用户名: 密码: 验证码:
LaNbO_4对NiO/YSZ陶瓷断裂韧性和离子导电性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在多种不同结构设计的固体氧化物燃料电池(SOFC)中,阳极支撑平板式SOFC代表着今后发展的重要方向。最常用的阳极支撑体材料是Ni/YSZ(Y2O3稳定的ZrO2)金属陶瓷,由室温的NiO/YSZ陶瓷复合材料在高温下还原而得。多孔NiO/YSZ支撑体在室温下韧性不足,难以承受电堆装配中所需要施加的压力,往往导致单电池破裂。本文的研究目的是在不改变阳极支撑体电子导电性的条件下,通过第三相材料复合,提高NiO/YSZ复合材料的断裂韧性(KⅠC),为实现超薄SOFC创造条件。
     稀土正铌酸盐LaNbO4在室温下是铁弹性的单斜相,具有特殊的畴结构,在外应力的作用下能发生畴位向变换,应力消失后,畴恢复到原有取向。这一机制有可能增韧陶瓷。因此,本文研究选用LaNbO4作为增韧NiO/YSZ的第三相材料。主要的研究内容包括:
     1) LaNbO4粉末材料的制备与表征;
     2) NiO/YSZ/LaNbO4复合材料力学性能;
     3) NiO/YSZ/LaNbO4复合材料中的相变及其对导电性能影响。
     研究结果表明,化学共沉淀法制备LaNbO4的关键是控制溶液的pH值,保持在9~10之间,才能得到较纯净的尺寸在1~1.5μm的LaNbO4晶粒。LaNbO4的加入导致部分立方相YSZ发生相变,生成单斜相ZrO2。NiO/YSZ/LaNbO4陶瓷材料的KⅠC随LaNbO4的加入量变化:当LaNbO4含量在0~10%wt之间, NiO/YSZ/LaNbO4陶瓷KⅠC连续下降;进一步增加LaNbO4含量,则导致NiO/YSZ/LaNbO4陶瓷的KⅠC上升。脆性相单斜ZrO2的生成是降低NiO/YSZ/LaNbO4陶瓷断裂韧性的原因,其对断裂韧性的破坏作用逐步被LaNbO4的增韧作用抵消。当LaNbO4含量大于10%wt,LaNbO4的增韧作用在复合材料中占主导地位。部分单斜相的生成使得YSZ的离子导电率下降。
The anode-support planar SOFC is an important developing direction in SOFC. The Ni/YSZ cermet is the most used as anode, which is achieved via the NiO/YSZ cermet at room temperature after reduction at high temperature.The toughness of the porous NiO/YSZ cermet is not enough to bear the pressure brought in the assembly of SOFCs. The breakage of the NiO/YSZ cermet is one of the important invalidation in SOFCs. The aim of the paper is to improve the toughness the NiO/YSZ cermet by addition of the thire stuff without influencing the electronic conductivity, and to create qualification for the super thin SOFC.
     Lanthanum orthoniobate (LaNbO4), is a ferroelastic phase of monoclinic structure at room temperature, is heavily domained in two orientations. Under an external stress, the domains switch. Upon removal of external stress, the domains switch backward. It is expected that such a phase may be used to toughen ceramics. In this paper, LaNbO4 has been used as the third phase to enhance the toughness of cermet. The main content includes the following:
     1) Synthesis and characterization of the LaNbO4 power
     2) The mechanical properties of NiO/YSZ/LaNbO4 composite
     3) The phase transformation and its influence on the electrical donductivity of the NiO/YSZ/LaNbO4 composite
     The decisive step in chemical precipitation of LaNbO4 preparation is to adjust the pH value of the solvent into 9~10, by which purified LaNbO4 crystal with 1~1.5μm particle size was prepared. The LaNbO4-addition results in the phase transformation of ZrO2 from cubic to monoclinic in YSZ. The KIC of LaNbO4/NiO/YSZ cermet varies with the fraction of LaNbO4 in NiO/YSZ/LaNbO4 composition: The KIC of LaNbO4/NiO/YSZ cermet decrease with the growing of LaNbO4 fraction ranging 0~10%wt, while increase with the growing of LaNbO4 fraction ranging 10~20%wt. Monoclinic ZrO2 is a fragile inpurity phase which influences the microstructure of LaNbO4/NiO/YSZ cermet. Only when the fraction of LaNbO4 increased up to 10%wt, can the thoughness improving effect of LaNbO4 balance the influence of monoclinic ZrO2, after that the toughness improving effect of LaNbO4 plays a dominant role in the mechanic properties of the material. The partial phase transformation of ZrO2 in YSZ from cubic phase to monoclinic phase also result in the decrease of ionic conductivity of the material.
