用户名: 密码: 验证码:
盐水层二氧化碳封存机理与地质模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化碳封存于地下盐水层中可减少空气中二氧化碳含量,减缓全球变暖速度。盐水层分布广泛且可储量大,极具发展前景。研究二氧化碳在盐水层中的封存特性,可指导注入过程,并为盐水层的选取评估和相关经济评价提供可靠的地质模型和依据。本文以深部和浅部盐水层为研究对象,在广泛查阅资料、收集数据基础上,合理取值,建立模型,应用油藏数值模拟技术,结合试验设计分析方法,查明了二氧化碳在盐水层中的运移分布特征、存储量与注入能力以及封存机理类型与程度,探讨了储层物性和注入速度对二氧化碳存储量和注入能力的影响,并分析了注入井类型、水平井位置与长度、直井射孔层位和产水等优化注入方案。
     研究表明,二氧化碳在盐水层中主要向上运移,分布形态与储层非均质性有关。二氧化碳存储量在深部盐水层中更高,而注入能力在浅部盐水层中更高。二氧化碳在盐水层中以游离态为主,其次是束缚态、溶解态和离子态,矿化态含量极低。主要封存方式是剩余气体饱和度封存和溶解封存。
     储层非均质性对二氧化碳储量和注入能力的影响程度很小。相对而言,平均横向渗透率对二氧化碳存储量和注入能力的影响最大。二氧化碳存储量大致与平均横向渗透率和纵横向渗透率比值成正比,与渗透率变异系数成反比。二氧化碳注入能力则相反。
     相关地质与工程因素中,地层破裂压力梯度对二氧化碳存储量影响最大,而最大注入速度对二氧化碳注入能力影响最大。储层深度对二氧化碳封存影响程度一般,显示浅部盐水层存在碳封存可行性。增加储层厚度、孔隙度和最大注入速度可提高二氧化碳存储量和注入能力。
     水平井比直井利于二氧化碳封存,可提高二氧化碳存储量1%左右。水平井位于储层上部时,二氧化碳存储量可增加达10%。根据二氧化碳存储量和注入效率,确定模型中水平井最优长度为280米。直井射孔层段越多,越靠近储层上部,二氧化碳存储量越大。产水可大幅度提高二氧化碳存储量,且有助于二氧化碳溶解。
Carbon sequestration in saline aquifers has been identified as a promising method of reducing atmospheric CO_2 in response to growing concerns over climate change. Saline aquifers are attractive for such sequestration because of their large capacity and broad distribution. Modeling CO_2 sequestration in saline aquifers is needed to direct injection, site selection, and economic evaluation. With data extracted from publications, deep and shallow saline aquifer models were built using compositional reservoir simulator CMG-GEM to investigate CO_2 transportation, distribution, CO_2 storage capacity, CO_2 injectivity, and the type and extend of sequestration mechanisms. The effect of reservoir properties and injection rate on CO_2 storage and injectivity in saline aquifers were then studied. Sensitivity analysis was carned out using design of "experiments (DOE) to determine the dominant factors. In addition, engineering aspects were discussed to optimize CO_2 storage capacity, including water withdraw and completion methods as partial perforation, well geometry, orientation, location and length.
     Simulation results show that CO_2 moves upward in saline aquifers and the distribution pattern is affected by reservoir heterogeneity. The storage capacity CO_2 in deep saline aquifer is high than that of shallow aquifer, but CO_2 injectivity is lower. Most CO_2 present as free gas, some are residual gas and dissolved phase, and very few CO_2 are mineralized. Two main trapping mechanisms occur in saline aquifers are residual gas trapping and solubility trapping.
     Generally, heterogeneity has very little effect on CO_2 storage capacity and injectivity. Relatively, mean permeability affects CO_2 storage capacity and injectivity the most. More CO_2 can be stored in the heterogeneous reservoirs with low mean permeability; however, high injectivity can be achieved in the uniform reservoirs with high mean permeability.
     Among all the properties discussed in the model, the fracture pressure gradient of reservoir affects CO_2 storage capacity the most, while the maximum injection rate affects CO_2 injectivity the most. Reservoir depth doesn't affect CO_2 sequestration significantly, suggesting the possibility of CO_2 sequestration in shallow aquifers. Increasing reservoir depth, porosity, and the maximum injection rate can improve CO_2 storage capacity and injectivity.
     Comparing to deviated wells and vertical wells, horizontal wells are better choices for CO_2 injection in that it improves CO_2 storage capacity, especially when set in upper layers of reservoir. The optimal length can be determined according to CO_2 storage capacity and the sequestration efficiency. For the aquifer examined, the value is 280 m. Completing more layers in the upper reservoir gets more CO_2 injected. Water withdraw can improve CO_2 storage capacity greatly and benefit CO_2 dissolution.
引文
APEC (Asia-Pacific Economic Cooperation). The Potential for CO_2 storage in the APEC Region (focused in China). Presented at Mengxi Conference in China, 2005
    
