用户名: 密码: 验证码:
PEMFC铂/碳纳米管催化剂稳定性和电极制备新方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质子交换膜燃料电池(PEMFC)是目前电化学能量转化领域研究开发的重点和热点。但是,PEMFC的大规模应用受到成本高、服务寿命短等因素的制约。碳纳米管(CNT)作为载体的电催化剂在氧还原和甲醇氧化等PEMFC电极反应方面表现出良好的催化活性。
     研究了化学气相沉积法制备的不同直径碳纳米管的抗电化学氧化性。在所有研究的CNT中,直径介于10~20 nm的CNT(D1020)的抗电化学氧化性最强。所以,本文选择D1020作为主要研究对象之一。CNT(D1020)和Vulcan XC-72电极经过在0.5 mol·L-1的H2SO4溶液中1.2 V (RHE,可逆氢电极)加速老化实验后,用X射线光电子光谱(XPS)分析电极表面的化学组成;结果表明,Vulcan XC-72被氧化的程度远高于CNT,说明CNT的电化学稳定高于Vulcan XC-72。CNT电化学稳定性高的原因归于其特殊的结构(封闭、半封闭管状结构)。因此,就电化学稳定性而言,CNT是更好的PEMFC电极材料。
     研究了Pt/CNT和Pt/Vulcan XC-72的电化学稳定性。Pt/CNT和Pt/Vulcan XC-72经过在0.5 mol·L-1的H2SO4溶液中1.2 V的加速老化实验后,透射电镜(TEM)和X射线衍射(XRD)的分析表明,Pt/Vulcan XC-72中Pt颗粒长大的程度高于Pt/CNT中Pt颗粒长大的程度,XPS分析表明CNT被氧化的程度低于Vulcan XC-72。用氢吸脱附法计算电极电化学表面积的变化,Pt/Vulcan XC-72电极的电化学表面积下降了49.8% ,而Pt/CNT仅下降了26.1%。所以,Pt/CNT的电化学稳定性高于Pt/Vulcan XC-72,这归因于Pt-CNT之间特殊的相互作用、载体CNT的高稳定性。Pt表面氧化层的形成会大大降低Pt/CNT的稳定性;动电位条件下,Pt/CNT的性能衰减较快;Pt颗粒越小,Pt/CNT的性能衰减越快。
     考察了影响Pt/CNT和Pt/Vulcan XC-72稳定性的非电化学因素,即Pt/CNT和Pt/Vulcan XC-72在气相和液相环境下的稳定性。热重分析表明,Pt/CNT在空气中的热稳定性高于Pt/Vulcan XC-72。将Pt/CNT和Pt/Vulcan XC-72置于100~175℃干燥的空气中,192 h的时间范围内,两者的质量和化学比表面积均无明显变化。Pt/CNT和Pt/Vulcan XC-72颗粒在该温度范围内的干燥空气中较为稳定。热空气处理法不是一种考察PEMFC电极材料稳定性的有效方法。又考察了Pt/CNT和Pt/Vulcan XC-72在0.1 mol·L-1的HClO4溶液中,在室温和100℃情况下的稳定性(老化处理192 h)。TEM、XRD分析均表明Pt的平均粒径明显增大,Pt/CNT中Pt粒径增大的程度低于Pt/Vulcan XC-72。水相环境加速了
Proton exchange membrane fuel cells (PEMFC) have been receiving increasing attention due to its high energy efficiency and being environmentally friendly. However, PEMFCs’wide application and commercialization is hindered by two serious issues: poor durability or short life time, and high cost. Carbon nanotubes (CNT) are new promising materials of catalyst supports for PEMFCs. Previous studies reveal that CNTs supported catalysts show enhanced catalytic activity towards oxygen reduction reaction (ORR) and methanol oxidation.
     The effect of their diamters on the electrochemical stability of CNTs is investigated and CNTs with the diameter between 10~20 nm (D1020) show the most strong resistance to electrochemical oxidation among all the investigated CNTs. So it is selected in the following work. The electrochemical stability of CNTs and Vulcan XC-72 carbon black is investigated using an accelerated degradation test (ADT) by applying a fixed potential of 1.2 V (vs. reversible hydrogen electrode, RHE) on the two electrodes in 0.5 mol·L-1 H2SO4 for 120 h at room temperature. Cyclic voltammetry (CV) and X-ray Photoelectron Spectroscopy (XPS) analysis show that more surface oxygen is formed on the surface of Vulcan XC-72 during the electrochemical oxidation under the same conditions, which indicates that CNTs are more resistant to electrochemical oxidation than Vulcan XC-72. The strong stability of CNTs is attributed to their specific structures.
