journal of Electroanalytical Chemistry,2003,559:91-98
    [212]J.Yu,J.Xiong,B.Cheng,et al..Fabrication and characterization of Ag-TiO_2 multiphase nanocomposite thin films with enhanced photocatalytic activity.Applied Catalysis B:Environmental,2005,60:211-221
    [213]S.Deki,Y.Aoi,A.Kajinami.A novel wet process for the preparation of vanadium dioxide thin film.Journal of Materials Science,1997,32:4269-4273
    [214]林勇兴.液相沉积法制备TiO_2薄膜的研究:[硕士学位论文].昆明:昆明理工大学,2004
    [215]T.Ivanova,A.Harizanova,M.Surtchev,et al..Investigation of sol-gel derived thin films of titanium dioxide doped with vanadium oxide.Solar Energy Materials & Solar Cells,2003,76:591-598
    [216]C.Su,B.-Y.Hong,C.-M.Tseng.Sol-gel preparation and photocatalysis of titanium dioxide.Catalysis Today,2004,96:119-126
    [217]王建棋,吴文辉,冯大明.电子能谱学(XPS/XAES/UPS)引论.北京:国防工业出版社,1992
    [218]黄惠忠等.论表面分析及其在材料研究中的应用.北京:科学技术文献出版社,2002
    [219]L.E.Briand,R.D.Bonetto,M.A.Sanchez,et al..Structural modelling of coprecipitated VTiO catalysts.Catalysis Today,1996,32:205-213
    [220]M.A.Banares,L.J.Alemany,M.C.Jime'nez,et al..The role of vanadium oxide on the titania transformation under thermal treatments and surface vanadium states.Journal of Solid State Chemistry,1996,124:69-76
    [221]P.Babelon,A.S.Dequiedt,H.Mostefa-Sba,et al..SEM and XPS studies of titanium dioxide thin films grown by MOCVD.Thin Solid Films,1998,322:63-67
    [222]M.Z.Atashbara,H.T.Sunb,B.Gong,et al..XPS study of Nb-doped oxygen sensing TiO_2 thin films prepared by sol-gel method.Thin Solid Films,1998,326:238-244
    [223]Y.-L.Shi,X.-G.Zhang,H.-L.Li.Liquid phase deposition templates synthesis of nanostructures of anatase titania.Materials Science and Engineering A,2002,333:239-242
    [224]S.Yamanaka,T.Hamaguchi,Hiroaki Muta,et al..Fabrication of oxide nanohole arrays by a liquid phase deposition method.Journal of Alloys and Compounds,2004,373:312-315
    [225]M.Gopal,W.J.M.Chan,L.C.D.Jonghe.Room temperature synthesis of crystalline metal oxides.Journal of Materials Science,1997,32:6001-6008
    [226]J.D.DeLoach,G.Scarel,C.R.Aita.Correlation between titania film structure and near ultraviolet optical absorption.Journal of Applied Physics,1999,85(4):2377-2384
    [227]W.A.Daoud,J.H.Xin,Y.-H.Zhang,et al..Surface characterization of thin titania films prepared at low temperatures.Journal of Non-Crystalline Solids,2005,351:1486-1490
    [228]A.Davidson,M.Che.Temperature-induced diffusion of probe vanadium(Ⅳ) ions into the matrix of titanium dioxide as investigated by ESR techniques.Journal of Physical Chemistry,1992,96(24):9909-9915
    [229]S.Klosek,D.Raftery.visible light drived V-doped TiO_2 photocatalyst and its photooxidation of ethanol.Journal of Physical Chemistry B,2001,105:2815-2819
    [230]王华馥,吴自勤.固体物理实验方法.北京:高等教育出版社,1990
    [231]A.R.Gandhe,S.P.Naik,J.B.Fernandes.Selective synthesis of N-doped mesoporous TiO_2phases having enhanced photocatalytic activity.Microporous and Mesoporous Materials,2005,87:103-109
    [232]A.B.Murphy.Band-gap determination from diffuse reflectance measurements of semiconductor films,and application to photoelectrochemical water-splitting.Solar Energy Materials & Solar Cells,2007,91:1326-1337
    [233]M.Benmoussa,E.Ibnouelghazi,A.Bennouna,et al..Structural,electrical and optical properties of sputtered vanadium pentoxide thin films.Thin Solid Films,1995,265:22-28
    [234]A.Houas,H.Lachheb,M.Ksibi,et al..Photocatalytic degradation pathway of methylene blue in water.Applied Catalysis B:Environmental,2001,31:145-157
    [235]周名成.紫外与可见光分光光度分析法.北京:化学工业出版社,1986,18-196
    [236]L.Guo,H.Li,X.Gao.Phase transformations and structure characterization of calcium polyphosphate during sintering process.Journal of Materials Science,2004,39:7041-7047
    [237]L.B.McCusker,R.B.V.Dreele,D.E.Cox,et al..Rietveld refinement guidelines.Journal of Applied Crystallography,1999,32:36-50
    [238]L.Guo,M.Huang,X.Zhang.Effects of sintering temperature on structure of hydroxyapatitie studied with Rietveld method.Journal of Materials Science,2003,14:817-822