引文
[1]毛宗强.燃料电池.北京:化学工业出版社,2005. 1~2
    [2]李瑛,王林山.燃料电池.北京:冶金工业出版社,2003.1~10
    [3]衣宝廉.燃料电池—原理·技术·应用(第二版).北京:化学工业出版社,2004
    [4]叶晓东,朱景.燃料电池的研究进展.中小企业科技,2007(5),144~147
    [5]韩敏芳,彭亦萍.固体氧化物燃料电池材料及制备.北京:科学出版社,2004
    [6]刘荣辉,马文会,王华等.固体氧化物燃料电池阴极材料的研究进展.云南化工, 2005,32(3):45~49
    [7] Minh N Q. Ceramic fuel cells. J Am Ceram Soc, 1993, 76(3): 563~588.
    [8]孟广耀,刘皖育,彭定坤.新型固体燃料电池——21世纪绿色能源.中国科学院院刊,1998,13(5):344~351.
    [9]李箭,肖建中.固体氧化物燃料电池的现状与发展.中国科学基金,2004,(3) : 145~149
    [10] Yaofan Yi, Ashok D. Rao, Jacob Brouwer et al.Analysis and optimization of a solid oxide fuel cell and intercooled gas turbine (SOFC–ICGT) hybrid cycle. Journal of Power Sources, 2004, 132: 77~85
    [11]李箭.固体氧化物燃料电池:发展现状、关键技术和面临的问题.功能材料与器件,2007,13(6):683~690
    [12] Yaofan Yi, Ashok D. Rao, Jacob Brouwer et al. Analysis and optimization of a solid oxide fuel cell and intercooled gas turbine (SOFC–ICGT) hybrid cycle. Journal of Power Sources, 2004, 132: 77~85
    [13] Huiming Deng, Minyau Zhou, Benjamin Abeles. Diffusion-reaction in mixed ionic-electronic solid oxide membranes with porous electrodes. Solid State Ionics, 1994, 74: 75~84
    [14]程继贵,邓丽萍,孟广耀.固体氧化物燃料电池阳极材料的制备和性能研究新进展.兵器材料科学与工程,2002,25(6):42~49
    [15] Minh N Q, Takahashi T. Science and technology of ceramic fuel cell. Holand: Elesvier. 1995.147~153
    [16]黄贤良,赵海雷,吴卫江等.固体氧化物燃料电池阳极材料的研究进展.硅酸盐学报,2005,33(11):1407~1413
    [17]张义煌,江义,卢自桂等.阳极负载型SOFC阳极基底厚度对性能的影响.电化学,2001,16(5):804~814
    [18]郭景坤.关于陶瓷材料的脆性问题.复旦学报(自然科学版),2003,42(6):823~827
    [19]束德林.工程材料力学性能.北京:机械工业出版社,2002.216~217
    [20]关振铎,张中太.无机材料物理性能.北京:清华大学出版社,2001. 42~46
    [21]穆柏春.陶瓷材料的强韧化.北京:冶金工业出版社,2002. 33~35
    [22] Shin Tsunekawa, Humihiko Takei. Domain Switching Behaviour of Ferroelastic LaNbO4. J. Phys. Soc. Japan, 1976, 40(5): 1523~1524
    [23] S. Tsunekawa, K. Hara, R. Nishitani et al. Observation of Ferroelastic Domains in LaNbO4 by Atomic Force Microscope. Materials Transactions, 1995, 36(9): 1188~1191
    [24] L. Jian and C. M. Wayman. Monoclinic-to-tetragonal phase transformation in a ceramic rare-earth orthoniobate LaNbO4. J. Am. Ceram. Soc, 1997, 80(3): 803~806
    [25] H. Takei, S. Tsunekawa. Growth and properties of LaNbO4 and NdNbO4single-crystals. J. Cryst. Growth, 1977, 38(1): 55~60
    [26] Tsunekawa, S.Takei H. Twinning structure ferroelastic LaNbO4 and NdNbO4 crystals. Physica status solidi (a) , 1978, 50(2): 695~702
    [27] Tsunekawa S, Atsuo Kasuya, Yuichiro Nishina. Shape and size controls of micro-domains in LaNbO4 crystals. Mater Sci Eng, 1996, 217: 215~217
    [28] Li Jian, Wayman CM. Domain boundary and domain switching a ceramic rare-earth orthoniobates LaNbO4. J. Am Ceram Soc, 1996, 79(6): 1642~1648
    [29] S. Maschio, G.Pezzotti, O. Sbaizero. Effect of LaNbO4 Addition on the MechanicalProperties of Ceria-Tetragonal Zirconia Polycrystal Materials. J Eur Ceram Soc, 1998, 18: 1779~1785
    [30] JIAN LI. Domain Structure, Phase Transformation, Mechanical Behavior and Shape Memory Effect in A Rare-earth Orthoniobate LaNbO4: [D]. American: University of Illinois at Urbanna-Champaign, 1995.
