用户名: 密码: 验证码:
若干半导体纳米簇材料几何结构和相关性质的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
继Kroto等于1985年在激光溅射石墨时发现了C_(60)富勒烯和日本的Iijima在1991年成功合成碳纳米管之后,半导体纳米团簇成为团簇科学领域研究的热点,尤其以碳、硅、硼为基的半导体团簇,在电子学、光学、光电子学、热学以及生物学等方面表现出许多新奇的现象,为科学、工程和技术的发展提供了新的契机。
     随着现代实验技术的发展,越来越多的半导体纳米簇被成功研制出来,但无法从实验上获得这些团簇的几何和电子结构的全面微观信息,因此理论研究成为获得团簇结构信息最有效的途径,尤其是基于密度泛函理论的计算,可以对中等尺寸的体系得到精确度相当高的计算结果。目前,团簇的理论研究,一方面是针对小的团簇开展基础性的研究,探索随着团簇尺寸的增大,团簇如何从结构和特性上向体材结构演化。另一方面,是对团簇材料的研究,目的在于发现和预测特殊材料的特殊性质,从而对功能材料进行理论设计,推动纳米团簇材料的发展。
     基于以上两点,本文利用密度泛函理论方法,对一系列碳、硅、硼为基的混合半导体团簇,按照“由小到大逐级生长”的方法,从理论上设计和预测了它们的几何和电子结构,寻找了这些团簇的基本结构单元、成键规则和生长机制。同时,对于B和A1原子掺杂的碳纳米管团簇材料,在原子和分子水平上研究了它们对若干气体小分子的气敏性能,探讨了有关的微观作用机理,获得了控制其气敏性的关键因素,为相关的实验研究提供了一定的理论指导。
     本文得到的主要创新性结果如下:
     一、预测了碳硅富勒烯存在的可能性,并提出了通过在硅结构中均匀掺杂碳原子来稳定硅笼的新方法。
     富勒烯和纳米管在自然界中通常是共生的,均匀杂化排列的碳化硅纳米管已经被成功合成,但碳硅富勒烯的结构尚未见报道。本文第二章设计了一系列新的无机富勒烯硅碳笼,(SiC)~n(n=6-36),这些笼由均匀杂化排列的Si-C四元环和六元环组成。在B3LYP/LANL2DZ和B3LYP/6-31G(d)水平上研究了这些笼的几何
The discovery of C_(60) molecule by Kroto et al in 1985 and subsequent synthesis of carbon nanotubes by Iijima in 1991 have opened new research opportunities in science, engineering, and technology. Since then, semiconductor clusters, in particular, based on silicon, carbon, boron, have been received much attention, for their novel qualities in electronics, optics, calorifics, even biology.
    In view of that more and more semiconductor clusters have been synthesized successfully, we can't obtain full information about the geometries and electronic qualities from the experiments, while theoretical methods become the most effective approach to study clusters. So in this paper, we study a series of semiconductor clusters containing silicon, carbon and boron in order to discover their ground state structures and the growth mechanisms as well as the building blocks, to design and predict the new clusters with certain special functional materials. On the other hand, we study the special qualities for larger nanocluster materials, such as carbon nanotubes (CNT) doped by B or Al atom as gas sensers in order to direct experiments.
    Now, we have obtained plentiful and substantial conclusions derived as follows:
    1. The present calculations not only indicate that silicon-carbon fullerenes are promised to be synthesized in future, but also provide a new way for stabilizing silicon cages by uniformly doping carbon atoms into silicon structures.
    It is well known that the fullerenes and nanotubes are generally concomitant with each other in the nature. In view of the fact that the SiC nanotubes have been synthesize successfully, (SiC)_n cages are expected to exist in a large family, similar to carbon fullerenes. So in the present work we proposed a series of silicon-carbon cagelike structures, (SiC)_n (n=6-36), based on the C and Si uniformly hybrid four- (4MRs) and six-membered rings (6MRs). As far as we known, this is the first study of SiC fullerenes. Their geometrical and electronic structures, as well as the relative stabilities were investigated systematically using the density functional theory. Our calculations indicate that all SiC cages proposed here present highly structural
引文
[1] 王广厚,团簇物理的新进展[J],物理学进展,1994,14,121。
    [2] 解士杰,韩圣浩,凝聚态物理[M],2001,山东教育出版社,济南。
    [3] 阎守胜,固休物理基础[M],2000,北京大学出版社,北京。
    [4] 王广厚,团簇的结构和奇异性质[J],物理学进展,1993,13(1-2):266-279。
    [5] G. D. Stein, Phys. Teach. 1979, 17, 503.
    [6] E. W. Becket, Z. Phys. 1956,146, 333.
    [7] J. P. Pimukes, L. Ekstrom, R. J. Paff, J. Chem. 1964, 68, 3021.
    [8] W. D. Knight, K.Clemenger, W. A. de Heer, W. A. Saunders, M. Y. Chou, M. L. Cohen, Electronic Shell Structure and Abundances of Sodium Clusters [J]. Phys. Rev. Lett. 1984, 52: 2141-2143.
    [9] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, R. E. Smalley, C_(60) Buckminsterfullerene [J]. Nature 1985, 318:162-163.
    [10] S. Iijima, Helical Microtubules of Graphitic Carbon [J]. Nature 1991, 354: 56-58.
    [11] T. W. Ebbescn, P. M. Ajayan, Large-scale synthesis of carbon nanotubes [J]. Nature 1992, 358: 220-222.
    [12] M. Jose-Yacaman, M. Miki-Yoshida, L. Rend6n, J. G. Santiesteban, Catalytic growth of carbon microtubules with fullerene structure [J]. Appl. Phys. Lett. 1993, 62: 202-204.
    [13] M. Endo, K. Takeuchi, S. Igarashi, K. Kobod, M. Shiraishi, H. W. Kroto, The Production and Structure of Pyrolytic Carbon Nanotubes (Pants) [J]. J. Phys. Chem. Solids 1993, 54: 1841-1848.
    [14] J. Pattanayak, T. Kar, S. Scheiner, Boron-Nitrogen (BN) Substitution of Fullerenes: C_(60) to C_(12)B_(24)N_(24) CBN Ball [J]. J. Phys. Chem. A 2002, 106: 2970-2978.
    [15] D. Wales, D. Mingos, T. Slee, Z. Lin, Clusters in Inorganic and Molecular-Beam Chemistry-some Unifying Principles [J]. Acc. Chem. Rev 1990, 23:17-22.
    [16] I. Katakuse, T. Ichihara, Y. Fujita, T. Matsuo, T. Sakurai, H. Matsuda, Mass distributions of negative cluster ions of copper, silver and gold clusters [J]. Int. J. Mass Spectrum Ion processes. 1985, 74: 33-41.
    [17] I. Katakuse, T. Ichihara, Y. Fujita, T. Matsuo, T. Sakurai, H. Matsuda, Mass distributions of copper, silver and gold clusters and electronic shell structure, Int. J. Mass Spectrum Ion processes [J]. 1985, 67: 229-236.
    [18] M. B. Knickelbein, Electronic shell structure in the ionization potentials of copper clusters [J]. Chem. Phys. Lett. 1992, 192: 129-134.
