用户名: 密码: 验证码:
CO_2优先渗透的“双高”杂化功能炭膜的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CO2作为一种主要的温室气体,其产生的“温室效应”日益严重地威胁着人类的生产和生活。实现对CO2的减排、分离及回收利用,已成为人类共同关心的问题。炭膜是近二十多年来迅速发展起来的一种新型多孔炭基膜材料,它可通过“分子筛分”机理对分子直径相近的小分子气体进行分离,并具有较高的气体渗透能力和分离选择性,可实现C02/CH4,C02/N2等体系中C02的有效分离,然而,目前制备的炭膜其C02气体的渗透通量还无法满足工业实际应用要求。因此,如何在保持较高选择性的条件下,进一步提高C02气体的渗透能力,是制备高性能分离C02的功能炭膜的关键。
     本文采用共混的方法,在前驱体聚酰胺酸中分别掺杂钛硅分子筛(TS-1)、纳米炭粉及纳米碳管,经高温热解炭化制备出杂化功能炭膜。分别考察了掺杂物种类及其掺杂浓度、热解温度、测试温度、测试压力等因素对功能炭膜气体渗透性和分离选择性的影响,并通过XRD、TEM、FTIR及TG等分析手段对所制备功能炭膜进行表征,采用恒压变体积法与色谱联用的技术测定膜的气体渗透性能。
     结果表明,掺杂钛硅分子筛(TS-1)可大幅提高炭膜对各种气体尤其是吸附性气体C02的渗透性能;当掺杂浓度为20wt.%,炭化温度为600℃时,C02、H2、02、N2、CH4的渗透系数分别可达9087 Barre、8111 Barre、2017 Barre、426 Barrer和357 Barrer; CO2(0.33nm)对纯气体的渗透通量首次超过了分子直径比其小的H2(0.289nm)的渗透通量。各功能炭膜的气体渗透系数均随掺杂量的增加而增加,而分离选择系数下降。炭化温度对功能炭膜气体渗透性有显著影响,当炭化温度超过700℃时,功能炭膜对各气体的渗透性显著下降,而对气体的分离选择性则急剧增大。钛硅分子筛掺杂制备的功能炭膜的气体渗透性能随测试温度的改变有明显变化,而测试压力对其没有显著影响。纳米炭粉掺杂制备的功能炭膜对提高C02的渗透通量具有一定作用,但对其它气体的渗透性影响不大,纳米炭原粉掺杂制备的功能炭膜与纳米炭粉掺杂制备的功能炭膜相比,气体渗透性有比较明显的提高,分离选择性变化不大。掺杂多壁碳纳米管制备出了CO2渗透性能和分离性能较高的功能炭膜。
     因此,通过有效控制功能基团的种类、加入量及炭化工艺条件,可以成功地制备CO2优先渗透的高渗透、高分离选择性的杂化功能炭膜。
As a major greenhouse gas, CO2 has increasingly serious threaten to human production and life with producing a "greenhouse effect". How to reduce carbon dioxide emissions and their separation, recovery, purification, has become a common concern of mankind. Carbon membrane is developed rapidly in recent decades as a new type of porous carbon-based membrane material, which can separate gases with similar diameters with "molecular sieving" mechanism and shows high gas permeability and selectivity. Although the seperation of CO2 can be achieved from CO2/CH4, CO2/N2 systems, the permeability of carbon membranes prepared for CO2 still relatively small and difficult to meet industrial application requirements. Therefore, how to increase the permeability of CO2 and maintain a ralative high selectivity is a critical factor to prepare a high-performance carbon membrane for separation of CO2.
     In this paper, functional carbon membranes for CO2 separation were designed and prepared by incorporating titanium silicalite nanoparticles, nano-toner and carbon nanotube into polyimide, which is used as the precursor of carbon membrane in this work, respectively. The characterizations of the as-synthesized membranes were studied by XRD, TEM, and FTIRand TG. The effects of doping agents and amount, permeating temperature and pyrolytic temperature on the gas permeation of functional carbon membranes were mainly investigated by gas permeation GC coupling technique.
