用户名: 密码: 验证码:
一维碳化硅纳米材料的制备与性能的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一维纳米材料具有新颖的物理、化学和生物特性以及在纳电子器件中的潜在应用,日益成为当今纳米研究领域中的热点。利用它不仅可以深入地理解低维材料的基本现象,更重要的是它可以作为功能模块来构筑纳米电子器件。在众多的半导体材料中,SiC半导体材料的禁带宽度大、击穿电场高、热导率大、饱和漂移速度高等特点使其在高频、高温、高功率、抗辐射等方面有良好的性能,被认为是新一代微电子器件和集成电路的半导体材料,因此研究SiC一维纳米半导体材料具有重要意义。目前国内外对SiC纳米线的研究还处于初步阶段,主要集中在两个方面:用不同的方法制备SiC纳米线;对SiC纳米线性能进行简单的表征,如光学,场发射等。但是目前制备SiC纳米线方法中主要存在以下缺点:产物量少,有金属催化剂颗粒的污染,成本高,合成时间长,制备当中有如SiH_4、CH_4等之类的剧毒易燃易爆危险气体潜在危险。因此,简单、批量和成本低廉制备SiC纳米线的方法对于其能否走向大规模应用具有重要的意义。
     鉴于以上,本文主要利用新工艺和新方法高质量地、简单和可控制性大规模地合成了β-SiC纳米线,通过XRD、SEM、TEM、HRTEM等分析测试方法,系统地研究了纳米材料的形貌、尺寸、结构和性能,并提出了生长机制,最后对β-SiC纳米线的应用做了初步应用研究。通过这些工作,我们就为实现β-SiC纳米材料的功能化应用打下基础。论文主要包括以下几个方面:
     首先采用自行设计的高频感应加热设备来合成β-SiC纳米线,实验时将系统气压保持在50~100Torr,1450℃时加热SiO粉末15min。实验结束后,在活性碳纤维的表面得到了一层亮蓝色的物质(β-SiC纳米线)。此种方法具有简单、快速等优点,可以用来合成其它半导体纳米材料。制备出来的SiC纳米线性能均一、产率较高、表面光滑,结构为
One-dimensional (1D) nanostructures have become the focus of intensive research owing to their novel physical, chemical, and biological properties as well as the potential applications in nanodevices. It was of not only their importance in understanding fundamental physical phenomenon, e.g. electron transportation, but also the promising applications such as interconnects and functional building blocks for novel electrical, optical and magnetic nanodevices. Moreover, large-scale, cost-effective, simple and practical synthesis and assembly of 1D nanomaterials is of importance for the fundamental research and application. Among the semiconductor materials which are suitable for high frequency, high temperature, high power and radio-resistance applications, silicon carbide (SiC) holds the most promising because of its wide energy bandgap, high breakout field, high thermal conductivity and high drift velocity. The combination of these properties shows promise for next generation microelectronic devices and ICs fabricated in SiC. The study of SiC material is of great importance to future nanoscale electronic devices as well as fundamental research. At present, the research on SiC nanowire is just in a tentative stage, and has been focused on two aspects: a simple and easy preparation of SiC nanowires, and the testing of SiC nanowires properties of optical, filed emission and so on. However, these products are available at the cost of either high-purity or expensive CNT or the hazardous and easily explosive silicon (carbon) precursor of SiH_4 or CH_4. In addition, the synthesized materials were low yield and purity and time-consuming. Thus, large-scale synthesis of β-SiC nanowires still remain a challenge to be consider for above mentioned disadvantage. Hence, the simple, large quantity and low cost
引文
[1] M. Pritiraj, "Nanotechnology: Nano-oscillators get it together," Nature, 437(2005): 325-326
    [2] M. hamed, H. A. Hassan, "Small Things and Big Changes in the Developing World," Science, 309(2005): 65-66
    [3] P. Gould, "Singapore's focus on applications," Materialtaday, 7 (2004): 42-46
    [4] J. L. Lin, G. W. Jang, "Opportunities for Taiwan's indusity," Materialtaday, 7(2004): 36-41
    [5] A. P. Dowling, "Development of nanotechnologies," Materialtaday, 7 (2004): 30-35
    [6] http://www.snpc.org.cn/nanoNewsDetail.asp?news_Id=209
    [7] http://www.snpc.org.cn/nanoNewsDetail.asp?news_Id=212
    [8] C. L. Bai, "Ascent of Nanoscience in China," Science, 309(2005): 61-6
    [9] C. M. Lieber, "Nanoscale Science and Technology: Building a Big Future from Small Things," MRS Bull. 28(2003): 486-491.
    [10] 张立德,牟季美著,纳米材料和纳米结构,北京:科学出版社,2001
    [11] S. lijima. "Helical microtubes of graphitic carbon, "Nature, 354(1991): 56-58
    [12] J. Gavillet, A. Loiseau, C. Journet, F. Willaime, F. Ducastelle, J. C. Charlier, "Root-Growthme chanism for Single-Wall Carbon Nanotubes," Phys. Rev. Lett. 87., (2001): 27504-2750
    [13] T. Hirata, N. Satake, G. H Jeong, T. Kato, R. Hatakeyama, K. Motomiya, K. Tohji, "Magnetron-type radio-frequency plasma control yielding vertically well-aligned carbon nanotube growth," Appl. Phys. Lett., 83(2003): 1119-1121
    [14] L. B. Zhu, J. W. Xu, Y. H. Xiu, Y. Y. Sun, D. W. Hess, C. P. Wong, "Electrowetting of Aligned Carbon Nanotube Films," J. Phys. Chem. B291(2001): 1947-1949
    [15] M. J. Zheng, L. D. Zhang, G. H. Li, X. Y. Zhang, X. F. Wang, "Ordered indium-oxide nanowire arrays and their photoluminescence properties," Appl. Phys. Lett. 79 (2001): 839841-839843
    [16] J. T. Hu, T. W. ODOM,. C. M. Lieber, "Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes," Acc. Chem. Res. 32(1999): 435-445
    [17] C. M. Lieber, A. M. Morales, P. E. Sheehan, E. W. Wong, P. Yang, "One-Dimensional Nanostructures: Rational Synthesis, Novel Properties and Applications. In Proceedings of the Robert A. Welch Foundation 40th Conference on Chemical Research: Chemistryon the Nanometer Scale; Welch Foundation: Houston, 1997.
    [18] C. M. Lieber, "One-Dimensional Nanostructures: Chemistry, Physics & Applications," Solid State Commun., 107(1998): 607-616.