    [19] B. W. van der Waal, Stability of face-centered cubic and icosahedral Lennard-Jones clusters [J]. J. Chem. Phys. 1989, 90: 3407-3408.
    [20] W. Miehle, O. Kangler, T. Leisner, Mass spectrometric evidence for icosahedral tructure in large rare gas clusters: Ar, Kr, Xe [J]. J. Chem. Phys. 1989, 91: 5940-5952.
    [21] L. A. Bloomfield, R. R. Freemam, W. L. Brown, Photofragmentation of Mass-Resolved Si_(2-12)~+ Clusters [J]. Phys. Rev. Lett. 1985, 54: 2246-2249.
    [22] L. Hanley, S. L. Anderson, Oxidation of small boron cluster ions (B_(13)~+) by oxygen [J]. J. Chem. Phys. 1988, 89: 2848-2860.
    [23] A. Burnin, J. J. BelBruno. Zn_nS_m~+ cluster production by laser ablation[J]. Chem. Phys. Lett. 2002, 362: 341-348.
    [24] F. M. Devienne, R. Combarien, M. Teisseire, Action of different gases, specially nitrogen, on the formation of uranium clusters - comparison with niobium and tantalum clusters [J]. Surf. Sci. 1981, 106: 204-211.
    [25] R. L. Seliger, J. W. Ward, V. Wang, R. L. Kubena, A high-intensity scanning ion probe with submicrometer spot size [J]. Appl. Phys. Lett. 1979, 34: 310-312.
    [26] E. A. Rohlfing, D. M. Cox, A. Kaldor, Photoionization of isolated nickel atom clusters [J]. J. Phys. Chem. 1984, 88: 4497-4502.
    [27] R. M. Wilenzick, D. C. Russell, R. H. Morriss, S. W. Marshall, Uniform Microcrystals of Platinum and Gold [J]. J. Chem. Phys. 1967,47: 533-536.
    [28] I. A. Harris, R. S. Kidwell, J. A. Northby, Structure of Charged Argon Clusters Formed in a Free Jet Expansion [J]. Phys. Rev. Lett. 1984, 53: 2390-2393.
    [29] J. G. Louderback, A. J. Cox, L. J. Lising, D. C. Douglass, L. A. Bloomfield, Z. Phys. D 1993, 26,301.
    [30] J. P. Bucher, D. C. Douglass, L. A. Bloomfield, Magnetic properties of free cobalt clusters [J]. Phys. Rev. Lett. 1991, 66: 3052-3055.
    [31] I. M. L. Billas, J. A. Becker, A. Ch(a|^)telain, W. A. de Heer, Magnetic moments of iron clusters with 25 to 700 atoms and their dependence on temperature [J]. Phys. Rev. Lett. 1993, 71: 4067-4070.
    [32] F. Liu, S. N. Khanna, P. Jena, Magnetism in small vanadium clusters [J]. Phys. Rev.B 1991,43: 8179-8182.
    [33] K. Lee, J. Callaway, Electronic structure and magnetism of small V and Cr clusters [J]. Phys. Rev. B 1993,48: 15358-15364.
    [34] H. Cheng, L. S. Wang, Dimer Growth, Structural Transition, and Antiferromagnetic Ordering of Small Chromium Clusters [J]. Phys. Rev. Lett. 1996,77:51-54.
    [35] A. J. Cox, J. G. Louderback, L. A. Bloomfield, Experimental observation of magnetism in rhodium clusters [J]. Phys. Rev. Lett. 1993, 71: 923-926.
    [36] J. H. Sch(o|¨)n, Ch. Kloc, B. Batlogg, Superconductivity at 52 K in hole-doped C_(60) [J]. Nature 2003,408: 549-552.
    [37] M. Brack, Multipole vibrations of small alkali-metal spheres in a semiclassical description [J]. Phys. Rev. B 1989, 39: 3533-3542.
    [38] K. Selby, M. Vollmer, J. Masui, V. Krsin, W. A. de Heer, W. D. Knight, Surface plasma resonances in free metal clusters [J]. Phys. Rev. B 1989, 40: 5417-5427.
    [39] X. Chen, J. Zhao, G. Wang, Conductance resonance of metal-insulator-metal junction with embedded metal cluster [J]. Appl. Phys. Lett. 1994, 65: 2419-2421.
    [40] J. X. Ma, M. Han, H. Q. Zhang, Y. C. Gong, G. H. Wang, Dense random packing formation of gold cluster-based film characterized by scanning tunneling microscope [J]. Appl. Phys. Lett. 1994,65: 1513-1515.
    [41] K. -M. Ho, A. A. Shvartsburg, B. Pan, Z.-Y Lu, C.-Z. Wang, J. G. Wacker, J. L. Fye, M. F. Jarrold. Structres of medium-sized silicon cluster [J]. Nature, 1998, 392:582-585.
    [42] Y. Chen, J. F. Gerald, J. S. Williams, S. Bulcock, Synthesis of Boron nitride nanotubes at low temperatures using reactive ball milling [J]. Chem. Phys. Lett. 1999, 299:260-264.
    [43] D. Golberg, Y. Bando, W. Han, K. Kurashima, T. Sato, Single-walled B-doped carbon, B/N-doped carbon and BN nanotubes synthesized from single-walled carbon nanotubes through a substitution reaction [J]. Chem. Phys. Lett. 1999, 308: 337-342
    [44] Q. X. Liu, C. X. Wang, N. S. Xu, G. W. Yang, Nanowire formation during catalyst assisted chemical vapor deposition [J]. Phys. Rev. B 2005, 72: 085417.
    [45] M. Kawamura, N. Paul, V. Cherepanov, B. Voigtl(a|¨)nder, Nanowires and nanorings at the atomic level [J]. Phys. Rev. Lett. 2003, 91: 096102.
    [46] M. F. Jarrold, V A. Constant. Silicon cluster ions: evidence for a structural transition [J]. Phys. Rev. Lett. 1991, 67(21): 2994-2997.
    
    [47] M. Menon, K. R. Subbaswamy. Nonorthogonal tight-binding molecular-dynamics study of silicon clusters [J]. Phys. Rev. B 1993,47: 12754-12759.
    [48] Z. Y Lu, C. -Z. Wang, K. -M. Ho. Structures and dynamical properties of C_n, Si_n, Ge_n, and Sn_n clusters with n up to 13 [J]. Phys. Rev. B 2000, 61: 2329-2334.
    [49] B. Liu, Z. -Y. Lu, B. Pan, C. -Z. Wang, K. -M. Ho. Ionization of medium-sized silicon clusters and the geometries of the cations [J]. J. Chem. Phys. 1998, 109: 9401-9409.
    [50] H. Kato, K. Yamashita, K. Morokuma, Abinitio MO study of neutral and cationic boron clusters [J]. Chem. Phys. Lett. 1992, 190: 361-366.
    [51] W. Kratschmer, L. D. Lamb, K. Fostiropoulos, D. R. Huffman, Solid C_(60) - a new form of carbon [J]. Nature, 1990, 347: 354-358.
    [52] K. Yamamoto, H. Funasaka, T. Takahashi, T. Akasaka, Isolation of an active metallofullerene of La@C_(82) [J]. J. Phys. Chem. 1994, 98: 2008-2011.