    [239]M.Bhagwat,A.V.Ramaswamy,A.K.Tyagi,et al..Rietveld refinement study of nanocrystalline copper doped zirconia.Materials Research Bulletin,2003,38:1713-1724
    [240]I.E.Grey,N.C.Wilson.Titanium vacancy defects in sol-gel prepared anatase.Journal of Solid State Chemistry,2007,180:670-678
    [241]Y.Kim,J.K.Jung,K.-S.Ryu.Structural study of nano BaTiO_3 powder by Rietveld refinement.Materials Research Bulletin,2004,39:1045-1053
    [242]K.S.W.Sing,D.H.Everett,R.A.W.Haul,et al..Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity.Pure and Applied Chemistry,1985,57(4):603-619
    [243]N.C.Saha,H.G.Tompkins.Titanium nitride oxidation chemistry:an x-ray photoelectron spectroscopy study.Journal of Applied Physics,1992,72(7):3071-3078
    [244]Y.Cong,J.Zhang,F.Chen,et al..Synthesis and characterization of nitrogen-doped TiO_2nanophotocatalyst with high visible light activity.The Journal of Physical Chemistry C,2007,111:6976-6982
    [245]C.Chen,H.Bai,S.Chang,et al..Preparation of N-doped TiO_2 photocatalyst by atmospheric pressure plasma process for VOCs decomposition under UV and visible light sources.Journal of Nanoparticle Research,2007,9:365-375
    [246]S.Sakthivel,M.Janczarek,H.Kisch,et al..Visible light activity and photoelectrochemical properties of nitrogen-doped TiO_2.The Journal of Physical Chemistry B,2004,108:19384-19387
    [247]D.Mardare,D.Luca,C.-M.Teodorescu,et al..On the hydrophilicity of nitrogen-doped TiO_2thin films.Surface Science,2007,doi:10.1016/j.susc.2007.04.156
    [248]C.Q,Sun.Surface and nanosolid core-level shift:Impact of atomic coordination-number imperfection.Physical Review B,2004,69:045105
    [249]M.-C.Yang,T.-S.Yang,M.-S.Wong.Nitrogen-doped titanium oxide films as visible light photocatalyst by vapor deposition.Thin Solid Films,2004,469-470:1-5
    [250]E.Gyorgy,A.P.del Pino,P.Serra,et al..Depth profiling characterisation of the surface layer obtained by pulsed Nd:YAG laser irradiation of titanium in nitrogen.Surface and Coatings Technology,2003,173:265-270
    [251]W.Ho,J.C.Yu,S.Lee.Synthesis of hierarchical nanoporous F-doped TiO_2 spheres with visible light photocatalytic activity.Chemical Communications,2006,1115-1117
    [252]G.A.Sawatzky,D.Post.X-ray photoelectron and Auger spectroscopy study of some vanadium oxide,Physical Review B,1979,20(4):1546-1555
    [253]J.Zhou,M.Takeuchi,X.S.Zhao,et al..Photocatalytic decomposition of formic acid under visible light irradiation over V-ion-implanted TiO_2 thin film photocatalysts prepared on quartz substrate by ionized cluster beam(ICB) deposition method.Catalysis Letters,2006,106(1-2),67-70
    [254]D.Yin,N.Xu,J.Zhang,et al..High quality vanadium dioxide films prepared by an inorganic sol-gel method.Materials Research Bulltin,1996,31(3):335-340
    [255]J.A.Wang,R.Limas-Ballesteros,T.López,et al..Quantitative determination of titanium lattice defects and solid-state reaction mechanism in iron-doped TiO2 photocatalysts.The Journal of Physical Chemistry B,2001,105(40):9692-9698
    [256]M.Takahashi,K.Tsukigi,E.Dorjpalam,et al..Effective photogeneration in TiO_2/VO_2/TiO_2muitilayer film electrodes prepared by a sputtering method.The Journal of Physical Chemistry B,2003,107:13455-13458
    [257]I.S.Elfimov,S.Yunoki,G.A.Sawatzky.Possible path to a new class of ferromagnetic and half-metallic ferromagnetic materials.Physical Review Letters,2002,89(21):216403
    [258]M.M.Mohamed,W.A.Bayoumy,M.Khairy,et al..Synthesis of micro-mesoporous TiO_2materials assembled via cationic surfactants:morphology,thermal stability and surface acidity characteristics.Microporous and Mesoporous Materials,2007,103:174-183
    [259]V.L.Colvin.The potential environmental impact of engineered nanomaterials.Nature Biotechnology 2003,21(10):1166-1170
    [260]P.Klobes,K.Meyer and R.G.Munro,Porosity and specific surface area measurements for solid materials,National Institute of Standards and Technology Special Publication,2006
    [261]严继民,张启元.吸附与凝聚-固体的表面与孔.北京:科学出版社,1986