    [19] R. S. Wagner, W. C. Ellis, "Vapor-Liguid-Solid Mechanism of Single Crystal Growth," Appl. Phys. Lett., 4(1964): 89-98
    [20] X. F. Duan, C. M. Lieber, "General Synthesis of Compound Semiconductor Nanowires," Adv. Mater., 12(2000): 298-302
    [21] Y. Wu, P. Yang, "Germanium Nanowire Growth Via Simple Vapor Transport," Chem. Mater., 12(2000): 605-607
    [22] Y. H. Tang, N. Wang, Y. F. Zhang, "Synthesis and Characterization of Amorphous Carbon Nanowires," Appl. Phys. Lett., 75(1999): 2921-2923
    [23] Z. G. Bai, D. P. Yu, H. Z. Zhang, "NanoScale GeO_2 Wires Synthesized by Physical Evaporation," Chem. Phys. Lett., 303(1999): 311-314
    [24] C. C. Chen, C. C. Yeh, C. H. Chen, "Catalytic Growth and Characterization of Gallium Nitride Nanowires," J. Am. Chem. Soc., 123(2001): 2791-2798
    [25] Y. W. Wang, G. W. Meng, L. D. Zhang, "Catalytic Growth of Large-Scale Single Crystal CdS Nanowires by Physical Evaporation and Their Photoluminescence, "Chem. Mater., 14(2002): 1773-1777
    [26] A. M. Morales, C. M. Lieber, "A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires," Science, 279(1998): 208-211
    [27] W. Q. Han, A. Zettl, "Pyrolysis Approach to the Synthesis of Gallium Nitride Nanorods," Appl. Phys. Lett., 80(2002): 303-305
    [28] K. W. Chang, J. J. Wu, "Low Temperature Catalytic Synthesis Gallium Nitride Nanowires," J. Phys. Chem. B., 106 (2002): 7796-7799
    [29] X. F. Duan, J. F. Wang, C. M. Lieber, "Synthesis and Optical Properties of Gallium Arsenate Nanowires, " Appl. Phys. Lett., 76(2000): 1116-1118
    [30] S. Y. Bae, H. W. Seo, J. Park, "Single Crystalline Gallium Nitride Nanobelts," Appl. Phys. Lett., 81 (2002): 126-128
    [31] M. Yazawa, M. Kohuchi, A. Muto, "Semiconductor Nanowhiskers," Adv. Mater., 5(1993): 577-580
    [32] M. H.Huang, Y. Y. Yu, H. Feick, "Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport," Adv. Mater.,13 (2001): 113-116
    [33] Y. C. Kong, D. P. Yu, B. Zhang, "Ultraviolet Emitting ZnO Nanowires Synthesized by a Physical Vapor Deposition Approach. Appl. Phys. Lett., 78 (2001):4 07-409
    [34] C. C. Tang, S. S. Fan, M. L. Chapelle, "Silica Assisted Catalytic Growth of Oxide and Nitride Nanowires," Chem. Phys. Lett., 333(2001): 12-15
    [35] C. H. Liang, L. D.Zhang, G. W. Meng, "Preparation and Characterization of Amorphous SiOx Nanowires," J. Non Cryst. Solids, 277(2000): 63-67
    [36] E. I. Givargizov, "Fundamental aspects of VLS growth," J Crystal growth, 31(1975): 20-30
    [37] Y. Wu, H. Yan, M. Huang, B. Messer, J. H. Song, P. Yang, "Inorganic semiconductor nanowires: rational growth, assemblies and novel properties, "Chem. Euri. J., 8(2002): 1261
    [38] J. Hu, M. Ouyang, P. Yang, C. M. Lieber, "Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires,"Nature, 399(1999): 48-51.
    [39] Y. Wu, R. Fan, P. Yang, "Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires,"Nano.Lett., 2(2002):83-86.
    [40] M.T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, L. Samuelson "One-dimensional Steeplechase for Electrons Realized, "Nano Lett., 2(2002): 87-89.
    [41] H. J. Choia, H. K. Seonga, J. C. Leeb, Y. M. Sung, "Growth and modulation of silicon carbide nanowires," Journal of Crystal Growth, 269 (2004): 472-478
    [42] Z. W. Pan, Z. R. Dai, Z. L. Wang, "Nanobelts of Semiconducting Oxides," Science, 291 (2001): 1947-1949
    [43] 李述汤,张亚非,王宁,马多多,张瑞勤,“氧化物辅助合成一维半导体纳米材料及应用,”2005年国家科学技术奖励获奖项目目录。
    [44] Y. Zhang, N. Wang, R. He, J. Liu, X. Zhang, and J. Zhu, J. "A simple method to synthesize Si3N4 and SiO2 nanowires from Si or Si/SiO_2 mixture," Cryst. Growth 233 (2001): 803-808
    [45] G. Z. Ran, L. P. You, L. Dai, Y. L. Liu, Y. Lv, X. S. Chen, and G. G. Qin, "Catalystless synthesis of crystalline Si3N4/amorphous SiO2 nanocables from silicon substrates and N_2, "Chem. Phys. Lett. 384 (2004): 94-97.
    [46] T. J. Trentler, K. M. Hickman, S. C. Goel, "Solution-Liquid-Solid Growth of Crystalline Ⅲ-Ⅴ Semiconductors: An Analogy to Vapor-Liquid-Solid Growth," Science, 270 (1995): 1791-1794
    [47] W. E. Buhro, K. M. Hickman, T. J. Trentler, "Turning Down the Heat on Semiconductor Growth: Solution Chemical Syntheses and the Solution-Liquid-Solid Mechanism," Adv. Mater., 8(1996): 685-687
    [48] J. D. Holmes, K. P. Johnston, R. C. Doty, B. A. Korgel, "Control of Thickness and Orientation of Solution-Grown Silicon Nanowires, "Science. 287(2000): 1471-1473
    [49] K. Jing, N. R. Frankklin, C. W. Zhou, "Nanotube molecular wires as chemical sensors, "Scinence, 287(2000): 622-625
    [50] Y. Cui, C. M. Lieber, " Nanowire nanosensors for highly sensitive-and selective detection of biological and chemical species," Science, 293(2001): 1289-1292
    [51] E. Comini, G. Faglia, G. Sberveglieri, "Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts," Appl. Phys. Lett., 81 (2002): 1869-1871.
    [52] L. Chao, D. H. Zhang, X. L. Liu, "In_2O_3 nanowires as chemical sensors,"Appl. Phys. Lett., 82(2003): 1613-1615.
    [53] F. Frederic, C. W. Erich, P. Z. Zach, "Hydrogen Sensors and Switches from Electrodeposited Palladium Mesowire Arrays," Science, 293(2001): 227-2231.