    [53] A. F. Hebard, M. J. Rosseinsky, R. C. Haddon, et al. Superconductivity at 18 K in potassium-doped C_(60) [J]. Nature 1991,350: 600-601.
    
    [54] D. Golberg, Y. Bando, O. Stéphan, K. Kurashima, Octahedral boron nitride fullerenes formed by electron beam irradiation [J]. Appl. Phys. Lett. 1998, 73: 2441-2443.
    
    [55] A. Hirsch, Ed., Fullerenes and Related Structures [M]. Springer: Berlin, 1999.
    [56] P. Calvert, Nanotube composites: A recipe for strength [J]. Nature 1999, 399: 210-211.
    [57] S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter [J]. Nature 1993, 363:603-605
    [58] A. Thess, R. Lee, P. Nikolaev, H. J. Dai, P. Petit, J. Robert, C. H. Xu, Y. H. Lee, S. G. Kim, A. G Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, R. E. Smalley, Crystalline ropes of metallic carbon nanotubes [J]. Science 1996,273: 483-487.
    [59] W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y Zhou, R. A. Zhao, G. Wang, Large-scale synthesis of aligned carbon nanotubes [J]. Science 1996, 274: 1701-1703.
    [60] L. C. Qin, X. L. Zhao, K. Hirahara, Y. Miyamoto, Y Ando, S. Iijima, Materials science: The smallest carbon nanotube [J]. Nature 2000,408: 50-50.
    [61] N. Wang, Z. K. Tang, J. Chen, G. Li, Materials science: Single-walled 4 A carbon nanotube arrays [J]. Nature 2000,408: 50-51.
    [62] X. Zhao, Y Liu, S. Inoue, T. Suzuki, R. O. Jones, Y. Ando, Smallest Carbon Nanotube Is 3 A in Diameter [J]. Phys. Rev. Lett. 2004,92: 125502.
    [63] R. Saito, et al., Electronic structure of graphene tubules based on C_(60) [J]. Phys. Rev. B 1992,46: 1804-1811.
    [64] C. T. White, D. H. Rorbertson, J. W. Mintmire, Helical and rotational symmetries of nanoscale graphitic tubules [J]. Phys. Rev. B 1993, 47: 5485-5488.
    [65] M. S. Dresselhaus, G. Dresselhaus, R. Saito, C_(60)-related tubules [J]. Solid State Commun. 1992, 84: 201-205.
    
    [66] G. V. Helden, M.T. Hsu, P. R. Kemper, M. T. Bowers, Structures of carbon cluster ions from 3 to 60 atoms: Linears to rings to fullerenes [J]. J. Chem. Phys. 1991, 95(5): 3835-3837.
    
    [67] G. V. Helden, M.T. Hsu, N. Gotts, M. T. Bowers, Carbon Cluster Cations with up to 84 Atoms: Structures, Formation Mechanism, and Reactivity [J]. J. Phys. Chem. 1993,97:8182-8192.
    [68] H. Handschuh, G. Gantef(o|¨)r, B. Kessler, P. S. Bechthold, W. Eberhardt, Stable Configurations of Carbon Clusters: Chains, Rings, and Fullerenes [J]. Phys. Rev. Lett. 1995, 74: 1095-1098.
    [69] S. Q. Wei, R. N. Barnett, U. Landman, Energetics and structures of neutral and charged Si_n (n<10) and sodium-doped Si_nNa clusters [J]. Phys. Rev. B 1997, 55: 7935-7944.
    [70] E. Kaxiras, K. Jackson, Shape of small silicon clusters [J]. Phys. Rev. Lett. 1993, 71:727-730.
    [71] M. F. Jarrold, V. A. Constant, Silicon cluster ions: Evidence for a structural transition [J]. Phys. Rev. Lett. 1991, 67: 2994-2997.
    [72] B. Zheng, Y. Y. Wu, P. Yang, J. Liu, Synthesis of Ultra-Long and Highly Oriented Silicon Oxide Nanowires from Liquid Alloys [J]. Adv. Mater. 2002, 14: 122-124.
    [73] M. Lin, K. P. Loh, C. Boothroyd, A. Du, Nanocantilevers made of bent silicon carbide nanowire-in-silicon oxide nanocones [J]. Appl. Phys. Lett. 2004, 85: 5388-5390.
    
    [74] J. Berkowitz, W. A. Chupka, J. Chem. Phys. 1964,40, 2735.
    [75] S. J. La Placca, P. A. Roland, J. J. Wynne, Boron clusters (Bn, n = 2-52) produced by laser ablation of hexagonal boron-nitride [J]. Chem. Phys. Lett. 1992, 190: 163-168.
    
    [76] S. Becker, H. J. Dietze, cluster ion formation of boron-nitride in laser plasma [J]. Int. J Mass. Spectrom. Ion Processes 1986, 73: 157-166.
    [77] L. Hanley, S. L. Anderson, Production and collision-induced dissociation of small boron cluster ions [J]. J. Phys. Chem., 1987, 91: 5161-5163.
    [78] A. C. Tang, Q. S. Li, C. W. Liu, J. Li, Symmetrical clusters of carbon and boron [J]. Chem. Phys. Lett. 1993, 201: 465-469.
    [79] R. A. Whiteside, Ph.D. Thesis [M]. Camegia Mellon University, Pittsburgh, 1981.
    [80] L. Hanley, J. L. Whitten, ,S. L. Anderson, Collision-induced dissociation and abinitio studies of boron cluster ions - determination of structures and stabilities [J]. J. Phys. Chem. 1988,92: 5803-5812.
    [81] R. Kawai, J. H. Weare, Anomalous stability of B_(13)~+ clusters [J]. Chem. Phys. Lett. 1992, 191:311-314.
    [82] A. Ricca, C. W. Bauschlicher, The structure and stability of Bn~+ clusters [J]. J. Chem. Phys. 1996, 208: 233-242.
    [83] J. Niu, B. K. Rao, P. Jena, Atomic and electronic structures of neutral and charged boron and boron-rich clusters [J]. J. Chem. Phys. 1997,107: 132-140.
    [84] F. L. Gu, X. Yang, A. C. Tang, H. Jiao, V. R. Schleyer, Structure and stability of B_(13)~+ clusters [J]. J. Comput. Chem. 1998, 19: 203-214.
    [85] I. Boustani, New convex and spherical structures of bare boron clusters [J]. J. Solid State Chem. 1997, 133: 182-189.
    [86] D. R. Hartree, Proc. Camb. Phil. Soc. 1928,24: 111.
    [87] V. Fock, N(a|¨)herungsmethoden zur L(o|¨)sung des Quantenmechanischen Mehrk(o|¨)rperproblems [J]. Zeit. Phys. 1930, 61:126.
    [88] C. C. J. Roothaan, New developments in Molecular Orbital Theory [J], Rev. Mod. Phys. 1951,23:69-89.
    
    [89] J. B. Foresman, M. Head-Gordon, J. A. Pople and M. J. Frisch, Toward a systematic molecular orbital theory for excited states [J]. J. Phys. Chem. 1992, 96:135-149.
    
    [90] E. A. Hylleraas, Zeit. Physik, 1928,48:469.