     Gas permeation test results show the permeability of functional carbon membranes incorperating with TS-1 is improved a lot compared to pure carbon membrane, especially to absorbing gas such as CO2 whose permeability is enhanced by nearly 30 times at most. The permeabilities of membranes dopped with 20.wt% TS-1 and carbonized at 600℃for pure gas CO2、H2、O2、N2、CH4 are 9087、8111、2017、426 and 357 Barrer(1 Barrer=10-10 cm3(STP)·cm·cm-2·s-1·cmHg-1), respectively. The permeability of CO2(0.33 nm) exceeds that of H2 whose molecular diameter is about 0.289nm.With the increase of the dopant amount, gas permeability of the prepared membranes increases. Results also indicate the permeability of prepaerd membranes is affected significantly by the pyrolysis temperature. When the temperature is above 700℃, the gas permeability exhibites a drastic drop, while the selectivity decreases seriously.The performance is also influenced by permeating temperature, not related to feed pressure. The functional membrane prepared with nano-charcoal powders improves the CO2 permeability more or less, but has little effect on other gases. Compared with nano-charcoal powders, incorporating nano-charcoal raw powders enhances the gas permeability a little,while the slectivy has no change. The prepared composite functional memebranes dopped with MWNT exhibit high CO2 peameability and selectivity.
     As a result, membranes with high CO2 permeaselecticity can be prepared through controlling the doping agents, amount and conditions of carbonization.
引文
[1]王学松.现代膜技术及其应用指南[M].北京:化学工业出版社,2005.
    [2]时钧,袁权,高从增.膜技术手册[M].北京:化学工业出版社,2001.
    [3]陈勇,王从厚,吴鸣.气体膜分离技术与应[M].北京:化学工业出版社,2004.
    [4]Koros W J, Mahajan R. Pushing the limits on possibilities for large scale gas separation:which strategies[J]. J. Membr. Sci,2000,175(2):181-196.
    [5]Burns R L, Koros W J. Structure-property relationships for poly (pyrrolone-imide) gas separation membranes[J]. Macromolecules,2003,36(7):2374-2381.
    [6]Baker R W. Future direction of membranes separation technology [J]. Membr Technol, 2001,138:5-10.
    [7]Atkinson S. US membrane separation technology markets analyzed [J]. Membr Technol 2003,149:10-12.
    [8]Robeson L M. Polymer membranes for gas separation[J]. Current Opinion in Solid state and Materials Science,1999,4(6):549-552.
    [9]王湛.膜分离技术基础.北京:化学工业出版社,2000.
    [10]Itoh N, Sathe A M. Hydrogen transport from gas to liquid phase through a palladium membrane[J]. J. Membr. Sci.,1997,137:251-259.
    [11]Soria R. Overview on industrial membranes[J]. Catalysis Today,1995,25 (3-4):285-290.
    [12]邹静,董维阳,龙英才.MFI型沸石膜的渗透分离性能及应用[J].上海化工,1999,24(9):4-6.
    [13]王金渠,李铮.A型沸石膜的制备及其在气体脱湿中的应用[J].膜科学与技术,1998,18(2):54-58.
    [14]Tanaka K, Yoshikawa R, Ying C, et al. Application of zeolite membranes to esterification reactions[J]. Catalysis Today,2001,67(1-3):121-125.
    [15]Ismail A F, David L I B. A review on the latest development of carbon membranes for gas separation[J]. J. Membr.Sci,2001,193(1):1-18.
    [16]Saufi S M, Ismail A F. Fabrication of carbon membranes for gas separation - a review[J]. Carbon,2004,42(2):241-259.
    [17]Steel K M, Koros W J. Investigation of porosity of carbon materials and related effects on gas separation properties[J]. Carbon,2003,41(2):253-266.
    [18]朱桂茹,王同华,李家刚等.炭膜研究的新进展[J].炭素技术,2002,121(4):22-27.
    [19]Robeson L M. Correlation of separation factor versus permeability for polymeric membranes[J]. J. Membr. Sci.,1991,62(2):165-185.
    [20]Aylmore L A G, Barrer R M. Surface and volum flow of single gases and binary gas mixtures in a microporous carbon membrane, proceedings of the royal society of London[J]. Series A, Mathematical and Physical Sciences,1966,290 (1423):477-489.