    [54] M. H. Huang, S. Mao, P. D. Yang, "Room-emperature ultravioletnanowire nanolasers," Science, 292(2001): 1897-1899
    [55] X. F. Duan, Y. Huang, C. M. Lieber, "Indium phosphide nanowires as building blocks for nanoscale electronic and opto-electronic devices," Nature, 409(2001): 66-69
    [56] Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, C. M. Lieber, "Logic Gates and Computation from Assembled Nanowire Building Blocks," Science, 294(2001): 1313-1317
    [57] A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker, "Logic circuits with carbon nanotube transistors," Science, 294(2001): 1317-1320
    [58] C. M. Lieber, "The Incredible Shrinking Circuit," Sci. Am. 285 (2001): 50-56
    [59] Y. Huang, X. F. Duan, Y. Cui, "Gallium nitride nanowire nanodevices," Nano Lett., 2(2002): 101-104
    [60] W. I. Park, J. S. Kim, G. C. Yi, H. J. Lee, "ZnO nanorods logic circuits," Adv. Mater., 17(2005): 1393-1397
    [61] T. H. Moon, M. C. Jeong, B. Y. Oh, M. H. Ham, M. H. Jeun, W. Y. Lee, J. M. Myoung, "Chemical surface passivation of HfO_2 films in a ZnO nanowire transistors," Nanotechnology, 17(2006): 2116-2121
    [62] H. Y. Cha, H. Q. Wu, M. Chandrashekhar, Y. C. Choi, S. Chae, G. Koley, M. G. Spencer, "Fabrication and characterization of pre-aligned gallium nitride nanowire filed effect nanowire transistors," Nanotechnology, 17(2006): 264-1271
    [63] H. Y. Cha, H. Q. Wu, S. D Chae, M. G. Spencer, "Gallium nitride nanowire nonvolatile memory device," J. Appl. Phys., 100(2006): 024307-024310
    [64] E. Gnani, A. Marchi, S. Reggiani, M. Rudan, G. Baccarani, "Quantum-mechanical analysis of the electrostatics in silicon-nanowire and carbon-nanotube FETs," Solid-State Electronics, 50 (2006): 709-715
    [65] L. J. Lauhon, M. S. Gudiksen, D. Wang, C. M. Lieber, "Epitaxial core-shell and core-multishell nanowire heterostructures," Nature, 420(2002): 57-61
    [66] B. Min, J. S. Lee, K. Cho, J. W. Hwang, H. Kim, "Semiconductor Nanowires Surrounded by Cylindrical Al2O3 Shells," Journal OF Electronic Materials, 32(2003)
    [67] J. Guo, J. Wang, Eric. Polizzi, S. Datta, M. Lundstrom, "Electrostatics of nanowire transistors," IEEE on nanotechnology, 2(2003): 329-334
    [68] 高濂,郑珊,张青红著,纳米氧化锌光催化材料及应用,化学工业出版社,2002年12月第一版,北京。
    [69] A. Fujishima, K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode, "Nature, 238(1972): 37-38
    [70] 尹荔松,沈辉,二氧化钛光催化研究进展及应用,材料导报。2000,14(12):23-25
    [71] L. Q. Jing, X. J Sun, J. Shang, W. M. Cai, Z. L. Xu, Y. G. Dong, "Review of surface photovoltage spectra of anosized semiconductor and its applications in heterogeneous photocatalysis, Solar Energy Materials & Solar Cells, 79 (2003): 133-151
    [72] J. S. Lee, J. S. Suh, "Uniform field emission from aligned carbon nanotubes prepared by CO disproportionation," J. Appl. Phys., 92(2002): 519-7522
    [73] L. L. Wang, Z. Sun, T. Chen, W. X. Que, "Growth temperature effect on field emission properties of printable carbon nanotubes cathode," Solid-State Electronics, 50(2006): 800-804
    [74] H. S. Jang, H. R. Lee, D. H. Kim, "Field emission properties of carbon nanotubes with different morphologies," Thin Solid Films, 500(2006): 124-128
    [75] Y. Cheng, O. Zhou, "Electron field emission from carbon nanotubes,"Comptes Rendus Physique, 4(2003): 1021-1033
    [76] G. N. Fursey, D. V. Novikov, G. A. Dyuzhev, A. V. Kotcheryzhenkov, P. O. Vassiliev, "The field emission from carbon nanotubes," Appl. Surf. Sci., 215(2003): 135-140
    [77] Y. S. Zhang, K. Yu, S. X. Quyang, Z. Q. Zhu, "Selective-area growth and field emission properties of Zinc oxide nanowire micropattern arrays," Physica B: Condensed Matter, 382(2006): 76-80
    [78] Y. S. Zhang, K. Yu, S. X. Ouyang, Z. Q. Zhu, "Patterned growth and field emission of ZnO nanowires," Materials Letters, 60 (2006): 522-526
    [79] J. B. Cui, C. P. Daghlian, U. J. Gibson, R. Pǖsche, P. Geithner, L. Ley, "Low-temperature growth and field emission of ZnO nanowire arrays," J. Appl. Phys., 97 (2005): 044315-044317
    [80] S. H. Jo, D. Banerjee, and Z. F. Ren, "Field emission of zinc oxide nanowires grown on carbon cloth," Appl. Phys. Lett., 89 (2006): 023118-023120
    [81] S. Z. Deng, Z. B. Li, W. L. Wang, N. S. Xu, Jun Zhou, X. G. Zheng, H. T. Xu, Jun Chen, and J. C. She, " Field emission study of SiC nanowires/nanorods directly grown on SiC ceramic substrate," Appl. Phys. Lett., 85(2004):1407-1409
    [82] Y. M. Liu, S. S. Fan, "Carbon-coated SiC nanowires: direct synthesis from Si and field emission characteristics," Journal of Crystal Growth, 271 (2004): 99-104
    [83] K. W. Wong, X. T. Zhou, Frederick C. K. Au, H. L. Lai, C. S. Lee, S. T. Lee, "Field-emission characteristics of SiC nanowires prepared by chemical-vapor deposition," Appl. Phys. Lett., 75(1999): 2918-2920
    [84] Z. W. Pan, H. L. Lai, Frederick C. K. Au, X. F. Duan, W. Y. Zhou, W. Shi, N. Wang, C. S. Lee, N. B. Wong, S. T. Lee, "Oriented Silicon Carbide Nanowires: Synthesis and Field Emission Properties," Adv. Mater., 12(2000): 1186-1190
    [85] Frederick C. K.Au, K. W. Wong, Y. H. Tang, Y. F. Zhang, I. Bello, S. T. Lee, "Electron filed emission from silicon nanowires," Appl. Phys. Lett., 75(1999): 1700-1702
    [86] N. N. Kulkarni, J. Bae, C.-K. Shih, S. K. Stanley, S. S. Coffee, and J. G. Ekerdt, "Low-threshold field emission from cesiated silicon nanowires," Appl. Phys. Lett., 87(2005): 213115-213117
    [87] S. Kar, S. Chaudhuri, "Synthesis, photoluminescence and field emission properties of In2O3 nanowires," Chemical Physics Letters, Volume 422(2006): 424-428
    [88] W. U. Huynh, X. Peng, A. P. Alivisatos, "CdSe nanocrystal rodspoly(32hexylthio2phene) composite photovoltaic devices," Adv. Mater., 11(1999): 923-927
    [89] W. Lee, H. I. Yoo, J. K. Lee, "Template route toward a novel nanostructured superionic conductor film; Agl nanorod/γ2 Al2O3. Chem. Commun., 24(2001): 2530-2531.