    [91] C. Moller and M. S. Plesset, Note on an Approximation Treatment for Many-Electron Systems [J]. Phys. Rev. 1934, 46: 618.
    [92] M. Head-Gordon, J. A. Pople and M. J. Frisch, MP2 energy evaluation by direct methods [J]. Chem. Phys. Lett. 1988,153: 503-506.
    [93] (a) M. J, Frisch, M. Head-Gordon and J. A. Pople, A direct MP2 gradient method[J]. Chem. Phys. Lett. 1990, 166: 275-280.
    
    (b) M. J. Frisch, M. Head-Gordon and J. A. Pople, Semi-direct algorithms for the MP2 energy and gradient [J]. Chem. Phys. Lett. 1990,166: 281-289.
    [94] M. Head-Gordon and T. Head-Gordon, Analytic MP2 frequencies without fifth-order storage. Theory and application to bifurcated hydrogen bonds in the water hexamer [J]. Chem. Phys. Lett. 1994, 220: 122-128.
    [95] S. Saebo and J. Almlof, Avoiding the integral storage bottleneck in LCAO calculations of electron correlation [J]. Chem. Phys. Lett. 1989, 154: 83-89.
    [96] H.Thomas, The Calculation of Atomic Fields [J]. Pro. Camb. Phil. Soc. 1927, 23: 545.
    [97] R. Fermi, A Statistical Method for Determining Some Properties of the Atom [J]. Atti Accad Lincei, 1927, 6:602.
    
    [98] P. Hohenberg, W. Kohn, Inhomogeneous electron gas [J]. Phys. Rev. 1964, 136: B864.
    [99] W. Kohn, L.J. Sham, Self-consistent Eguations Including Exchange and Correlation Effects [J]. Phys. Rev. A 1965,140, 1133.
    [100] A.Rubio, J. L. Corkill, M. L. Cohen, Theory of graphitic boron-nitride nanotubes [J]. Phys. Rev. B 1994,49: 5081-5804.
    [101] J. Cumings, A. Zettl, Mass-production of boron nitride double-wall nanotubes and nanococoons [J]. Chem. Phys. Lett. 2000, 316: 211-216.
    [102] D. J. Zhang, R. Q. Zhang, Chem. Theoretical prediction on aluminum nitride nanotubes [J]. Phys. Lett. 2003, 371: 426-432.
    [103] Q. Wu, Z. Hu, X. Z. Wang, Y. N. Lu, X. Chen, H. Xu, Y. Chen, Synthesis and characterization of faceted hexagonal aluminum nitride nanotubes [J]. J. Am. Chem. Soc. 2003, 125: 10176-10177.
    [1] H. Kuzmany, J. Fink, M. Mehring, S. Roth, Fullerenes and Fullerene Nanostructures [M], World Scientific: Singapore, 1996.
    [2] J. Cioslowski, Electronic Structure Calculations on Fullerenes and Their Derivatives [M], Oxford University Press: New York, 1995.
    [3] M. Cote, M. L. Cohen, D. J. Chadi, Theoretical study of the structural and electronic properties of GaSe nanotubes [J]. Phys. Rev. B 1998, 58: R4277-R4280.
    [4] D. L. Strout, Structure and Stability of Boron Nitrides: Isomers of B_(12)N_(12) [J]. J. Phys. Chem. A 2000, 104: 3364-3366.
    [5] S. S. Alexandre, M. S. C. Mazzoni, H. Chacham, Stability, geometry, and electronic structure of the boron nitride B_(36)N_(36) fullerene [J]. Appl. Phys. Lett. 1999, 75: 61-63.
    [6] N. G. Chopra, R. J. Luyren, K. Cherry, V. H. Crespi, M. L. Cohen, S. G. Louis, A. Zettl, Boron nitride nanotubes [J]. Science 1995, 269: 966-967.
    [7] R. Tenne, L. Margulis, M. Genut, G. Hodes, Polyhedral and Cylindrical Structures of WS2 [J]. Nature 1992, 360: 444-446.
    [8] Y. Feldman, E. Wasserman, D. J. Srolovitz, R. Tenne, High-rate, gas-phase growth of MoS_2 nested inorganic fullerenes and nanotubes [J]. Science 1995, 267: 222-225.
    [9] J. Pattanayak, T. Kar, S. Seheiner, Boron-Nitrogen (BN) Substitution of Fullerenes: C_(60) to C_(12)B_(24)N_(24) CBN Ball [J]. J. Phys. Chem. A 2002, 106: 2970-2978.
    [10] D. Golberg, Y. Bando, O. Stephan, K. Kurashima, Octahedral boron nitride fullerenes formed by electron beam irradiation [J]. Appl. Phys. Lett. 1998, 73: 2441-2443.
    [11] A. Rubio, J. L. Corkill, M. L. Cohen, Theory of graphitie boron nitride nanotubes [J]. Phys. Rev. B 1994, 49: 5081-5084.
    [12] J. Cumings, A. Zettl, Mass-production of boron nitride double-wall nanotubes and nanococoons [J]. Chem. Phys. Lett. 2000, 316: 211-216.
    [13] H. S. Wu, F. Q. Zhang, X. H. Xu, C. J. Zhang, H. J. Hiao, Geometric and Energetic Aspects of Aluminum Nitride Cages [J]. J. Phys. Chem. A 2003, 107: 204-209.
    [14] D. J. Zhang, R. Q. Zhang, Theoretical prediction on aluminum nitride nanotubes [J]. Chem. Phys. Lett. 2003, 371: 426-432.
    [15] Q. Wu, Z. Hu, X. Z. Wang, Y. N. Lu, X. Chen, H. Xu, Y. Chen, Synthesis and Characterization of Faceted Hexagonal Aluminum Nitride Nanotubes |J]. J. Am. Chem. Soc. 2003, 125: 10176-10177.
    [16] H. W. Kroto, K. Mckay. 'The Formation of Quasi-icosahedral Spiral Shell Carbon Particles [J]. Nature 1988, 331, 328-331.
    [17] S. Sawada, N. Hamada, Energetics of carbon nano-tubcs [J]. Solid State Commun, 1992, 83(11): 917-919.
    [18] F. Khan, J. Broughton, Relaxation of icosahedral-cage silicon clusters via tight-binding molecular dynamics [J]. Phys. Rev. B 1991, 43: 11754-11761.
    [19] M. Pellarin, C. Ray, J. Lcrme, J. L. Vialle, M. Broyer, X. Blase, P. Keghelian, P. Melinon, A. Perez, Photolysis experimcnts on SiC mixed clusters: From silicon carbide clustcrs to silicon-doped fullcrenes [J]. J. Chem. Phys. 1999, 110: 6927-6938.
    [20] P. A. Marcos, J. A. Alonso, L. M. Molina, A. Ruble, M. J. Lopcz, Structural and thermal properties of silicon-doped fullerenes [J]. J. Chem. Phys. 2003, 119: 1127-1135.
    [21] M. Matsubara, C. Massobrio, Bonding behavior and thermal stability of C_(54)Si_6: A first-principles molecular dynamics study [J]. J. Chem. Phys. 2005, 122: 084304.