    [21]Ash R, Baker R W, Barrer R M. Sorption and surface flow in graphitized carbon membrane. Ⅰ. The Steady State, Proceedings of the Royal Society of London[J]. Series A, Mathematical and Physical Sciences,1967,299(1459):434-454.
    [22]Ash R, Baker R W, Barrer R M. Sorption and surface flow in graphitized carbon membrane. Ⅱ. Time-Lag and Blind Pore Character, Proceedings of the Royal Society of London[J]. Series A, Mathematical and Physical Sciences,1968,304(1479): 407-425.
    [23]Ash R, Baker R W, Sharma P. Sorption and flow of carbon dioxide and some hydrocarbons in a microporous carbon membrane[J]. Journal of Membrane Science,1976,1(1): 17-32.
    [24]Koresh J E, Sofer A. Molecular sieve carbon permselective membrane:Part I. Presentation of a new device for gas mixture separation[J]. Separation Science and Technology,1983,18(8):723-734.
    [25]Koresh J E, Sofer A. Study of molecular sieve carbons. Part Ⅰ. Pore structure, gradual pore opening and mechanism of molecular sieving[J]. J. Chem. Soc. Faraday Trans. I,1980,6:2457-2461.
    [26]Koresh J E, Sofer A. Study of molecular sieve carbons. Part Ⅱ. Estimation of cross-sectional diameters of non-spherical molecules[J]. J. Chem. Soc. Faraday Trans. I,1980,76:2472-2478.
    [27]Linkov V M, Bobrova L P, Timofeev S V, et al. Composite membranes from perfluoro-sulfonated ionomer on carbon and ceramic supports [J]. Materials Letters,1995, 24(1-3):147-151.
    [28]Fuertes A B, Centeno T A. Preparation of supported asymmetric carbon molecular sieve membranes[J]. J. Membr. Sci.,1998,144(1-2):105-111.
    [29]Shiflett M B, Foley H C. Ultrasonic deposition of high-selectivity nanoporous carbon membranes[J]. Science,1999,285(5435):1902-1905.
    [30]Geiszler V C, Koros W J. Effect of polyimide pyrolysis conditions on carbon molecular sieve membrane properties[J]. Ind. Eng. Chem. Res.1996,35 (9): 2999-3003.
    [31]Kim Y K, Park H B, Lee Y M. Carbon molecular sieve membranes derived from metal-substituted sulfonated polyimide and their gas separation properties [J]. J. Membr. Sci.,2003,226(1):145-158.
    [32]Park H B, Kim Y K, Lee J M, et al. Relationship between chemical structure of aromatic polyimides and gas permeation properties of their carbon molecular sieve membranes[J]. J. Membr. Sci.,2004,229(1-2):117-127.
    [33]Hatori H, Yamada Y, Shiraishi M, et al. Carbon molecular sieve films from polyimide [J]. Carbon,1992,30(4):719-720.
    [34]Tanihara N, Shimazaki H, Hirayama Y, et al. Gas permeation properties of asymmetric carbon hollow fiber membranes prepared from asymmetric polyimide hollow f iber[J]. J. Membr. Sci.,1999,160(2):179-186.
    [35]Bauer J M, Elyassini J, Moncorge G, et al. New developments and applications of carbon membranes[J]. Key Engineering Materials,1991, (61-62):207-212.
    [36]王同华,魏微,刘淑琴,等.管状多孔炭膜的研究[J].新型炭材料,2000,15(1):6-11.
    [37]王细凤,潘艳秋,王同华.炭膜处理含油污水的研究[J].膜科学与技术,2001,21(6):59-62.
    [38]Damle A S. Carbon membranes for gas separation:Developmental studies[J]. Gas Sep. Pur.,1994,8(3):137-147.
    [39]Geiszler V C. Polyimide precursors for carbon membranes[D]. Austin:Univ. of Texas,1997.