    Bacon D H, White M D, Gupta N, et al. Assessment of CO_2 injection potential and monitoring well location at the Mountaineer power plant site. Proceedings of the 8th International Conference on Greenhouse Gas Control Technologies. Trondheim,Norway, 2006, June 19-22
    
    Bachu S. Sequestration of CO_2 in geological media: criteria and approach for site selection in response to climate change. Energy Conversion and Management. 2000. 41(9):953-970
    
    Bachu S. Sequestration of CO_2 in geological media in response to climate change: roadmap for site selection using the transform of the geological space into the CO_2-phase space.Energy Conversion Management. 2002. 43: 87-102
    
    Bachu S. Screening and ranking of sedimentary basins for sequestration of CO_2 in geological media in response to climate change. Environmental Geology. 2003. 44:277-289
    
    Bachu S, Bonijoly D, Bradshaw J, et al. CO_2 storage capacity estimation: methodology and gaps. International Journal of Greenhouse Gas Control. 2007. 1(4): 430-443
    
    Bentham M and Kirby G. CO_2 storage in saline aquifers. Oil & Gas Science and Technology. 2005. 60 (3): 559-567
    
    Bradshaw J, Bachu S and Bonijoly D. CO_2 storage capacity estimation: issues and development of standards. International Journal of Greenhouse Gas Control. 2007.1(1): 62-68
    
    Bryant S. Geologic CO_2 storage - can the oil and gas industry help save the planet? Journal of Petroleum Technology. 2007. 59(9): 98-105
    
    Bryant S L, Lakshminarasimhan S, and Pope G A. Buoyancy-dominated multiphase flow and its impact on geological sequestration of CO_2. Paper SPE 99938 proceedings of SPE/DOE Symposium on Improved Oil Recovery, Tulsa, Oklahoma, Apr. 22-26, 2006
    
    Calabrese M and Blunt M J. Simulation of physical-chemical processes during carbon dioxide sequestration in geological structures. Paper SPE 95820 presented at SPE Annual Technical Conference and Exhibition, Dallas, Texas, USA, 2005
    
    Cinar Y, Riaz A, and Tchelepi H A. Experimental study of CO_2 injection into saline formations. Paper SPE 110628 presented at SPE Annual Technical Conference and Exhibition, Anaheim, California, USA, 2007a
    
    Cinar Y, Sayers J, Neal P R, et al. Geo-engineering and economic assessment of a potential CO_2 sequestration site in Southeast Queensland, Australia. Paper SPE 108924 presented at SPE Asia Pacific Oil & Gas Conference and Exhibition, Jakarta,Indonesia, 2007b
    
    DOE. Carbon sequestration atlas of the United States and Canada: Appendix A -Methodology for development of carbon sequestration capacity estimates [online].National Energy Technology Laboratory, Department of Energy, 2006
    
    Doughty C, Freifeld B M, and Trautz R C. Site characterization for CO_2 geologic storage and vice versa: the Frio brine pilot, Texas, USA as a case study. Environmental Geology. 2008. 54: 1635-1656
    
    Egermann P, Bazin B, and Vizika O. An experimental investigation of reaction-transport phenomena during CO_2 injection. Paper SPE 93674 presented at the 14th SPE Middle East Oil & Gas Show and Conference, Bahrain, 2005
    
    Flett M A, Gurton R M and Taggart I J. Heterogeneous saline formations: long-term benefits for geosequestration of greenhouse gases. In: Rubin E S, Keith D W and Gilboy C F (eds.) Greenhouse Gas Control Technologies: Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies, Vancouver,Canada. 2004.1 (5-9). Elsevier, Oxford. 2005. 501-509
    
    Gibson-Poole C M, Edwards S E, Langford R P, et al. Review of geological storage opportunities for carbon capture and storage (CCS) in Victoria - summary report.Cooperative Research Centre for Greenhouse Gas Technologies. ICTPL-RPT07-0526.2007
    
    Gunter W D, Gentzis T, Rottenfusser B A, et al. Deep coalbed methane in Alberta, Canada: a fuel resource with the potential of zero greenhouse gas emissions. Energy Conversion and Management. 1997. 38 (Supplemental): 217-222
    
    Hesse M A, Tchelepi H A and Orr F M. Scaling analysis of the migration of CO_2 in saline aquifers. Paper SPE presented at SPE Annual Technical Conference and Exhibition,San Antonio, Texas, USA, 2006
    
    Holliday D W, Williams G M, Holloway S, et al. A preliminary feasibility study for the underground disposal of carbon dioxide in the UK. British Geological Survey Technical Report. 1991
    