    [90] L. Huang, H. Wang, Z. Wang, "Nanowire arrays electrodeposited from liquid crystalline phases, "Adv. Mater., 14 (2002): 61-64
    [91] Y. B. Li, Y. S. Bando, D. Golberg, "Indium-assisted growth of aligned ultra long silica nanotubes," Adv. Mater., 16 (2004): 37-40
    [92] 李凤生,杨毅,马振叶,姜炜等,纳米功能复合材料及应用,国防工业出版社,2003:195-198
    [93] X. B. He, H.Yang, "Preparation of SiC fiber-reinforced SiC composites," Journal of Materials Processing Technology, 159(2005): 135-138
    [94] H. Manuel, H. Falko; K. Ursula, "Cutting of SiC fibers for Ti-MMC applications," Advanced Engineering Materials, 6(2004): 761-767
    [95] G. N. Morscher, V. V. Pujar, "Melt-infiltrated SIC composites for gas turbine engine applications, "Proceedings of the ASME Turbo Expo 2004. Volume 2: Aircraft Engine; Ceramics; Controls, Diagnostics, and Instrumentation, 2(2004): 353-359
    [96] P. K Rohatgi, R. B. Thakkar, J. K. Kim, A. Daoud, "Scatter and statistical analysis of tensile properties of cast SiC reinforced A359 alloys," Mater. Sci. Eng. A, 398(2005): 1-14
    [97] A. Kotoji, S. K. Lee, K. Takahashi, M. Yokouchi, "High temperature fatigue strength of crack-healed Al2O3 toughened by SiC whiskers," Proc SPIE Int Soc Opt Eng, 5648(2005): 29-36
    [98] J. T. Yu, C. Z. Li, "Study of the interface structure in SiC fiber reinforced Al matrix composite," Journal of Materials Engineering, 4(1995): 32-34
    [99] M. Ruff, H. Mitlehner, R. Helbig, "SiC devices: physics and numerical simulation," IEEE Trans. Electron Devices 41 (1994): 1040-1054
    [100] C. M. Zetterling, "Process technology for silicon carbide devices-(EMIS processing serious; no2). INSPEC, The institution of Electrical Engineers, London, United Kingdom. 2002
    [101] 郭梦雄,王耀祖。碳化硅晶须得发展概况[A],复合材料新进展学术会议论文集[C],北京,中国建筑工业出版社.1991,275
    [102] 孟广耀,化学气相沉积与无机新材料[M].北京,科学出版社.1984.192
    [103] Y. C. Ying, Y. Gu, Z. F. Li, H. ZGu, L. Y. Cheng, Y. T. Qia, "A simple route to nanocrystalline silicon carbide," Journal of Solid State Chemistry, 177 (2004): 4163-4166
    [104] W. Yang, H. Araki, S. Thaveethavorn, H. Suzuki, T.Nada, "In situ synthesis and characterization of pure SiC nanowires on silicon wafer," Appl. Surf. Sci., 241 (2005): 236-240
    [105] W. Yang, H. Araki, Q. L. Hu, N. Ishikawa, H. Suzuki, T. Noda, "In situ growth of SiC nanowires on RS-SiC substrates," Journal of Crystal Growth, 264(2004): 278-283
    [106] D. Zhou, S. Seraphin, "Production of Silicon Carbide Whiskers from Carbon Nanoclusters," Chem. Phys. Lett., 222 (1994): 223-238
    [107] H. J. Dai, E. W. Wong, Y. Z. Lu, "Synthesis and Characterization of Carbide Nanorods," Nature, 375(1995): 769-772
    [108] W. Q. Han, S. S. Fan, Q. Q. Li, W. J. Lung, B. L. Gu, D. P. Yu, "Continuous synthesis and characterization of silicon carbide nanorods," Chem. Phys. Lett., 265(1997): 374-378
    [109] A. I. Kharlamov, N. V. Kirillova, and S. N. Kaverina, "Hollow Silicon Carbide Nanostructures," theoretical and Experimental Chemistry, 38(2002): 237- 241
    [110] X. H. Sun, C. P. Li, W. K. Wong, N. B. Wong, C. S. Lee, S. T. Lee, B. KTeo, "Formation of Silicon Carbide Nanotubes and Nanowires via Reaction of Silicon (from Disproportionation of Silicon Monoxide) with Carbon Nanotubes, "J. Am. Chem. Soc., 124(2002): 14464-14471
    [111] G. W. Meng, Z. Cui, L. D. Zhang, F. Phillipp, "Growth and characterization of nanostructured β-SiC via carbothermal reduction of SiO2 xerogels containing carbon nanoparticles," Journal of Crystal Growth, 209 (2000): 801-806
    [112] C. H. Liang, G. W. Meng, L. D. Zhang, Y. C. Wu, Z. Cui, "Large-scale synthesis of β-SiC nanowires by using mesoporous silica embedded with Fe nanoparticles," Chemical Physics Letters, 329 (2000): 323-328
    [113] V. Raman, G. Bhatia, S. Bhardwaj, "Synthesis of silicon carbide nanofibers by sol-gel and polymer blend techniques, "Journal of Mateirals Science, 40(2005): 1521-152
    [114] Q. J. Guo, L. Ping, Y. G. Xiang "novel method for synthesis of silicon carbide nanowire," journal of materials science letters, 2003(22): 767-770
    [115] W. S. Shi, Y. F. Zheng, H. Y. Peng, N. Wang, C. S. Lee, S. T. Lee, "Laser Ablation synthesis and optical Characterization of silicon Carbide Nanowires," J. Am. Ceram. Soc., 83(2000): 3228-30
    [116] 吴旭峰,凌一鸣,“电弧放电法制备SiC纳米丝的实验研究,”真空科学与技术学,25(2005):30-33
    [117] T. Seeger, P. K. Redlich, M. Rǖhle, "Synthesis of Nanometer-Sized SiC Whiskers in the Arc-Discharge," Adv. Mater., 12(2000): 279-282
    [1] Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, et al, " one-dimensional nanostructures: synthesis, characterization, and application," Adv. Mater. 15 (2003): 353-389
    [2] Z. L. Wang, handbook of nanophase and nanostructured materails, Tsinghua University Press and Kluwer Academic/Plenum Publishers
    [3] N. J. Stone, H. Ahmed, "Silicon single electron memory cell," Appl. Phys. Lett 73(1998): 2134-2136
    [4] Y. Cui, Q. Wei, H. Park, C. M. Liber, "Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species," Science 293 (2001): 1289-1292
    [5] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Hind, E. Weber, R. Russo, P. Yang, "Room-Temperature Ultraviolet Nanowire Nanolasers," Science292(2001): 1897-1899
    [6] W. Yang, H. Araki, A. Kohyama, S. Thaveethavorn, H. Suzuki, T. Noda, "Process and Mechanical Properties of in Situ Silicon Carbide-Nanowire-Reinforced Chemical Vapor Infiltrated Silicon Carbide/Silicon Carbide Composite", J. Am. Ceram. Soc., 87 (2004): 1720-1725
    [7] H. Dai, E. W. Wong, Y. Z. Lu, S. Fan and C. M. Lieber, "Synthesis and Characterization of Carbide Nanorods," Nature. 375(1995): 769-772
    [8] W. Q. Han, S. S. Fan, Q. Q. Li, B. L. Gu, D. P. Yu, "Continuous synthesis and characterization of silicon carbide nanorods," Chem. Phys. Lett. 265 (1997): 374-378