    [40]Wei Wei, Haoquan Hu, Longbo You, et al. Preparation of carbon molecular sieve membrane from phenol-formaldehyde novolac resin[J]. Carbon,2002,40(3):465-467
    [41]Hayashi J-i, Yamamoto M, Kusakabe K, et al. Simultaneous improvement of permeance and permselectivity of 3,3',4,4'-biphenyltetracarboxylic dianhydride-4,4' oxydianiline polyimide membrane by carbonization[J]. Ind. Eng. Chem. Res,1995, 34(12):4364-4370.
    [42]Suda H, Haraya K. Gas permeation through micropores of carbon molecular sieve membranes derived from Kapton polyimide[J]. J. Phys. Chem. B,1997,101(20): 3988-3994.
    [43]Jones C W, Koros V J. Carbon molecular sieve gas separation membranes preparation and characterizationbased on polyimide precursors[J]. Carbon,1994,32:1419-1425.
    [44]Kita H, Nanbu K, Hamano T, et al. Carbon molecular sieving membranes derived from Lignin-based materials[J]. J. Polym. Environ,2002,10(3):69-75.
    [45]陶铸,煤化学.北京:冶金工业出版社,1984.
    [46]大谷杉朗,真田雄三,中科院沈阳金属所和兰州炭素厂研究所合译.炭化工学基础.1985.
    [47]Centeno T A, Vilas J L, Fuertes A B. Effects of phenolic resin pyrolysis conditions on carbon membrane performance for gas separation[J]. J. Membr. Sci.,2004, 228(1):45-54.
    [48]Fitzer E, Schaefer W, Yamada S. Formation of glasslike carbon by pyrolysis of polyfurfuryl alcohol and phenolic resin[J]. Carbon,1969,7(6):643-648.
    [49]Tanaka K, Kita H, Okano M, et al. Permeability and permselectivity of gases in fluorinated and non-fluorinated polyimides[J]. Polymer,1992,33(3):585-592.
    [50]Hayashi J, Mizuta H, Yamamoto M, et al. Pore size control of carbonized BPDA-pp'ODA polyimide membrane by chemical vapor deposition of carbon[J]. J. Membr. Sci,1997, 124(1):243-251.
    [51]Hatori H, Yamada Y, Shiraishi M. Preparation of macroporous carbon films polyimide by phase inversion method[J]. Carbon,1992,30:303-306.
    [52]Xiao Y, Chung T S, Chng M L, et al. Structure and properties relationships for aromatic polyimides and their derived carbon membranes:experimental and simulation approaches[J]. J. Phys. Chem. B,2005,109(40):18741-18748.
    [53]Bird A J, Trimm D L. Carbon molecular sieves used in gas separation membranes[J], Carbon,1983,21(3):177-180.
    [54]Strano M S, Foley H C. Synthesis and characterization of catalytic nanoporous carbon membranes[J]. AIChE J,2001,47(1):66-78.
    [55]Lie J A, Hagg M B. Carbon membranes from cellulose and metal loaded cellulose[J]. Carbon,2005,43(12):2600-2607.
    [56]Kita H, Yoshino M, Tanaka K, et al. Gas permselectivity of carbonized polypyrrolone membrane[J]. Chem. Comm.,1997, (11):1051-1052.
    [57]Park H B, Suh I Y, Lee Y M. Novel pyrolytic carbon membranes containing silica: preparation and characterization[J]. Chem. Mater,2002,14:3034-3046.
    [58]Zhou W, Yoshino M, Kita H, et al. Carbon molecular sieve membranes derived from phenolic resin with a pendant sulfonic acid group[J]. Ind. Eng. Chem. Res,2001, 40(22):4801-4087.
    [59]Ghosal A S., Koros W J. Air separation properties of flat sheet homogeneous pyrolytic carbon membranes[J]. J. Membr. Sci,2000,174(2):177-188.
    [60]Kim Y K, Lee J M, Park H B, et al. The gas separation properties of carbon molecular sieve membranes derived from polyimides having carboxylic acid groups[J]. J. Membr. Sci,2004,235:139-146.
    [61]Hatori H., T. Kobayashi, Y. Hanzawa, et al. Mesoporous carbon membranes from polyimide blended with poly (ethylene glycol) [J]. J. Appl. Polym. Sci,2001, 79:836-841.