    [31]张志力,翟洪祥,金宗哲.正铌酸镧陶瓷的形状记忆效应及其畴结构.硅酸盐学报,2003,31(9):823~827
    [32] Tommy Mokkelbost. Synthesis and Characterization of CeO2 - and LaNbO4-based Ionic Conductors [D]. Norwegian: Norwegian University of Science and Technology, 2006.
    [33] M.Radovic, E. Lara-Curzio. Mechanical properties of tape cast nickel-based anode materials for solid oxide fuel cells before and after reduction in hydrogen. Acta Materialia, 2004. 52: 5747~5756
    [34] Reidar Haugsurd, Truls Norby. High-temperature proton conductivity inacceptor-doped LaNbO4, Solid state ionics, 2006, 77: 1129~1135
    [35] L. Jian, C. M. Huang, G. B. Xu et al. The domain-structure of LaNbO4 in the low-temperature monoclinic phase, Mater. Lett, 1994, 21 (1): 105~110
    [36] S. Maschio, A. Bachiorrini, R. Dimonte et al. Preparation and characterization of LaNbO4 from amorphous precursors. J. Mater. Sci, 1995, 30 (21): 5433~5437
    [37] L. Jian,C. M. Wayman. Compressive behavior and domain-related shape memory effect in LaNbO4 ceramics.Mater. Lett,1996,26 (1)1~7
    [38] H. Muthurajan, H. H. Kumar, D. K. Kharat. A Co-precipitation Technique ofPreparing LaNbO4 Powers. J. Am. Ceram. Soc, 2007, 90(8): 2661~2663
    [39]张志力,周浪,李永秀等.无定形正铌酸镧前驱体微粉的化学共沉淀法合成.硅酸盐学报,2005,29:484~487
    [40]张志力,李永绣,刘蓓等.化学共沉淀法制备正铌酸镧过程中杂相的形成与控制.中国有色金属学报,2002,12:837~841
    [41]周玉,武高斌.材料分析测试技术.哈尔滨:哈尔滨工业大学出版社,1998:183~195
    [42] B. O. Mysen. Phase diagrams for ceramists. The American Ceramics society, 1975: 154~155
    [43]王恩波,胡长文,许林等.多酸化学导论.北京:化学工业出版社,1998:282~387
    [44] Ma?ek, B. Novosel, M. Marin?ek. Ni–YSZ SOFC anodes—Minimization of carbon deposition. Journey of the European Ceramic Society, 2007, 27: 487~491
    [45] Yoji Sunagawa, Katsutoshi Yamamoto, Atsushi Muramatsu. Improvement in SOFC Anode Perpormance by Finely-Structured Ni/YSZ Cermet Prepared via Heterocoagulation. J. Phys. Chem, B2006, 110: 6224~6228
    [46] Jiangrong Kong Kening Sun, Derui Zhou et al. Ni-YSZ gradient anodes for anode-supported SOFCs. Journal of Power Sources, 2007, 166: 337~342
    [47] J.-H. Lee,H. Moon,H.-W. Lee,J. Kim et al. Quantitative analysis of microstructure and its related electrical property of SOFC anode, Ni–YSZ cermet. Solid State Ionics, 2002, 148: 15~26
    [48] Y.L. Liu, S. Primdahl, M. Mogensen. Effects of impurities on microstructure in Ni/YSZ–YSZ half-cells for SOFC. Solid State Ionics, 2003, 161: 1~10
    [49] Karin Vels Jensen, Reine Wallenberg, Ib Chorkendorff, Mogens Mogensen Effect of impurities on structural and electrochemical properties of the Ni–YSZ interface. Solid State Ionics, 2003, 160: 27~37
    [50] Amar N. Kumar, Bent F. S?rensen. Fracture energy and crack growth in surface treated Yttria stabilized Zirconia for SOFC applications. Materials Science and Engineering, A2002, 333: 380~389