    [22] X. H. Sun, C. P. Li, W. K. Wong, N. B. Wong, C. S. Lee, S. T. Lee, B. K. Tee, Formation of Silicon Carbide Nanotubes and Nanowires via Reaction of Silicon (from Disproportionation of Silicon Monoxide) with Carbon Nanotubes [J]. J. Am. Chem. Soc. 2002, 124: 14464-14471.
    [23] M. Menon, E. Richter, A. Mavrandonakis, G. Froudakis, A. N. Andriotis, Structure and stability of SiC nanotubes [J]. Phys. Rev. B 2004, 69: 115322.
    [24] A. Mavrandonakis, G. E. Froudakis, M. Schnell, M. Muhlhauser, From Pure Carbon to Silicon-Carbon Nanotubes: An Ab-initio Study [,]]. Nano Lett. 2003, 3: 1481-1484.
    [25] M. Bhatnagar, B. J. Baliga, Comparison of 6H-SiC, 3C-SiC, and Si for power devices [J]. IEEE Trans. Electron Devices 1993, 40: 645-655.
    [26] W. J. Cho, R. Kosugi, J. Senzaki, K. Fukuda, K. Arai, S. Suzuki, Study on electron trapping and interface states of various gate dielectric materials in 4H-SiC metal-oxide-semiconductor capacitors [J]. Appl. Phys. Lett. 2000, 77: 2054-2056.
    [27] M. Pellarin, C. Ray, P. Melinon, J. Lerme, J. L. Vialle, P. Keghelian, A. Perez, M. Brayer, Silicon-carbon mixed clusters [J]. Chem. Phys. Lett. 1997, 277: 96-104.
    [28] H. Yamamoto, H. Asaoka, Formation of binary clusters by molecular ion irradiation [J]. Appl. Surf. Sci. 2001, 169-170: 305-309.
    [29] J. M. Rintelman, M. S. Gordon, Structure and energetics of the silicon carbide clusters SiC_3 and Si_2C_2 [J]. J. Chem. Phys. 2001, 115: 1795-1803.
    [30] Z. Y. Jiang, X. H. Xu, H. S. Wu, F. Q. Zhang, Z. H. Jin, First principles studies on the structures, electronic states and stability of Si_(n-m)C_m clusters [J]. Theochem. 2003, 621: 279-284.
    [31] M. Bertolus, F. Finocchi, P. Millie, Investigating bonding in small silicon-carbon clusters: Exploration of the potential energy surfaces of Si_3C_4, Si_4C_3, and Si_4C_4 using ab initio molecular dynamics [J]. J. Chem. Phys. 2004, 120: 4333-4343.
    [32] P. Pradhan, A. K. Ray, A density functional study of the structures and energetics of small hetero-atomic silicon-carbon nanoclusters [J]. Theochem. 2005, 716: 109-130.
    [33] M. Cerari, S. Cucinella, The Chemistry of Inorganic Homo-and Heterocycles [M], Academic Press: London, 1987, 167.
    [34] P. W. Fowler, How Unusual is C_(60)? Magic Numbers for Carbon Clusters [J]. Chem. Phys. Lett. 1986,131: 444-450.
    [35] M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., GAUSSION 03, Revision B.01, Gaussian, Inc., Pittsburgh, PA, 2003.
    [1] D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, Amorphous silica nanowires: Intensive blue light emitters [J]. Appl. Phys. Lett. 1998, 73: 3076-3078.
    [2] X. C. Wu, W. H. Song, K. Y. Wang, T. Hu, B. Zhao, Y. P. Sun, J. J. Du, Preparation and Photoluminescence Properties of Amorphous Silica Nanowires [J]. Chem. Phys. Lett. 2001, 336: 53-56.
    [3] J. Q. Hu, Y. Jiang, X. M. Meng, C. S. Lee, S. T. Lee, A simple large-scale synthesis of very long aligned silica nanowires [J]. Chem. Phys. Lett. 2003, 367: 339-347.
    [4] C. R. Martin, Membrane-Based Synthesis of Nanomaterials [J]. Chem. Mater. 1996, 8: 1739-1746.
    [5] S. O. Obare, N. R. Jana, C. J. Murphy, Preparation of Polystyrene- and Silica-Coated Gold Nanorods and Their Use as Templates for the Synthesis of Hollow Nanotubes [J]. Nano Lett. 2001, 1: 601-603.
    [6] J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, and S. T. Lee, Fabrication of Germanium-Filled Si nanotubes and Aligned Si nanofiber [J]. Adv. Mater. 2003, 15: 70-73.
    [7] D. A. Muller, T. Sorch, S. Moccio, F. H. Baumann, K. Evanslutterodt, G. Timp, The electronic structure at the atomic scale of ultrathin gate oxides [J]. Nature 1999, 399: 758-761.
    [8] W. Wang, B. Gu, L. Liang, W. Hamilton, Fabrication of Two- and Three-Dimensional Silica Nanocolloidal Particle Arrays [J]. J. Phys. Chem. B 2003, 107: 3400-3404.
    [9] C. Tourne-Peteilh, D. A. Lerner, C. Chamay, L. Nicole, S. Begu, J. -M. Devoisselle, The potential of ordered mesoporous silica for the storage of drugs: the example of a pentapeptide encapsulated in an MSU-Tween 80[J]. Chem. Phys. Chem. 2003, 4: 281-286.
    [10] J. L. Gole, Z. L. Wang, SnO_x Nanocrystallites Supported by Silica Nanostructures [J]. Nano Lett. 2001, 1: 449-451.
    [11] L. S. Wang, J. B. Nicholas, M. Dupuis, H. Wu, S. D. Colson, Si_3O_y (y = 1-6) Clusters: Models for Oxidation of Silicon Surfaces and Defect Sites in Bulk Oxide Materials [J]. Phys. Rev. Lett. 1997, 78: 4450-4453.
    [12] P. E. Lafargue, J. J. Gaumet, J. F. Muller, A. Labrosse, Laser ablation of silica: Study of induced clusters by Fourier transform ion cyclotron resonance mass spectrometry [J]. J. Mass Spectrom. 1996, 31: 623-632.
    [13] S. K. Nayak, B. K. Rao, S. N. Khanna, P. Jena, Atomic and electronic structure of neutral and charged Si_nO_m clusters [J]. J. Chem. Phys. 1998,109: 1245-1250.
    [14] E. Flikkema, S. T. Bromley, A new interatomic potential for nanoscale silica [J]. Chem. Phys. Lett. 2003, 378: 622-629.
    [15] S. T. Bromley, Thermodynamic Stability of Discrete Fully Coordinated SiO_2 Spherical and Elongated Nanocages [J]. Nano Lett. 2004,4: 1427-1432.
    [16] R. Kishi, Y. Negishi, H. Kawamata, S. Iwata, A. Nakajima, K. Kaya, Geometric and electronic structures of fluorine bound silicon clusters [J]. J. Chem. Phys. 1998,108: 8039-8058.
    [17] R. Kishi, S. Iwata, A. Nakajima, K. Kaya, Geometric and electronic structures of silicon-sodium binary clusters. I. Ionization energy of Si_nNa_m [J]. J. Chem. Phys. 1997,107: 3056-3070.
    [18] J. L. Fye, M. F. Jarrold, Structures of Silicon-Doped Carbon Clusters [J]. J. Phys. Chem. A 1997,101:1836-1840.