    [62]Kim Y K, Park H B, Lee Y M. Carbon molecular sieve membranes derived from thermally labile polymer containing blend polymers and their gas separation properties [J]. J. Membr. Sci,2004,243:9-17.
    [63]Kim Y K, Park H B, Lee Y M. Gas separation properties of carbon molecular sieve membranes derived from polyimide/polyvinylpyrrolidone blends:effect of the molecular weight of polyvinylpyrrolidone[J]. J. Membr. Sci,2005,251:159-167.
    [64]Barsema J N, Balster J, Jordan V, et al. Functionalized carbon molecular sieve membranes containing Ag-nanoclusters[J]. J. Membr. Sci,2003,219:47-57.
    [65]Yoda S, Hasegawa A, Suda H, et al. Preparation of a platinum and palladium/polyimide nanocomposite film as a precursor of metal-doped carbon molecular sieve membrane via supercritical impregnation[J]. Chem. Mater,2004,16:2363-2368.
    [66]Qingling Liu, Tonghua Wang, Yiming Cao, et al. A novel carbon/ZSM-5 nanocomposite membrane with high performance for oxygen/nitrogen separation, Chem. Commun,2006, (11):1230-1232.
    [67]Qingling Liu, Tonghua Wang, Changhai Liang, et al. Zeolite married to carbon-a new family of membrane materials with excellent gas separation performance. Chem. Mater,2006,18(26):6283-6288.
    [68]Qingling Liu, Tonghua Wang, Hongchen Guo, et al. Controlled Synthesis of High Performance Carbon/Zeolite T Composite Membrane Materials for Gas Separation[J]. .Miro.Meso. Mater.,2009,120(3):460-466
    [69]王同华.一种纳米杂化炭膜的制备方法:中国,200510200871.9[P].2006,09,27
    [70]Fuertes A B. Effect of air oxidation on gas separation properties of adsorption-selective carbon membranes[J]. Carbon,2001,39(5):697-706.
    [71]Hayashi J I, Yamamoto M, Kusakabe K, et al. Effect of oxidation on gas permeation of carbon molecular sieving membranes based on BPDA-pp'ODA Polyimide[J]. Ind. Eng. Chem. Res,1997,36(6):2134-2140.
    [72]Kusakabe K, Yamamoto M, Morooka S. Gas permeation and micropore structure of carbon molecular sieving membranes modified by oxidation[J]. J. Membr. Sci,1998,149 (1):59-67.
    [73]Haraya K, Suda H, Yanagishita H, et al. Asymmetric capillary membrane of a carbon molecular sieve[J]. J. Chem. Soc. Chem. Commun,1995, (17):1781-1782.
    [74]Jones C W, Koros W J. Characterization of ultramicroporous carbon membranes with humidified feeds[J]. Ind. Eng. Chem. Res,1995,34(1):158-163.
    [75]Jones C W, Koros W J. Carbon Composite Membranes:A Solution to Adverse Humidity Effects[J]. Ind. Eng. Chem. Res,1995,34(1):164-167.
    [76]李凤生,杨毅,马振叶.纳米功能复合材料及应用[M].北京:国防工业出版社,2003.
    [77]李玲,向航.功能材料与纳米技术[M].北京:化学工业出版社,2002.
    [78]徐国财,张立德.纳米复合材料[M].北京:化学工业出版社,2002.
    [79]Keisha M. Steel 1, William J. Koros, An investigation of the effects of pyrolysis parameters on gas separation properties of carbon materials. Carbon,2005,43:1843-1856
    [80]Shiflett MB, Foley HC. Reproducible production of nanoporous carbon membranes Carbon,2001; 39:1421-46.