    [9] G. W. Meng, Z. Cui L. D. Zhang, F. Phillipp, "Growth and characterization of nanostructured b-SiC via carbothermal reduction of SiO2 xerogels containing carbon nanoparticles," Journal of Crystal Growth 209 (2000): 801-806
    [10] V. Raman, G. Bhatia, S. Bhardwaj, "Synthesis of silicon carbide nanofibers by sol-gel and polymer blend techniques, "Journal of material science 40 (2005): 1521-1527
    [11] W. S. Shi, Y. F. Zheng, H. Y. Peng, "Laser Ablation synthesis and optical Characterization of silicon Carbide Nanowires," J. Am. Ceram. Soc., 83(2000): 3228-30
    [12] B. Park, U. Ryu, K. J. Yong, "growth and characterization of silicon carbide nanowire," surface review and Letters. 11 (2004): 373-378
    [13] C. C. Tang, Y. Bando, T. Sato, K. Kurashima, X. X. Ding, Z. W. ding, Z. W. Gan, S. R. Qi, "SIC and tis bicrystalline nanowire with uniform BN nanowire," Appl. Phys. Lett. 80(2002): 4641-4643
    [14] Z. Wang, Z. Dai, R. Gao, Z. Bai, J. L. Gole, "Side-by-side silicon carbide-silica biaxial nanowires: Synthesis, structure, and mechanical properties," Appl. Phys. Lett. 77(2000): 3349-3351
    [15] K. S. wenger, D. Cornu, F. Chassagneux, G. Ferro, T. Epicier, P. Miele, "Direct synthesis of β-SIC nanowire," Solid state communication 124 (2002): 157-161
    [16] H. J. Choi, H. K. Seong, J. C. Lee, Y. M. Sung, "Growth and modulation of silicon carbide nanowires," Journal of crystal growth. 269 (2004): 472-478
    [17] L. Manna, D. J. Milliro, A. M. A, P. Alivisatos. "Controlled growth of tetrapod-branched inorganic nanocrystals, "Nature Mater. 2(2003): 382-385
    [18] B. C. Satishkumar, P. J. Thomas, A. Govindaraj, C. N. Rao, "Y-junction carbon nanotubes," Appl. Phys. Lett. 77 (2000): 2530-2532
    [19] Y. Q. Zhu, W. K. Hsu, N. Grobert, M. Terrones, H. Terrones, H. W. Kroto, R. M. Walton, B. Q. Wei, "Self-assembly of Si nanostructures," Chem. Phys. Lett. 322 (2000): 312-320
    [20] B. R. Perkins, D. P. Wang, D. Soltman, A. J. Yin, J. M. Xu, and A. Zaslavsky. "Differential current amplification in three-terminal Y-junction carbon nanotube devices," Appl. Phys. Lett. 87(2005): 123504 -123506
    [21] H. F. Zhang, C. M. Wang, S. L. Wang, "Helical Crystalline SiC/SiO_2 Core-Shell Nanowires," Nano. Lett, 2 (2002): 941-944
    [22] X. Y. Kong, Z. L. Wang, "Spontaneous Polarization-Induced Nanohelixes, Nanosprings, and Nanorings of Piezoelectric Nanobelts, "Nano. Lett. 3 (2003): 1625-1631
    [23] Y. Liang, Y. Che, Handbook of hermodynamics of Inorganic Substance. Dongbei University Press. 1994
    [24] G J jiang, H R zhuang, J. of Mater. Sci., 35, 63(2000)
    [25] X. Duan, C. M. Lieber. "General Synthesis of Compound Semiconductor Nanowires," Adv. Mater, 12 (2000): 298-302
    [26] H. J. Choi, H. K. Deong, J. C. Lee, Y. M. Sung, " growth and modulation of silicon carbide nanowire," J. Crys. Growth. 269(2004): 472-478
    [27] K. S. Wenger, D. Cornu, F. Chassagneux, G. Ferro, T. Epicier, P. Miele, "driect synthesis of β-SiC and h-BN coated β-SiC nanowires," solid state communications 124(2002): 157-161
    [28] Z. L. Wang, Z. R. Dai, R. P. Gao, Z. G. Bai, J. L. Gole, "Side-by-side silicon carbide-silica biaxial nanowires: Synthesis, structure, and mechanical properties", Appl. phys. Lett, 77(2000): 3349-3351
    [29] C. K. Xu, J. H. Chun, K. R. Pho, D. E. Kim, " Fabrication and photoluminescence of zinc silicate/silica modulated ZnO nanowires," Nanotechnology 16(2005): 2808-2812
    [30] Y. F. Zhang, Y. H. Tang, N. Wang, D. P. Yu, C. S. Lee, I. Bello, and S. T. Lee, "Silicon nanowires prepared by laser ablation at high temperature," Appl. phys. Lett, 72(1998): 1835-1837
    [31] 闵乃本,晶体生长的物理基础.上海:上海科学技术出版社,1982.p215
    [32] B. Park, Y. Ryu, K. Yong, "growth and characterization of silicon carbide nanowire," Surface Review. Lett. 4&5 (2004): 373-378
    [33] S. Komuro, S. Maruyama, T. Morikawa, X. W. Zhao, H. Isshiki, Y. Aoyagi, "Room-temperature luminescence from erbium-doped silicon thin films prepared by laser ablation," Appl. Phys. Lett., 69(1996): 3896-3898
    [34] W J. Choyke, R. P DevatS; L. L. Clemen, and M. Yoganahan, G. Pensl and Ch. Hassler, "InGaAs-on-Si single photon avalanche photodetectors," Appl. Phys. Lett., 85(1994): 1668-1670
    [35] 何照元,“准一维纳米材料的气相合成、结构表征及发光性能研究,”合肥工业大学 2005,0301
    [36] B. R. Pamplin, Crystal Growth, 2nd Edition, Pergamon Press, Oxford (New York/Sydney), 1980, p. 58
    [37] H. Takayama, N. Sutoh, N. Murakawa, "Quantitative analysis of stacking faults in the structure of SiC by x-ray powder profile refinement methods," J. Ceram. Soc. Jpn 96 (1988): 1003-1011
    [38] H. J. ChiO, J. G. Lee, "Stacking faults in silicon carbide whiskers," Ceramics internationial 26 (2000): 7-12
    [39] Y. Q. Zhu, W. K. Hsu, W. Z. Zhou, M. Terrones, H. W. Krotoa, D. R. M. Walton, "Selective Co-catalysed growth of novel MgO fishbone fractal nanostructures," Chem. Phys. Lett. 347(2001): 337-339
    [40] P. X. Gao, Z. L. Wang, "Rectangular porous ZnO-ZnS nanocables and ZnS nanotubes," J. Phys. Chem. B 106(2002):6 53-657
    [41] P. X. Gao, Y. Ding, Z. L. Wang, "Crystallographic-Orientation Aligned ZnO Nanorods Grown by Tin Catalyst," Nano Lett. 3(2003): 1315-1320
    [42] R. G. He, J. Johnson, M. Law, R. J. Saykally, P. D. Yang, "Dendritic Nanowire Ultraviolet Laser Array," J. Am. Chem. Soc. 125(2003): 4728-4730
    [43] J. Y. Lao, J. Y. Huang, D. Z. Wang, Z. F. Ren, " ZnO Nanobridges and Nanonails,"Nano Lett 3(2003): 235-238
    [44] Z. L. Wang, Z. W. Pang. "Junctions and Networks of SnO Nanoribbons, " Adv. Mater, 14(2002): 1029-1032
    [45] Y. Q. Zhu, W. K. Hsu, M. Terrones, N. Grobert, H.T errones, J. P. Hare, H. W. Krotoa, D. R. M. Walton, "3D Silicon oxide nanostructures: from nanoflowers to radiolaria," J. Mater. chem. 8(1998)1859
    [46] S. Y. Bae, H. W. Seo, H. C. Chio, J. Park, "Heterostructures of ZnO Nanorods with Various One-Dimensional Nanostructures," J. Phys. Chem. B.108 (2004): 12318-12326