    [262]L.Zhang,R.V.Koka.A study on the oxidation and carbon diffusion of TiC in alumina-titanium carbide ceramics using XPS and Raman spectroscopy.Materials Chemistry and Physics,1998,57:23-32
    [263]陈寿椿.重要无机化学反应.上海:上海科学技术出版社,1994,1604-1626
    [264]E.A.Whitsitt,A.R.Barron.Effect of surfactant on particle morphology for liquid phase deposition of submicron silica.Journal of Colloid and Interface Science,2005,287:318-325
    [265]K.Yano,N.Suzuki,Y.Akimoto,et al..Synthesis of mono-dispered mesoporous silica spheres with hexagonal symmetry.Bulltin of Chemical Society of Japan,2002,75:1977-1982
    [266]K.Yano,Y.Fukushima.Synthesis of mono-dispered mesoporous silica spheres with highly ordered hexagonal regularity using conventional alkyltrimethylammonium halide as surfactant.Journal of Materials Chemistry,2004,14:1579-1584
    [267]J.Eitle,P.Oelhafen,M.Lazarov,et al..Chemical composition of TiN_xO_y solar selective absorbers.SPIE,1992,1727:25-33
    [268]NIST Standard Reference Database 20,Version 3.4
    [269]S.In,A.Orlov,F.Garcia,et al..Efficient visible light-active N-doped TiO_2 photocatalysts by a reproducible and controllable synthetic route.Chemical Communications,2006,4236-4238
    [270]李玲.表面活性剂与纳米技术.北京:化学工业出版社,2004
    [271]M.T.Anderson,J.E.Martin,J.G.Odinek,et al..Surfactant-templated silica mesophases formed in water:cosolvent mixtures.Chemistry of Materials,1998,10:311-321
    [272]H.Xu,W.Wang.Template Synthesis of multishelled Cu_2O hollow spheres with a single-crystalline shell wall.Angewandte Chemie-International Edition,2007,46:1489-1492
    [273]M.Mizutani,Y.Yamada,K.Yano.Pore-expansion of monodisperse mesoporous silica spheres by a novel surfaetant exchange method.Chemical Communications,2007,1172-1174
    [274]E.Barborini,A.M.Conti,I.Kholmanov,et al..Nanostructured TiO_2 films with 2eV optical gaps. Advanced Materials, 2005,17:1842-1846
    [275] S. Mozia, M. Tomaszewska, Beata Kosowska, et al.. Decomposition of nonionic surfactant on a nitrogen-doped photocatalyst under visible-light irradiation. Applied Catalysis B:Environmental, 2005, 55:195-200
    [276] S. Yin, H. Yamaki, Q. Zhang, et al.. Mechanochemical synthesis of nitrogen-doped titania and its visible light induced NO_X destruction ability. Solid State Ionics, 2004,172:205-209
    [277] N.H. Hong. Ferromagnetism in transition-metal-doped semiconducting oxide thin films. Journal of Magnetism and Magnetic Materials, 2006, 303: 338-343
    [278] A. Sundaresan, R. Bhargavi, N. Rangarajan, et al.. Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Physical Review B, 2006,74:161306
    [279] K. Takemura. Effect of pressure on the lattice distortion of indium to 56GPa. Physical Review B, 1991,44(2): 545-549
    [280] Z. Yan, K. F. Wang, J. F. Qu, et al.. Processing and properties of Yb-doped BiFeO_3 ceramics. Applied Physics Letters, 2007,91:082906
    [281] S. Rath, L. Woodall, C. Deroche, et al.. Quantitative phase analysis of PBSCCO 2223 precursor powders-an XRD/Rietveld refinement study. Superconductor Science and Technology, 2002,15: 543-554
    [282] Y.Q. Song, H.W. Zhang, Q. Y. Wen, et al.. Co doping effect on the magnetic properties of CeO_2 films on Si(111)substrates. Journal of Applied Physics, 2007,102:043912
    [283] M.Venkatesan, C. B. Fitzgerald, J.M.D. Coey. Unexpected magnetism in a dielectric oxide.Nature, 450: 630
    [284] C.D. Pemmaraju, S. Sanvito. Ferromagnetism driven by intrinsic point defects in HfO_2.Physical Review Letters, 2005,94: 217205
    [285] N. Sato. Structure and magnetism of transition-metal-magnesium thin films with an artificailly layered structure. Journal of Applied Physics, 1988, 64(8): 4113-4122
    [286] T. Zhu, W.S. Zhan, W. G. Wang, et al.. Room temperature ferromagnetism in two-step-prepared Co-doped ZnO bulks. Applied Physics Letters, 2006, 89: 022508
    [287] N. Khare, M.J. Kappers, M. Wei, et al.. Defect-induced ferromagnetism in Co-doped ZnO.Advanced Materials, 2006,18: 1449-1452

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700