    Holtz, M H. Residual gas saturation to aquifer influx: a calculation method for 3-D computer reservoir model construction. Paper SPE 75502 presented at SPE Gas Technology Symposium, Calgary, Alberta, Canada, 2002
    
    Hurter S, Labregere D, and Beige J. Simulations for CO_2 injection projects with compositional simulator. Paper SPE 108540 presented at Offshore Europe, Aberdeen,Scotland, UK, 2007
    
    IEA: http://www.princeton.edu/~chm333/2002/fall/co_two/geo/. 2002
    
    IEA: http://scifun.chem.wisc.edu/CHEMWEEK/PDF/CarbonDioxide.pdf. 2008
    Imbus S, Orr F M, Kuuskraa V A, et al. Critical issues in CO_2 capture and storage: findings of the SPE advanced Technology workshop (ATW) on carbon sequestration. Paper SPE 102968 presented at SPE Annual Technical Conference and Exhibition, San Antonio, Texas, USA, 2006
    
    IPCC (Intergovernmental Panel on Climate Change). IPCC Special report on carbon dioxide capture and storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change [Metz B, Davidson O, de Coninck H C, Loos M and Meyer L A (eds.)]. Cambridge University Press, New York. 2005
    
    Izgec O, Demiral B, Bertin H, et al. Experimental and numerical investigation of carbon sequestration in saline aquifers. Paper SPE 94697 presented at SPE/EPA/DOE Exploration and Production Environmental Conference, Galveston, Texas, USA, 2005
    
    Jikich S A, Sams W N, Bromhal G, et al. Carbon dioxide injectivity in brine reservoirs using horizontal wells. http://www.netl.doe.gov/publications/proceedings/03/carbon-seq/PDFs/ 032.pdf. 2003
    
    Kaldi J G and Gibson-Poole C M. Storage capacity estimation, site selection and characterization for CO_2 storage projects-Report. CO_2 CRC Report No. RPT08-1001.2008
    
    Koide H, Tazaki Y, Noguchi Y, et al. Subterranean containment and long-term storage of carbon dioxide in unused aquifers and in depleted natural gas reservoirs. Energy Conversion and Management. 1992. 33 (5-8): 619-626
    
    Kumar A, Ozah R. Noh M, et al. Reservoir simulation of CO_2 storage in deep saline aquifers. Paper SPE 89343 (First presented at SPE/DOE Symposium on Improved Oil Recovery, Tulsa, Oklahoma, Apr. 17-21, 2004), 2005
    
    Lake L W. Enhanced oil recovery. Prentice-Hall, Inc, 1989
    
    Nghiem L, Sammon P, Grabenstetter J, et al. Modeling CO_2 storage in aquifers with a fully-coupled geochemical EOS compositional simulator. Paper SPE 89474 presented at SPE/DOE Fourteenth Symposium on IOR, Tulsa, Oklahoma, USA, 2004
    
    Noh M, Lake LW, Bryant S L, et al. Implications of coupling fractional flow and geochemistry for CO_2 injection in aquifers. Paper SPE 89341, 2007 (First presented at SPE/DOE Symposium on Improved Oil Recovery, Tulsa, Oklahoma,17-21 April 2004)
    
    Obi E-O I and Blunt M J. Streamline-based simulation of carbon dioxide sequestration into a North Sea aquifer. Water Resources Research. 2004. 42, W03414
    
    Ozah R C, Lakshminarasimhan S, Pope G A, et al. Numerical simulation of CO_2 and CO2/H2S storage in deep saline aquifers. Paper SPE 97255 presented at SPE Annual Technical Conference and Exhibition, Dallas, Texas, USA, 2006
    
    Princeton University. Summary of Princeton workshop on geological storage of CO_2. 2005
    Pruess K and Garcia J. Multiple flow dynamics during CO_2 injection into saline aquifers. Environmental Geology. 2002. 42: 282-295Pruess K, Xu T , Apps J, et al. Numerical modeling of aquifer disposal of CO_2. Paper SPE 83695, 2003 (First presented at SPE/EPA/DOE Exploration and Production Environmental Conference, San Antonio,Texas, USA, 2001)
    
    Qi R, Beraldo V, LaForce T C, et al. Design of carbon dioxide storage in a North Sea aquifer using streamline-based simulation. Paper SPE109905 presented at SPE Annual Technical Conference and Exhibition, Anaheim, California, USA, 2007
    
    Reichle D. Carbon sequestration research and development. US Department of Energy Report DOE/SC/FE-1, Washington DC, USA. 1999
    
    Riaz A and Tchelepi H A. Dynamics of vertical displacement in porous Media associated with CO_2 sequestration. Paper SPE 103169 proceedings of SPE Annual Technical Conference and Exhibition, San Antonio, Texas, USA, Sep. 24-27, 2006
    