    [1] S. J. Tans, A. R. M. Verschueren, C. Dekker, "Room temperature transistor based on a single carbon nanotube," Nature 1998(393): 49-52
    [2] R. Martel, T. Schmidt, H. R. shea, "Single and multi wall carbon nanotube field effect transistors, "Appl. Phys. Lett, 1998(73): 2447-2449
    [3] R. Martel, H. S. P. Wong, K. Chan, "Single and multi-wall carbon nanotube field effect transistors for logic application," Proc IEDM 2001. 159-161
    [4] N. Fumiyuki, H. Hiroo, O.Yukinori, "carbon nanotube filed effect transistors with very high intrinsic transcondutance," Jpn. J. Appl. Phys, 42(2003): 1288-1291
    [5] N. Ooike, J. Motohisa and T. Fukui, "Fabrication of GaAs nanowire devices with self-aligning W-gate electrodes using selective-area MOVPE," Thin Solid Films, 464-465(2004): 220-224
    [6] X. Y. Xing, K. b. Zheng, H. h. Xu, F. Fang, H. T. Shen, J. Zhang, J. Zhu, C. N Ye, et al "Synthesis and electrical properties of ZnO nanowires," Micron 37(2006): 370-373
    [7] Z. Fan, J. G. Lu, "Chemical Sensing With ZnO Nanowire Field-Effect Transistor," Nanotechnology, IEEE Transactions on. 5(2006): 393-396
    [8] S. N. Cha, J. E. Jang, Y. Choi, G. W. Ho, D. J. Kong, D. G Hasko, M. E. Welland, G. A. J. Amaratunga, "High performance ZnO nanowire field effect transistor," Solid-State Device Research Conference, 2005. ESSDERC 2005. Proceedings of 35th European 12-16(2005): 217-220
    [9] E. Gnani, A. Marchi, S. Reggiani, M. Rudan, G. Baccarani, "Quantum-mechanical analysis of the electrostatics in silicon-nanowire and carbon-nanotube FETs," Solid-State Device Research Conference, 2005. ESSDERC 2005. Proceedings of 35th European 12-16(2005): 161-164
    [10] Y. Cui, C. M. Liber, "Functional nanoscale electronic devices assembled using silicon nanowire building blocks," Science 291 (2003): 851-853
    [11] S. M. Koo, A. F. ujiwara, J. P. Han, E. M. Vogel, C. A. Richter, J. E. Bonevich, " high inversion current in Silicon nanowire field effect transistors," Nano. Lett. 4(2004): 2197-2201
    [12] 刘永,张福海,晶体管原理,国防工业出版社,北京,2002年1月第一版.305-340
    [13] J. W. Palmour, "Characterization of device parameters in high-temperature metal-oxide-semiconductor field-effect transistors in β-SiC thin films", J. Appl. Phys, 64(1998): 2168-2177
    [14] Sze, S. M. Physics of Semiconductor Devices. 438-445. John Wiley & Sons, New York, 1981
    [15] Y. Cui, C. M. Liber, "Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks", Science, 291(2001): 851-853
    [16] G. Kelner, M. S. Shur, S. binary, K. J. Sleger, H. S. Kong, "High-Transconductance β-SiC buried gate JFET's", IEEE Transaction on Electron Devices. 36(1989): 1045-1049
    [17] J. A. Edmond, Proc. Inter. Semicond. Devices Research Symposium, (1993): 711-714
    [1] [日]滨川圭弘,半导体器件,科学出版社,2002,北京.31-33
    [2] 吴鼎芬,颜本达,金属-半导体界面欧姆接触的原理、测试与工艺,上海交通大学出版社.1989
    [3] M. Shur, Physics of semiconductor devices. New Jersey, Prentice-Hall international. 1990: 204-209
    [4] H. Morkoc, Nitride Semiconductors and Devices. Berlin, Springer. 1999: 198-200
    [5] H. B. Michaelson, "The work function of the elements and its periodicity," J. Appl. Phys. 48 (1977): 4729-4733
    [6] G. S. Collins, M. O. Zacate, "Charge transfer model for quadrupole interactions and binding energies of point defects with In-111/Cd probes in cubic metals," Hyperfine Interact 151 (2003): 77-91
    [7] R. G. Wilson, "Vacuum Thermionic Work Functions of Polycrystalline Be, Ti, Cr, Fe, Ni, Cu, Pt, and Type 304 Stainless Steel," J. Appl. Phys. 37 (1966): 2261-2264
    [8] D. W. Wang, J. G. Lu, "Electric transistor in boron nanowirs," Appl. Phys. Lett. 83(2003): 5280-5282
    [9] Y. R. Ryu, W. J. Kim, H. W. White, "Fabrication of homostructual ZnO p-n junction," J. Crys. Grow. 219(2000): 419-422
    [10] C. Jacob, P. Pirouz, H. I. Kuo, M. Meheregany, "High temperature ohimc contacts to 3C-silicon carbide film," Solid state Electronics. 42(1998): 2329-2334
    [11] M. W. Cole, P. C. Joshi. C. W. Hubbard, M. C. Wood, M. H. Ervin, B. Gell, "Improved Ni based composite Ohmic contact to n-SiC for high temperature and high power device applications," J. Appl. Phys. 88(2000): 2652-2657
    [12] M. H. Ham, J. h. Chio, W. H. Hwang, C. Park, W. Y. Lee, J. M. Myoung, "Contact characteristics in GaN nanowire devices," Nanotechnology. 17(2006): 2203-2206
    [13] B. Pe'cz, "Contact formation in SiC devices, "Appl. Surf. Sci. 184 (2001): 287-294
    [14] S. M. Sze, Physics of semiconductor devices, Wiley: New York, 1981
    [15] M. C. Poon, F. Deng, H. Wong, M. Wong, J. K. O. Sin, S. S. Lan, C. H. Hao, P. G. Han, "Thermal stability of cobalt and nickel silicides in amorphous andcrystalline silicon" Electron Devices Meeting, 1997. Hong Kong
    [16] T. S. Marinova, A. V. Krastev "interface chemistry and electric characterisation of nickel metallisation on 6H-SiC". Appl. Surf. Sci. 99 (1999: 119-125
    [17] A. K. Georgieva, "Characterization of ohmic and Schottky contacts on SIC". Thin Solid film, 343-344 (1999): 637-641
    [18] 刘芳,“碳化硅注入及欧姆接触的研究”,硕士学位论文,西安电子科技大学,2005年1月
    [1] J. A. Rogers, et al. "Paper-like electronic displays: Large-area rubber-stamped plastics sheet of electronics and microencapsulated electronic inks." Proc. Natl Acad. Sci. USA 98, (2001): 4835-4840
    
    [2] M. J. Lee, C. P. Judge, S.W. Wright, "Thin film transistors for displays on plastic substrate. "Solid State electron. 44(2000): 1431-1434
    [3] P. M. Smith, P. G. Carey, and T. W. Sigmon, "Excimer laser crystallization and doping of silicon films on plastic substrates," Appl. Phys. Lett. 70(1997): 342-344
    [4] P. Brody, " The TFT -A new thin film transistor", Proceedings of the IEEE, 1962
    
    [5] G. Rotsky, " Thin film transistors: Back from the dead", EE Times, Online article.