    [81]Y.Xiao, T. S. Chung, M. L. Chung and A. Yamaguchi, Effects of brominating Matrimid polyimide on the physical and gas transport properties of derived carbon membranesJ . Physical Chemistry B,2005,109(40):18741-18748
    [82]Youn Kook Kim, Ho Bum Park, Young Moo Lee. Gas separation properties of carbon molecular sieve membranes derived from polyimide/polyvinylpyrrolidone blends: effect of the molecular weight of polyvinylpyrrolidone. Journal of Membrane Science,2005,251:159-167
    [83]M. N. Islam, K. Tanaka, H. Kita and K. Okamoto, Preparation and Gas Permeation Properties of Composite Carbon Molecular Sieve Membranes Derived from Polyimides with Thermally Decomposable Sulfonic Acid Salt and/or Hexafluoroisopropylidene Group J. Chemical Engineering of Japan,2006,39(2):131-136
    [84]M. Yamamoto, K. Kusakabe and J. Hayashi, Carbon molecular sieve membrane formed by oxidative carbonization of a copolyimide film coated on a porous support tube. J. Membr. Sci.,1997,133:195-205
    [85]Centeno T. A, Fuertes A. B, Carbon molecular sieve membranes derived from a phenolic resin supported on porous ceramic tubes. Separation and Purification Tech.2001, 25:379-354
    [86]B. Zhang, T. H. Wang, S. H Zhang, J. S. Qiu, X. G. Jian, Preparation and characterization of carbon membranes made from poly(phthalazinone ether sulfone ketone). Carbon,2006,44(13):2764-2769
    [87]M. B. Rao and S. Sircar, Nanoporous carbon membranes for separation of gas mixtures by selective surface flow. Journal of Membrane Science,1993,85:253-264
    [88]M. Anand, M. Langsam, M. B. Rao, S. Sircar, Multicomponent gas separation by selective surface flow (SSF) and poly-trimethylsilylpropyne (PTMSP) membranes. Journal of Membrane Science 1997,123:17-25
    [89]S. Sircar, M. B. Rao and C. M. A. Thaeron, Selective surface flow membrane for gas separation. Sep Sci Technol 34 (1999), pp.2081-2092
    [90]A. B. Fuertes, Preparation and characterization of adsorption-selective carbon membranes for gas separation. Adsorption,2001,7:117-129
    [91]T. A. Centeno, A. B. Fuertes, Influence of separation temperature on the performance of adsorption-selective carbon membranes. Carbon,2002,41:2016-2019
    [92]Morooka S, Kusakabe K. Separation of gases with an A-type zeolite membrane[J], MRS Bulletin,1999,2.4(3):25-29.
    [93]Keizer K, Verweik H. Progress in inorganic membranes[J]. Chemtech,1996,26(1): 37-41.
    [94]Mark J E, Macromol J. Hybrid Organic-Inorganic Composites Containing Mixed-Oxide Ceramics and High-Temperature Polymers[J]. Pure Appl.Chem. A 1996(33):2005-2014.
    [95]Preiss H, LischkeG, Eckeit R, et al. Preparation of carbon catalysts by hydrothermal treatment of a carbonaceous hydrogel [J]. Carbon,1994,32(4): 587-592.
    [96]Honda H, Tateishi D, Esumi K, et al. The formation of porous carbon materials from carbonaceous gel [J]. Carbon,1994,32:355-356.
    [97]Sugii H, Esumi K, Honda H, et al. Characterization of carbonaceous gel beads prepared in presence of polymer using water in oil emulsion [J]. Carbon,1995,33: 821-825.
    [98]Yiu H, Botting C, Botting N P. Size selective protein adsorption on thiol functionalised SBA-15 mesoporous molecular sieve[J]. Phys. Chem.,2001,3(15) 2983-2985.
    [99]Han Y J, Stucky G D, Butter A. Mesoporous Silicate Sequestration and Release of Proteins [J]. J. Am. Chem. Soc.1999,121 (42):9897-9898.
    [100],Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem.1985,57(4):603-619.
    [101]徐如人,庞文琴,于吉红等.分子筛与多孔材料化学.北京:科学出版社,2004.
    [102]Bein T. Synthesis and applications of molecular sieve layers and membranes. Chem. Mater,1996,8(8):1636-1653.
    [103]Lubomira T, Valentin P V. nanozeolites:Synthesis, crystallization mechanism, and application.2005,17:2494-2513.
    [104]Bu X, Feng P, Stucky G D. large cage zeolite structure with multidimensional 12-ring channels. Science.1997,278 (5348):2080-2085.