    [51] Kyoung R. Han, Younji Jeong, Haiwon Lee et al. Fabrication of NiO/YSZ anode material for SOFC via mixed NiO precursors. Materials Letters, 2007, 61: 1242~1245
    [52] Sung Pil Yoon, Jonghee Han, Suk Woo Nam et al. Improvement of anodeperformance by surface modification for solid oxide fuel cell running on hydrocarbon fuel. Journal of Power Sources, 2004, 136: 30~36
    [53] Takehisa Fukui, Kenji Murata, Satoshi Ohara et al. Morphology control of Ni-YSZ cermet anode for lower temperature operation of SOFCs. Journey of power sources, 2004, 125: 17~21
    [54] Changsing Hwang, Chia-hoYu. Formation of nanostructured YSZ/Ni anode with pore channels by plasma spraying. Surface & Coatings Technology, 2007, 201: 5954~5959
    [55] Ji Haeng Yu, Gun WooPark, Shiwoo LEE et al. Microstrural effects on the electrical and mechanical properties of Ni-YSZ cermet for SOFC anode. Journal of Power Sources, 2007, 163: 926~932
    [56] Sheng-Dih Yuh, Chen-Chia Chou. Peculiar stress-induced phase transformation in YNbO4-modified ZrO2 (3Y) using in situ compression-diffraction. Materials Letters, 2002, 52: 69~74
    [57] Sheng-Dih Yuh, Chen-Chia Chou. Domain switching in monochinicYNbO4-modified ZrO2(3Y). Scripta Material, 1999, 41(10): 1097~1102
    [58]胡友根,张志力,周浪.氧化锆-正铌酸镧复合陶瓷的力学性能.材料科学与工程,2002,20(30):428~431
    [59] Zhili Zhang, Lang Zhou, Yougen Hu et al. Preparation and characterization ofAl2O3–LaNbO4 composites. Scripta Materialia, 2002, 47: 637~641
    [60]陈德勇,黎俊初,闵嗣林等.ZrO2一A1203两相陶瓷复合材料力学性能与增韧机制的研究.南昌航空工业学院学报(自然科学版),2005,19:45~48
    [61]陈镜泓,李传儒.热分析及其应用.北京:科学出版社,1987.325~375
    [62]龚江宏著.陶瓷材料断裂力学.北京:清华大学出版社,2001.54~76
    [63]黄培云著.粉末冶金原理(第2版).北京:冶金工业出版社,2004.267~268
    [64] P.Li, I-W.Chen. X-ray-absorption studies of zirconia polymorphs.Ⅰ.characteristic local structure. Physical Review, B1993, 48: 10063~10073
    [65] Sheng-Dih Yuh, Yuang-Chang Lai, Chen-Chia Chou. YNbO4-addition on the fracture toughness of ZrO2 (3Y) ceramic. Journal of material science, 2001, 36: 2303~2311
    [66] T.D.Ketcham. High Toughness Ceramic Alloys. U.S.Patent 5008221(1911), 1988. 1~6
    [67]胡庚祥,蔡珣.材料科学基础.上海:上海交通大学出版社,2000.37~40
    [68]王常珍.固体电解质和化学传感器.北京:冶金工业出版社,2000.656~657
    [69] P. LI, I.W. CHEN. X-ray-absorption studies of zirconia polymorphs.Ⅱ.effect of Y2O3 dopant on ZrO2 structure. Physical Review, B 1993, 48:10074~10081.
    [70] R. H. Hannink, P. M. Kell, B. C. Muddle. Transformation toughening inzirconia-coantaining ceramics. J. Am. Ceram. Soc. 2002, 83(3): 461~487
    [71] H.Takei, S. Tsunekawa. Growth and Properties of LaNbO4 and NdNbO4 SingleCrystal. Crystal Growth, 1977, 38: 55~58
    [72] David J.Green,龚江宏.陶瓷材料力学性能导论.北京:清华大学出版社,2003.198~199
    [73]曹楚南,张鉴清.电化学阻抗谱导论.北京:科学出版社,2002.20~24
    [74] Reidar Haugsurd, Truls Norby. High-temperature proton conductivity in acceptor-doped LaNbO4. Solid State Ionics, 2006, 277: 1129~1135

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700