    
    [6] C. S. McCormick, C. E. Weber, J. R. Abelson, and S. M. Gates, "An amorphous silicon thin film transistor fabricated at 125°C by dc reactive magetron sputtering," Appl. Phys. Lett. 70(1997): 226-227
    [7] H. Gleskova, S. Wagner, and Z. Suo, "a-Si:H TFTs made on polyimide foil by PE-CVD at 150℃," Mater. Res. Soc. Symp. Proc. 508 (1998): 73-78
    [8] H. Gleskova, and S. Wagner, "Amorphous silicon thin-film transistors on compliant polyimide foil substrates," IEEE Electron Device Lett. 20(1999): 473-475
    [9] A. Sazonov, and A. Nathan, "120°C fabrication technology for a-Si:H thin film transistors on flexible polyimide substrates," J. Vac. Sci. Technol. A 18(2000): 780-782
    [10] C. S. Yang, L. L. Smith, C. V. Arthur, and G. N. Parsons, "Stability of low-temperature amorphous silicon thin film transistors formed on glass and transparent plastic substrates," J. Vac. Sci. Technol. B 18(2000): 683-689
    
    [11] Y. S. Yang, S .H .Kim, J I Lee, et al. "Deep-level defect characteristics in pentacene organic thin films," Appl. Phys. Lett., 80(2002):1595-1597
    
    [12] S F Nelson, Y Y Lin, D J Gundlach, T N Jackson. "Temperature-independent transport in high-mobility pentacene transistors,"Appl. Phys. Lett. , 72(1998): 1854-1856
    [13] Klauk H, Gundlach D. J, Nichols J. A, Jackson TN. "Pentacene organic thin-film transistors for circuit and display applications," IEEE Trans. Electron Devices. 46(1999):1258-1263
    [14] C. D. Sheraw, L. Zhou, J. R. Huang et al "Organic thin film transistor driven polymer dispersed liquid crystal displays on flexible polymeric subst rates," Appl. Phys. Lett., 80 (2002) : 1088-1090
    
    [15] X.F.Duan, C. M.Niu, V.Sahi, J. Chen, J.W. Parce, S.Empedocles, J. L.Goldman, "High-performance thin film transistor using semiconductor nanowires and nanoribbons," Nature 425(2003): 274-278
    [16] P.Mei, J.B.Boyce, M.Hack, "Laser dehydrogenation/crystallization of plasma-enhanced chemical vapor deposited amorphous silicon for hybrid thin film transistor," Appl. Phys. Lett., 64(1994): 1132-1134
    [17] B. Garc, M. Estrada, K.F. Albertin, M.N.P. Carren, I. Pereyra, L. Resendiz, "Amorphous and excimer laser annealed SiC films for TFT fabrication," Solid-State Electronics 50 (2006): 241 - 247
    [18] W.S. Wong, R. Lujan, J. H. Daniel, S.Limb, "Digital lithography for large-area electronics on flexible substrates," Journal of Non-Crystalline Solids 352 (2006): 1981-1985
    [19] O. Madelung, (ed.) Technology and Applications of Amorphous Silicon (Springer, Berlin, 2000)
    [20] S. Ucjikoga, "Low-temperature polycrystalline silicon thin-film transistor technologies for system-onglass displays." MRS Bull. 27(2002): 881-886
    [21] T. Mizuno, N. Sugiyama, A. Kurobe, S. Takagi, "Advanced SOI p-MOSFET with strained-Si channel on SiGe-on-insulator substrate fabricated by SIMOX technology." IEEE Trans. Electron Devices 48, (2001): 1612-1618
    [22] S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981)
    [23] G. E. Pike, C. H. Seager, "Electrical properties and conduction mechanisms of Ru-based thick-film (cermet) resistors," J. Appl. Phys., 48(1977): 5152-5169
    [24] S. M. Grannan, A. E. Lange, "Non-Ohmic hopping conduction in doped germanium at T<1 K," Phys. Rev. B 45(1992): 4516-4519
    [1] J. H. Carey, "Photodechlorination of PCBs in the presence of TiO_2 in aqueous suspensions," J. Bull. Environ. Contam. Toxicol. 1976(16): 697-700
    [2] M. A. Fox, M. T. Dulay, "Heterogeneous photocatalysis," Chem. Rev. 1993(93): 341-357
    [3] U. Stafford, K. A. Gray, P. V. Kamat, "Self-association of a 1, 3, 4-oxadiazole-containing dendrimer," Chem. Rev. 1996(96): 77-79
    [4] Han Zhaohui, Zhao Huaqiao, "Progress in Applied Research of the Heterogeneous Photocatalysis on Semiconductors," Progressin Chemistry, 1999(11): 1-10
    [5] 高镰,郑珊,张青红,纳米氧化钦光催化材料及应用.化学工业出版社.2002年12月第一版.
    [6] A. Fujishima, K. Honda, Nature. 238, 37(1972).
    [7] B. J. Liu, T. Torimoto, H. J. Yoneyama, "Photocatalytic Reduction of CO_2 Using Surface-modified CdS Photocatalysts in Organic Solvents, "Photochem. Photobiol. A: Chem. 1998(113): 93-97.
    [8] J. A. Navio, G. Colvn, J. M. Hermann, "Photoconductive and photocatalytic properties of ZrTiO4 comparison with the parent oxides TiO_2 and ZrO_2," J. Photochem. Photobiol. A: Chem. 1997(108), 179-185.
    [9] D. F. Ollis, Chimie/Chemistry. 2000(3): 405
    [10] A. D. Paola, L. Palmisano, A. M. Venezia, V. Augugliaro, "Coupled Semiconductor Systems for Photocatalysis: Preparation and Characterization of Polycrystalline Mixed WO_3/WS_2 Powders," J. Phys. Chem. B, 1999(103): 8236-8244.
    [11] A. Y. Nosaka, T. Fujiwara, H. Yagi, H. Akutsu, Y. Nosaka, "Photocatalytic Reaction Sites at the TiO_2 Surface as Studied by Solid-State ~1H NMR Spectroscopy,". Langmuir. 2003(196): 1935-1937
    [12] H. Zhang, X. Luo, J. Xu, B. Xiang, D. Yu, "Synthesis of TiO_2/SiO_2 Core/Shell Nanocable Arrays, " J. Phys. Chem. B. 2004(108): 14866-14869.