    [105]Oscar I, Reyes M, Miguel M, et al. Continuous zeolite membrane reactor for esterification of ethanol and acetic acid. Chemical Engineering Journal.2007, 131(1-3):35-39.
    [106]J. M. Duval, B. Folkerts and M. H. V. Mulder. Adsorbent filled membranes for gas separation. Part 1. Improvement of the gas separation properties of. polymeric membranes by incorporation of microporous adsorbents. J. Membr. Sci.80(1993): 189-198.
    [107]Birgul S, Atalay-Oral T C, Tatter M, et al. Effect of zeolite particle size on the performance of polymer-zeolite mixed matrix membranes. J. Membr. Sci., 175(2000):285-296.
    [108]Weitkamp J. Zeolites and catalysis. Solid State Ionics.2000,131:175-188.
    [109]Lai Z, Bonilla G, Diaz I, et al. Microstructral Optimization of Zeolite membrane for Organic Vapor Separation. Science,2003,300 (5618):456-460.
    [110]Kalipcilar H, Bowen T C, Noble R D et al. synthesis and separation performance of SSZ-13 zeolite membranes on tubular supports. Chem. Mater.2002,9:3458-3464.
    [111]Mabande G T P, Noack M, AvhaleA, et al. Permeation properties of bi-layered A1-ZSM-5/Silicalite-1 membranes. Microporous Mesoporous Mater.,2007,98(1-3): 55-61.
    [112]Yin X, Zhu G, Yang W et al. Stainless-steel-net supported zeolite NaA membrane with high permeance and high permselectivity for Oxygen over Nitrogen. Adv. Mater. 2005, (17):2006-2010.
    [113]Lai Z, Tsapatsis M, Nicolich J P. Siliceous ZSM-5 Membranes by Secondary Growth of b-Oriented Seed Layers. AdV. Funct. Mater.2004,14(7),716-729.
    [114]Wang Z, Yan Y, Controlling Crystal Orientation in Zeolite MFI Thin Films by Direct In Situ Crystallization. Chem. Mater.2001,13(3):1101-1107.
    [115]Li S, Li Z, Bozhilov K N, et al. TEM Investigation of Formation Mechanism of Monocrystal-Thick b-Oriented Pure Silica Zeolite MFI Film. J. Am. Chem. Soc.2004, 126(34):10732-10737.
    [116]Seike T, Matsuda M, Miyake M. Preparation of b-axis-oriented MFI zeolite thin films using slow dissolution of source material. J. Am. Ceram. Soc.2004,87(8): 1585-1587.
    [117]Konno H, Nakahashi T, Inagaki M. State analysis of nitrogen in carbon film derived from polyimide Kapton. Carbon,1997,35(5):669-674.
    [118]Hatori H, Yamada Y, Shiraishi M, Yoshihara M, Kimura T. The mechanism of polyimide pyrolysis in the early stage. Carbon,1996,34(2):201-208.
    [119]李传峰,钟顺和.聚酰亚胺—二氧化硅杂化膜的制备与表征.催化学报,2001,22(5):449-452.
    [120]赵根祥,贾世军,钱树安.PI膜转变为炭膜过程中的结构变化[J].炭素技术,1997,5;12-17.
    [121]ERMANNOA, JOHNB, PERI RONALD J, et al.
    Spectroscopic characterization of silicalite2I and titanium silicalite2I[J]. J Catal, 1995,157 (2):482-500.
    [122]BREINER J M, MARK J E. Preparation, structure, growth mechanisms and properties of silaxane composites containing silica, titania or mixed silica2titania phases [J]. Polymer,1998, (39):5483-5490.
    [123]MullerU, SteekW. Ammonium-based Alkaline-free Synthesis of MFI-tyPe Boronand Titanium Zeolites. Stud. Surf. Sci. Cacal,1994,84:203-210.
    [124]Ogawa M, Nakano Y. Separation of CO2/CH4 mixture through carbonized membrane prepared by gel modification[J]. J. Membr. Sci,2000,173 (1):123-132.
    [125]王淑梅,于养信,高光华.温度对碳膜内氮、氧渗透分离影响的非平衡模拟[J].化学学报.2006,64(11):1111-1115.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700