    [19] S. F. Wang, J. K. Feng, K. Q. Yu, M. Cui, A. M. Ren, C. C. Sun, P. Liu, Z. Gao, F. A. Kong, DFT studies of structures and vibrational spectra of silicon-sulfur clusters (SiS2)_n~+ (n=1-5) [J]. Theochem. 2000,499: 241-255.
    [20] S. F. Wang, J. K. Feng, C. C. Sun, P. Liu, Z. Gao, F. A. Kong, Theoretical study of silicon-sulfur clusters (SiS2)_n (n=1-6) [J]. Theor. Chem. Acc. 2001,106: 163-170.
    [21] S. F. Wang, J. K. Feng, C. C. Sun, P. Liu, Z. Gao, F. A. Kong, Theoretical study of silicon-sulfur clusters (SiS_2)_n~- (n=1-6) [J]. Int. J. Quantum Chem. 2001, 81: 280-290.
    [22] H. Schnockel, Matrix-Isolation of OSiS-IR Spectroscopic Evidence For the Si=S Double-Bond [J]. Angew. Chem. 1980, 19: 323-324.
    [23] T. Kruger, An ab Initio Study of the Silicon-Oxygen-Sulfur Oligomers (SiOS)n(n≤6) [J]. J. Phys. Chem. A 2003, 107: 6259-6263.
    [24] P. Redondo, A. Saguilo, A. Largo, J. Phys. Chem. 1998, 102: 3953-3958.
    [25] J. D. Presilla-Marquez, C. M. L. Rittby, W. R. M. Graham. Vibrational spectra of hexa-atomic silicon-carbon clusters. I. Linear SiC_4Si. [J] J. Chem. Phys. 1997, 106: 8367-8373.
    [26] Q. Sun, Q. Wang, P. Jena, Comment on "Fully Coordinated Silica Nanoclusters: (SiO_2)N Molecular Rings" [J]. Phys. Rev. Lett. 2004, 92: 039601.
    [27] S. T. Bromley, M. A. Zwijnenburg, Th. Maschmeyer, Fully Coordinated Silica Nanoclusters: (SiO_2), Molecular Rings [J]. Phys. Rev. Lett. 2003, 90: 035502.
    [28] H. Yamamoto, H. Asaoka, Formation of binary clusters by molecular ion irradiation [J]. Appl. Surf. Sci. 2001, 169-170: 305-309.
    [29] R. X. Wang, D. J. Zhang, C. B. Liu, Theoretical study of silico-oxygen-sulfur oligomers (SiOS)_n(n=1-6) [J]. Chem. Phys. Lett. 2005, 404: 237-243.
    [30] G. Pascoli, H. Lavendy, Theoretical Study of C_nP, C_nP~+, C_nP~-(n=1-7) Clusters [J]. J. Phys. Chem. A 1999, 103: 3518-3524.
    [31] G. Pascoli, H. Lavendy, Structures and energies of CnSi~+(4≤n≤15) silicon carbide clusters [J]. Int. J. Mass Spectrom. 1998, 173: 41-54.
    [1] C. Wood, D. Emin, Conduction mechanism in boron carbide[J]. Phys. Rev. B 1984, 29: 4582-4587.
    [2] Telle, R. In structure and Properties of Ceramics, Materials Science and Technology [M]. VCH: Weinheim, Germany, 1994, Vol.11.
    [3] A. O. Sezer, J. I. Brand, Chemical vapor deposition of boron carbide[J]. Mater. Sci. Eng. B 2001, 79:191-202.
    [4] R. Lazzari, N. Vast, J. M. Besson, S. Baroni, A. Dal. Corso, Atomic Structure and Vibrational Properties of Icosahedral B_4C Boron Carbide [J]. Phys. Rev. Lett. 1999, 83: 3230-3233.
    [5] F. F. Xu, Y. Bando, Formation of Two-Dimensional Nanomaterials of Boron Carbides[J]. J. Phys. Chem. B 2004, 108: 7651-7655.
    [6] T. L. Aselage, D. Emin, S. S. McCready, Softening bipolaron Conductivities and Seebeck coefficients of boron carbides: hopping[J]. Phys. Rev. B 2001, 64: 054302.
    [7] D. N. Mcllroy, D. Zhang, R. M. Cohen, J. Wharton, Electronic and dynamic studies of boron carbide nanowires[J]. Phys. Rev. B 1999, 60: 4874-4879.
    [8] D. N. Mcllroy, D. Zhang, Y. Kranov, M. G. Norton, Nanosprings[J]. Appl. Phys. Lett. 2001, 79: 1540-1542.
    [9] R. Z. Ma, Y. Bando, Investigation on the Growth of Boron Carbide Nanowires[J]. Chem. Mater. 2002, 14: 4403-4407.
    [10] I. McColm, J. Ceramic Hardness [M]. Plenum Press, New York, 1990.
    [11] Y. Miyamoyo, A. Rubio, S. G. Louie, M. L. Cohen, Electronic properties of tubule forms of hexagonal BC_3[J]. Phys. Rev. B 1994, 50, 18360-18366.
    [12] L. B., Jr. Knight, S. T. Cobranchi, J. T. Petty, E. Earl, D. Feller, E. R. Davidson, Electron spin resonance investigations of~(11)B~(12)C, ~(11)B~(13)C, and ~(10)B~(12)C in neon, argon, and krypton matrices at 4 K: Comparison with theoretical results [J]. J. Chem. Phys. 1989, 90: 690-699.
    [13] G. Hirsch, R. J. Buenker, Theoretical study of the properties of BC and its positive ion in their ground and excited electronic states [J]. J. Chem. Phys. 1987, 87: 6004-6011.
    [14] J. E. Kouba, Y. Ohrn, Natural Orbital Valence Shell CI Studies of Diatomic Molecules. Ⅱ. Potential Energy Curves and Spectra of Boron Carbide [J]. J. Chem. Phys. 1970, 53: 3923-3932.
    [15] J. M. L. Martin, P. R. Taylor, J. T. Yustein, T. R. Burkholder, L. Andrews, Pulsed laser evaporation of boron/carbon pellets: Infrared spectra and quantum chemical structures and frequencies for BC_2 [J]. J. Chem. Phys. 1993, 99: 12-17.
    [16] J. D. Presilla-Marquez, C. W. Larson, P. G. Carrick, C. M. L. Rittby, Fourier transform infrared spectroscopy of the v_2 vibration of BC_2 in Ar at 10 K [J]. J. Chem. Phys. 1996, 105: 3398-3405.
    [17] G. Verhaegen, F. E. Stafford, J. Drowart, Mass Spectrometric Study of the Systems Boron-Carbon and Boron-Carbon-Silicon [J]. J. Chem. Phys. 1964, 40: 1622-1628.
    [18] C. W. Larson, J. D. Presilla-Merquez, Vibrational spectrum of B_2C in argon at 10 K [J]. J. Chem. Phys. 1999, 111: 1988-1992.
    [19] J. M. L. Martin, P. R. Taylor, Ab initio study of the molecules BC and B_2C [J]. J. Chem. Phys. 1994, 100: 9002-9006.