    Rochelle C A, Czernichowski-Lauriol I, and Milodowski A E. The impact of chemical reactions on CO_2 storage in geological formations: a brief review. Geological Society:Special Publications, London. 2004. 233: 87-106
    
    Schembre-McCabe J M, Kamath J, and Gurton R. Mechanistic studies of CO_2 sequestration. Paper IPTC 11391 presented at International Petroleum Technology Conference,Dubai, UAE, 2007
    
    Sengul M. CO_2 sequestration- a safe transition technology. Paper SPE 98617 presented at SPE International Conference on Health, Safety, and Environment in Oil & Gas Exploration and Production. Abu Dhabi. UAE, 2006
    
    Sprunt E S. We can be a key player in the solution to global wanning. Journal of Petroleum Technolog: Stand Tall and Speak Up. 2006
    
    Ulker B, Alkan H, and Pusch G Implications of the phase-solubility behavior on the performance predictions of the CO_2 trapping in depleted gas reservoirs and aquifers.Paper SPE 107189 presented at SPE Europe/EAGE Annual Conference and Exhibition,London, UK, 2007
    
    USGS. Carbon sequestration to mitigate climate change. 2008
    
    Van der Meer L G H and Van Wees J D. Limitations to storage pressure in finite saline aquifers and the effect of CO_2 solubility on storage pressure. Paper SPE 103342 presented at SPE Annual Technical Conference and Exhibition, San Antonio, Texas,USA, 2006
    
    Wellman T P, Grigg R B, McPherson B J, et al. Evaluation of CO_2-brine-reservoir rock interaction with laboratory flow tests and reactive transport modeling. Paper SPE 80228 presented at SPE International Symposium on Oilfield Chemistry, Houston,Texas, USA, 2002
    
    Xu T F, Apps J A and Pruess K. Reactive geochemical transport simulation to study mineral trapping for CO_2 disposal in deep saline aquifers. Journal of Geophysical Research. 2003.108(B2):ECV 3
    Yang F,Bai B,Tang D,et al.Characteristics of CO_2 sequestration in saline aquifers.Petroleum Science,2010(7):83-92
    江怀友,沈平平,钟太贤,等.CO2埋存与提高采收率的关系[J].油气地质与采收率,2008,15(6):52-55
    江怀友,沈平平,王乃举,等.世界CO2减排政策与储层地质埋存展望[J].中外能源,2007,12(5):7-13
    江怀友,沈平平,宋新民,等.世界气候变暖及CO2埋存现状与展望[J].古地理学报,2008,10(3):323-328
    许志刚,陈代钊,曾荣书.CO2的地质埋存与资源化利用进展[J].地球科学进展,2007,22(7),698-707
    孙枢.CO2地下封存的地质学问题及其对减缓气候变化的意义[J].中国基础科学·综述评述,2006,3:17-22
    刘洪林,王红岩,李景明.利用碳封存技术开发我国深层煤层气资源的思考[J].特种油气藏,2006,13(4):6-10
    全浩,温雪峰,郭琳琳.CO2捕集和地下封存技术的现状及发展趋势(一)[J].煤炭工程,2007(12):75-79
    谷丽冰,李治平,侯秀林.CO2地质埋存研究进展[J].地质科技情报,2008,27(4),80-84
    陈海龙,李晓平,李其正.水平井段最优长度的确定方法研究[J].西南石油学院学报,2003,25(1):47-48,61
    李小春,刘延锋,白冰,等.中国深部咸水含水层CO2储存优先区域选择[J].岩石力学与工程学报,2006,25(5):963-968
    李雪静,乔明.CO2捕获与封存技术进展及存在的问题分析[J].中外能源,2008,13(5):104-107
    曾荣树,孙枢,陈代钊,等.减少CO2向大气层的排放——CO2地下储存研究[J].中国科学基金,2004,18(4):196-200
    周强,丁瑞,刘增智.煤层储存CO2的研究进展[J].煤炭科学技术,2008,36(11):109-112
    张卫东,张栋,田克忠.世界气候变暖及CO2埋存现状与展望[J].中外能源,2009,14(11):7-14
    张二勇,李旭峰,何锦,等.地下盐水层封存CO2的关键技术研究[J].地下水,2009,31(3):15-19
    张洪涛,文冬光,等.中国CO2地质埋存的条件分析及有关建议[J].地质通报,2005,12,24(12),1107-1110
    张丽君.CO2捕集与地下埋存国际进展[J].国土资源情报,2007(11):16-21
    张亮.CO2EOR及其在油藏中的储存[J].国外油藏工程,2007,23(3):9-12
    杨永智,沈平平,宋新民,等.盐水层温室气体地质埋存机理及潜力计算方法评价[J].吉林大学学报(地球科学版),2009,39(4):744-748
    段振豪,孙枢,张弛等.减少温室气体向大气层的排放—CO2地下储藏研究[J].地质论评,2004,50(5),514-519

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700