    [13] S. Sakthivel, M. Janczarek, H. Kisch, "Visible Light Activity and Photoelectrochemical Properties of Nitrogen-Doped TiO_2," J. Phys. Chem. B. 2004(108): 19384-19387.
    [14] Y. Ishikawa, Y. Matsumoto, Y. Nishida, S. Taniguchi, J. Watanabe,"Surface Treatment of Silicon Carbide Using TiO_2 (IV) Photocatalyst, " J. Am. Chem. Soc. 2003(125): 6558-6562.
    [15] M. Mrowetz, W. Balcerski, A. J.; Colussi, M. R. Hoffmann, "Nucleation and Growth of Single-Walled Carbon Nanotubes: A Molecular Dynamics Study, " J. Phys. Chem. B. 2004(108): 17269-17377.
    [16] K. Sunada, K. Hashimoto, "Bactericidal Activity of Copper-Deposited TiO_2 Thin Film under Weak UV Light Illumination," Environ. Sci. Technol. 2003(37): 4785-4789.
    [17] M. Addamo, V. Augugliaro, V. Loddo, G. Marci, R. Molinari, L. Palmisano, M. Schiavello. "Preparation, Characterization, and Photoactivity of Polycrystalline Nanostructured TiO_2 Catalysts, " J. Phys. Chem. B. 2004(108): 3303-3310.
    [18] M. C. Blount, D. H. Kim, J. L. Falconer, "Transparent Thin-Film TiO_2 Photocatalysts with High Activity, " Environ. Sci. Technol. 2001(35): 2988-2994.
    [19] S. Yin, Y. Aita, M. Komatsu, J. S. Wang, Q. Tang, T. Sato, "Synthesis of excellent visible-light responsive TiO_(2-x)N_y photocatalyst by a homogeneous precipitation-solvothermal process," J. Mater. Chem. 2005(15): 674-682.
    [20] S. Livraghi, A. Votta, M. C. Paganini, E. Giamello. "The nature of paramagnetic species in nitrogen doped TiO_2 active in visible light photocatalysis, " Chem. Commun. 2005(5): 498-500
    [21] K. Kawahara, Y. Ohko, T. Tatsuma, A. Fujishim, " Surface diffusion behavior of photo-generated active species or holes on TiO_2 photocatalysts," Phys. chem.. chem.. phys. 2003(5): 4764-4766
    [22] J. H. Xu, F. Shiraishi, "Photocatalytic decomposition of acetaldehyde in air over titanium dioxide, " Journal of Chemical Technology & Biotechnology. 1999(74): 1096-1100.
    [23] Y. Iguchi, H. Ichiura, T. Kitaoka, H. Tannaka, "Preparation and characteristics of high performance paper containing titanium dioxide photocatalyst supported on inorganic fiber matrix, " Chemosphere. 2003(53): 1193-1190
    [24] A. LLinsebigie, G. Lu, J. T. Yates. "Photocatalysis on TiO_2 surface: principles, mechanism, and selected results, " Chem. Rev. 1995(95): 735-758
    [25] 刘畅,暴宁钟,杨祝红.二氧化钦超微粒薄膜的制备及其光电性能研究.催化学报,2001,9(22):215-218
    [26] M. R Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, "Environmental Applications of SemiconductorPhotocatalysis," Chem. Rev. 1995(95): 69-96
    [27] K. A. Gray, U. Stafford, M. S. Dieckmann, P. Kamat, " Mechanistic Studies in TiO_2 System: Photocatalytic Degradation of Chloro- and Nitrophenols," Photocatalytic Purification and Treatment of Water and Air. 1993: 815-820
    [28] Ku. Young, Ren-Ming. Leu, Kuen-Chyr. Lee, "The Effect of Dissolved Oxygen on the Treatment of 2-Chlorophenol in Aqueous Solution by the UV/TiO2 Process," Journal of the Chinese Instiute of Environment Engineering. 19966(1): 43-49
    [29] P. L. Huston, J. J. Pignatello, "Reduction of Perchloroalkanes by Ferrioxylate Radical Preceding Mineralization by the Photo-Fenton Reaction," ES&T, 1996(30): 3457-3463
    [30] S. W. Leung, R. J. Watts, G. C. Miller, "Degradation of Perchloroethylene by Fenton's Reagent: Speciation and Pathway," J. Environ. Qual. 1992(21): 377-381
    [31] A. Kumar, A. K. Jain, "Photophysics and photochemistry of colloidal CdS-TiO2 coupled semiconductors-photocatalytic oxidation of indole," J Mol Catal A: Chemical, 2001, 165(1-2): 265-273
    [32] W. Stumn. Chemistry of the Solid-Water Interface. John Wiley & Sons, New York (1992)
    [33] 张立德,牟季美。纳米材料和纳米结构。科学出版社,2001:1-100
    [34] L. M. Peter, E. A. Ponomarev, G. Franco, "Aspects of the hotoelectrochemitry of nanocrystalline systems," Electrochimica Acta, 1999, 45(3): 549-560
    [35] Masakazu Anpo, Masato Takeuchi, "the design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation," Journal of Catalysis. 2003(216): 505-516
    [36] P. Chrysicopoulou, D. Davazoglou, Chr. Trapalis, G. Kordas, " Optical properties of very thin (<100 nm) sol-gel TiO_2 films," Thin Solid Films 1998(323): 188-193
    [37] T. M. Wang, S. K. Zheng, W. C. Hao, C. Wang, "Studies on photocatalytic activity and ransmittance spectra of TiO2 thin films prepared by r.f. magnetron sputtering method,"Surface and Coatings Technology. 2002(155): 141-145
    [38] D.Mardare, M.Tasca, M. Delibas, Rusu G.I "On the structural properties and optical transmittance of TiO_2 r.f. sputtered thin films," Appl. Sur. Sci. 2000 (156) :200-206.
    [39] P.V Kamat, "Photochemistry on nonreactive and reactive (semiconductor) .surfaces,"Chem. Rev. 1993( 93):267-300.
    [40] Y. F. Sun, J. Pignatello, "Evidence for a surface dual hole-radical mechanism in the TiO2 photocatalytic oxidation of 2,4-dichlorophenoxyacetic acid," Environ. Sci. Technol.1995, 29(8): 2065-2072
    [41] Coronado Juan M., Michael E. Zornl, Isabel Tejedor-Tejedor, Anderson Marc A., "Photocatalytic oxidation of ketones in the gas phase over TiO_2 thin films: a kinetic study on the influence of water vapor,"Appl. Catalysis B: Environ., 2003(43): 329-344.
    [42] T.L.Thompson, O. Diwald, J. T. Yates, Jr, "Molecular oxygen-mediated vacancy diffusion on TiO_2 (1 1 0)-new studies of the proposed mechanism," Chemical Physics Letters 393 (2004): 28-30
    [43] T.L.Thompson, O. Diwald, J. T. Yates, Jr, "Control of a Surface Photochemical Process by Fractal Electron Transport Across the Surface: O_2 Photodesorption from TiO_2(110)," J. Phys. Chem. B 2006, 110, :7431-7435
    [44] http://www.nature.com/nnano/reshigh/2006/0706/full/nnano.2006.21.html

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700