    [20] S. Beeker, H. -J. Dietze, Cluster ions in the laser mass-spectra of boron-carbide [J]. Int. J. Mass Spectrom. Ion Processes 1988, 82, 287-298.
    [21] J. D. Presilla-Marquez, P. G. Carrick, C. W. Larson, Vibrational spectra of linear BC_3 and linear B_2C_2 in argon at 10K [J]. J. Chem. Phys. 1999, 110: 5702-5709.
    [22] C. R. Wang, R. B. Huang, Z. Y. Liu, L. S. Zheng, Laser generation and ab initio studies of C_nN~- clusters [J]. Chem. Phys. Lett. 1995, 237: 463-467.
    [23] C. G. Zhan, S. lwata, Ab Initio Studies on the Stnlctures, Vertical Electron Detachment Energies, and Fragmentation Energies of C_nB~- Clusters [J]. J. Phys. Chem. A 1997, 101: 591-596.
    [24] K. Chuchev, J. J. Belbruno, Density Functional Theory Study of the Isomers of C_nB and Cn_B_2[J]. J. Phys. Chem. A 2004, 108: 5226-5233.
    [25] A. Van Orden, R. J. Saykally, Small Carbon Clusters: Spectroscopy, Structure, and Energetics [J]. Chem. Rev. 1998, 98: 2313-2358.
    [26] 葛茂发,黄旭日,封继康,杨成,孙家钟,B_4C_2、B_2C_4簇的从头算研究[J]. 高等学校化学学报,1997,18:1838-1841.
    [27] 葛茂发,封继康,黄旭日,杨成,孙家钟,B_2C_4簇的结构和振动光谱的理论研究[J].高等学校化学学报,1996,17:1458-1461.
    [28] H. Yamamoto, T. Saito, Fabrication and stability of binary clusters by reactive molecular ion irradiation[J]. Nucl. Instr. and Meth. in Phys. Res. B 2003, 206: 42-46.
    [29] P. J. Hay, W. R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals [J]. J. Chem. Phys. 1985, 82: 299-310.
    [30] M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussion 03, Rev. B.01; Gaussian, Inc.: Pittsburgh, PA, 2003.
    [31] H. J. Zhai, L. S. Wang, A. N. Alexandrova, A. I. Boldyrev, V. G. Zakrzewski, Photoelectron Spectroscopy and ab Initio Study of B_3~- and B_4~- Anions and Their Neutrals [J]. J. Phys. Chem. A 2003, 107: 9319-9328.
    [32] I. Boustani, Structure and stability of small boron clusters. A density functional theoretical study [J]. Chem. Phys. Lett. 1995, 240: 135-140.
    [33] C. Thomson, Electronic structure of unstable intermediates. I. The electronic structure of some linear triatomic molecules containing boron [J]. J. Chem. Phys. 1973, 58: 216-219.
    [34] W. C. Easley, W. Jr. Weltner, ESR of the BC_2 Molecule in Inert Matrices at 4°K [J]. J. Chem. Phys. 1970, 52: 1489-1493.
    [35] G. L. Li, Z. C. Tang, Parity Alternation Effects in the Stabilities of the Second-Row-Atom-Doped Linear Carbon Clusters C,,X/C,,X~+/C_nX~-(n=1-10; X=Na, Mg, Al, Si, P, S or Cl). A Comparative Study |J]. J. Phys. Chem. A 2003, 107: 5317-5326.
    [36] R. X. Wang, D. J. Zhang, C. B. Liu, Theoretical prediction of a novel inorganic fullerene-like family of silicon-carbon materials [J]. Chem. Phys. Lett. 2005, 411: 333-338.
    [37] P. Redondo, C. Barrientos, A. Largo, Theoretical Study of the Structures and Stabilities of Small CaC_n, CaC_n~+, and CaC_n~-(n=1-8) Cyclic Clusters [J]. J. Phys. Chem. A 2004, 108: 11132-11140.
    [1] R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical Properties of Carbon Nanotubes [M]. Imperial College Press, 1998.
    [2] M. Law, H. Kind, B. Messer, F. Kim, P.D. Yang, Covalently functionalized nanotubes as nanometresized probes in chemistry and biology [J]. Angew. Chem. Int. Edit. 2002,41: 2405-2408.
    [3] J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, H. Dai, Nanotube molecular wires as chemical sensors [J]. Science 2000,287: 622- 625.
    [4] P. G. Collins, K. Bradley, M. Ishigami, A. Zettl, Extreme oxygen sensitivity of electronic properties of carbon nanotubes [J]. Science 2000,287: 1801-1804.
    [5] A.Goldoni, R. Larciprete, L. Petaccia, S. Lizzit, Single-wall carbon nanotube interaction with gases: sample contaminants and environmental monitoring [J]. J. Am. Chem. Soc. 2003,125: 11329-11333.
    [6] B. Y. Wei, C. S. Lin, H. M. Lin, Examining the gas-sensing behaviors of carbon nanotubes using a piezoelectric quartz crystal microbalance [J]. Sensors and Material 2003,15:177-190.
    [7] J. Kong, M. G. Chapline, H. Dai, Functionalized corbon nanotube for molecular hydrogen sensors [J], Adv. Mater 2001,13: 1384-1386.
    [8] L. Duclaux, Review of the doping of carbon nanotubes (multiwalled and single-walled) [J]. Carbon 2002,40: 1751-1764.
    [9] A. Modi, N. Koratkar, E. Lass, B. Wei, P. M. Ajayan, Miniaturized gas ionization sensors us carbon nanotubes [J]. Nature 2003,424:171-174.
    [10] J. N. Wohlstadter, J. L. Wilbur, G. B. Sigal, H. A. Biebuyck, M. A. Billadeau, L. W. Dong,A. B. Fischer, S. R. Gudibande, S. H. Jamieson, J. H. Kenten, J. Leginus, J. K. Leland, R. J.Massey, S. J. Wohlstadter, Carbon nanotube-based biosensor [J]. Adv. Mater. 2003,15: 1184.
    
    [11] K. Besteman, J. O. Lee, F. G. N. Wierzt, H. A. Heering, C. Dekker, Enzyme-coated carbon nanotubes as single-molecule biosensor [J]. Nano Lett. 2003,3: 727-730.
    [12] P. G. Collins, M. Hersam, M. Arnold, R. Martel, and P. Avouris, Current saturation and electrical breakdown in multiwalled carbon nanotubes [J]. Phys. Rev. Lett. 2001, 86: 3128-3131.
    [13] S. H. Jhi, S.G. Louie, and M.L. Cohen, Electronic properties of oxidized carbon nanotubes [J]. Phys. Rev. Lett. 2000, 85: 1710-1713.
    [14] E. Dujardin, T. Ebbesen, A. Krishnan, and M. Treacy, Purification of Single-Shell Nanotubes [J]. Adv. Mater. 1998,10: 611.
    [15] C.Y. Moon, Y.S. Kim, E.C. Lee, Y.G. Jin, K.J. Chang, Mechanism for oxidative etching in carbon nanotubes [J]. Phys. Rev. B 2002, 65: 155401.
    [16] S. B. Fagan, L. B. Silva, R. Mota, Ab initio Study of Radial Deformation Plus Vacancy on Carbon Nanotubes: Energetics and Electronic Properties [J]. Nano Lett. 2003,3:289-291.
    [17] L. B. Silva, S. B. Fagan, R. Mota, Ab Initio Study of Deformed Carbon Nanotube Sensors for Carbon Monoxide Molecules [J]. Nano Lett. 2004,4: 65-67.
    [18] H. Pan, Y. P. Feng, J. Y. Lin, Ab initio study of OH-functionalized single-wall carbon nanotubes [J]. Phys. Rev. B 2004,70: 245425.
    
    [19] E. Bekyarova, M. Davis, T. Burch, M. E.Itkis, B. Zhao, S. Sunshine, R.C. Haddon, Chemically Functionalized Single-Walled Carbon Nanotubes as Ammonia Sensors [J]. J. Phys. Chem. B 2004,108: 19717-19720.
    [20] J. Zhao, J. Lu, Noncovalent functionalization of carbon nanotubes by aromatic organic molecules [J]. Appl. Phys. Lett. 2003, 82: 3746-3748.
    [21] Z. Zhou, X. Gao, J. Yan, D. Song, M. Morinaga, Enhanced Lithium Absorption in Single-Walled Carbon Nanotubes by Boron Doping [J]. J. Phys. Chem. B 2004, 108: 9023-9026.
    [22] F. Villalpando-Paez, A. H. Romero, E. Munoz-Sandoval, L. M. Martinez, H. Terrones, M. Terrones, Fabrication of vapor and gas sensors using films of aligned CN_x nanotubes [J]. Chem. Phys. Lett. 2004, 386:137-143.
    [23] S. Peng, K. Cho, Ab Initio Study of Doped Carbon Nanotube Sensors [J]. Nano Lett. 2003,3: 513-517.
    [24] W. Han, J. Cumings, X. Huang, K. Bradley, A. Zettl, Synthesis of aligned B_xC_yN_z nanotubes by a substitution-reaction route [J]. Chem. Phys. Lett. 2001, 346: 368-372.
    [25] B. Y. Wei, M. C. Hsu, P. G. Su, H. M. Lin, R. J. Wu, H. J. Lai, A novel SnO_2 gas sensor doped with carbon nanotubes operating at room temperature [J]. Sens. Actuators B 2004,101: 81- 89.
    [26] Q. Zhao, M.B. Nardelli, W. Lu, J. Bernholc, Carbon Nanotube-Metal Cluster Composites: A New Road to Chemical Sensors? [J]. Nano Lett. 2005, 5: 847-851.
    [27] Registry of Toxic Effects of Chemistry Substances. National Institute of Occupational Safety and Health, Washington, D.C. 1976.
    [28] B. Magada, H. El-Yazbi, Spectrophotometric determination of aldehydes in alcohols [J]. Anal. Lett. 1991,24: 857-869.
    [29] W. Li, X. Chen, Z. Cheng, Huanjing Huaxue, 1988, 7,53.
    [30] E. R. Kennedy, Jr. R. H. Hill, Determination of formaldehyde in air as an oxazolidine derivative by capillary gas chromatography [J]. Anal. Chem. 1982, 54: 1739-1742.
    [31] L. Nieves, M. Wentzell, D. Peter, S. R. Grouch, Continuous flow method for the determination of aromatic aldehydes [J]. Anal. Chim. Acta 1992,258: 253-258.
    [32] J. L. Weng, M. H. Ho, fluorometric enzymatic method for determination of formaldehyde [J]. Anal. Lett. 1990,23: 2155 - 2174.
    [33] Z. Q. Zhang, H. Zhang, G. F. He, Preconcentration with membrane cell and adsorptive polarographic determination of formaldehyde in air [J]. Talanta, 2002, 57:317-322.
    [34] K. Motyka, P. Miku(s|ˇ)ka, Continuous fluorescence determination of formaldehyde in air [J]. Anal. Chim. Acta. 2004,518: 51-57.
    [35] J. P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy [J]. Phys. Rev. B 1992,45:13244-13249.
    [36] D. Srivastva, M. Menon, K. Cho, Nanoplasticity of Single-Wall Carbon Nanotubes under Uniaxial Compression [J]. Phys. Rev. Lett. 1999, 83: 2973-2976.
    [37] P. Patnaik, A Comprehensive Guide to the Hazardous Properties of Chemical Substances [M]. 2nd ed., Wiley, New York, 1999.
    [38] N. Balasubramanian, B. S. M. Kumar, Extraction-spectrophotometric determination of hydrogen sulphide [J]. Analyst, 1990,115: 859- 863.
    [39] D. F. Adams, W. L. Bamesberger, T. J. Robertson, J. Air Pollut. Control Assoc. 1968,18: 145.
    [40] S. Jacobsson, O. Falk, Determination of hydrogen-sulfide by porous-layer open-tubular column gas-chromatography mass-spectrometry [J]. J. Chromatogr. 1989,479: 194-199.
    [41] Y. Yan, N. Miura, N. Yamazoe, Potentiometric sensor using stabilized zirconia and tungsten-oxide for hydrogen-sulfide [J]. Chem. Lett. 1994, 9: 1753-1756.
    [42] Y. R. Wang, H.Q. Yan, E. F. Wang, Solid polymer electrolyte-based hydrogen sulfide sensor [J]. Sens. Actuators B 2002, 87: 115-121.
    [43] W. H. Tao, C. H. Tsai, H_2S sensing properties of noble metal doped WO_3 thin film sensor fabricated by micromachining [J]. Sens. Actuators B 2002, 81: 237-247.
    [44] L. Jianping, W. Yue, G. Xiaoguang, M. Qing, W. Li, H. Jinghong, H_2S sensing properties of the SnO_2-based thin films [J]. Sens. Actuators B 2000, 65: 111-113.
    [45] I. Jimenez, J. Arbiol, G. Dezanneau, A. Cornet, J. R. Morante, Crystalline structure, defects and gas sensor response to NO_2 and H_2S of tungsten trioxide nanopowders [J]. Sens. Actuators B 2003, 93: 475-485.
    [46] Y. L. Liu, H. Wang, Y. Yang, Z. M. Liu, H. F. Yang, G. L. Shen, R. Q. Yu, Hydrogen sulfide sensing properties of NiFe_2O_4 nanopowder doped with noble metals [J]. Sens. Actuators B 2004,102: 148-154.
    [47] N. S. Lawrence, R. P. Deo, J. Wang, Electrochemical determination of hydrogen sulfide at carbon nanotube modified electrodes [J]. Anal. Chim. Acta 2004, 517:131-137.
    [1] S. Peng, K. Cho, Ab Initio Study of Doped Carbon Nanotube Sensors [J]. Nano Lett. 2003, 3: 513-517.
    [2] Q. Zhao, M. B. Nardelli, W. Lu, J. Bernholc, Carbon Nanotube-Metal Cluster Composites: ANew Road to Chemical Sensors? [J]. Nano Lett. 2005, 5: 847-851.
    [3] A. Goldoni, R. Larciprete, L. Peta.ccia, S. Lizzit, Single-wall carbon nanotube interaction with gases: sample contaminants and environmental monitoring [J]. J. Am. Chem. Soc. 2003, 125: 11329-11333.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700