     The electrochemical stability of Pt/CNT and Pt/Vulcan XC-72 is investigated by applying a constant potential of 1.2 V on the two electrodes in 0.5 mol·L-1 H2SO4 for 192 h (8 days) at room temperature. Transmission Electron Microscope (TEM) images show that the sintering of Pt nanoparticles is more pronounced for Pt/Vulcan XC-72 than that for Pt/CNT. XPS analysis indicates that the oxidation degree of Vulcan XC-72 is higher than that of CNTs. The electrochemical surface area (ESA) of Pt/Vulcan XC-72 electrode decreases by 49.8% after ADT, while only 26.1% for Pt/CNT, which means that PT/CNT is more stable than Pt/Vulcan XC-72 under electrochemical operation. The enhanced stability of Pt/CNT is attributed to the specific interaction between Pt nanoparticles and CNTs and CNTs’high stability under electrochemical conditions. The electrochemical stability of Pt/CNT is closely
引文
1 Z. L. Zhan, S. A. Barnett. An Octane-Fueled Solid Oxide Fuel Cell. Science. 2005, 308 (5723): 844~847
    2 L. Carrette, K. A. Friedrich, U. Stimming. Fuel Cells: Principles, Types, Fuels, and Applications. ChemPhysChem. 2000, 1 (4): 162~193
    3 M. Winter, R. J. Brodd. What Are Batteries, Fuel Cells, and Supercapacitors? Chem. Rev. 2004, 104 (10): 4245~4269
    4 K. Caldeira, A. K. Jain, M. I. Hoffert. Climate Sensitivity Uncertainty and the Need for Energy without CO2 Emission. Science. 2003, 299 (5615): 2052~2054
    5 M. Z. Jacobson, W. G. Colella, D. M. Golden. Cleaning the Air and Improving Health with Hydrogen Fuel-Cell Vehicles. Science. 2005, 308 (5730): 1901~1905
    6 F. de Bruijn. The Current Status of Fuel Cell Technology for Mobile and Stationary Applications. Green Chem. 2005, 7 (3): 132~150
    7 C. Lamy, S. Rousseau, E. M. Belgsir, et al. Recent Progress in the Direct Ethanol Fuel Cell: Development of New Platinum-Tin Electrocatalysts. Electrochim. Acta. 2004, 49 (22-23): 3901~3908.
    8 L. H. Jiang, G. Q. Sun, Z. H. Zhou, et al. Preparation and Characterization of PtSn/C Anode Electrocatalysts for Direct Ethanol Fuel Cell. Cata. Today. 2004, 93-95: 665~670.
    9 R. H. Yu, H. G. Choi, S. M. Cho. Performance of Direct Dimethyl Ether Fuel Cells at Low Temperature. Electrochem. Commun. 2005, 7 (12): 1385~1388.
    10 M. M. Mench, H. M. Chance, C. Y. Wang. Direct Dimethyl Ether Polymer Electrolyte Fuel Cells for Portable Applications. J. Electrochem. Soc. 2004, 151 (1): A144~A150.
    11 J. T. Muller, P. M. Urban, W. F. Holderich, et al. Electro-oxidation of Dimethyl Ether in a Polymer-Electrolyte-Membrane Fuel Cell. J. Electrochem. Soc. 2000, 147 (11): 4058~4060.
    12 S. D. Knights, K. M. Colbow, J. St-Pierre, et al. Aging Mechanisms and Lifetime of PEFC and DMFC. J. Power Sources. 2004, 127 (1-2): 127~134.
    13 N. P. Brandon, S. Skinner, B. C. H. Steele. Recent Advances in Materials forFuel Cells. Ann. Rev. Mater. Res. 2003, 33: 183~213.
    14 J. R. Yu, T. Matsuura, Y. Yoshikawa, et al. In situ Analysis of Performance Degradation of a PEMFC under Nonsaturated Humidification. Electrochem. Solid-State Lett. 2005, 8 (3): A156~A158.
    15 L. M. Roen, C. H. Paik, T. D. Jarvic. Electrocatalytic Corrosion of Carbon Support in PEMFC Cathodes. Electrochem. Solid-State Lett. 2004, 7 (1): A19~A22.
    16 W. Liu, K. Ruth, G. Rusch. Membrane Durability in PEM Fuel Cells. J. New Mat.Electrochem. Syst. 2001, 4 (4): 227~232.
    17 M. Fowler, J. C. Amphlett, R. F. Mann, et al. Issues Associated with Voltage Degradation in a PEMFC. J. New Mat. Electrochem. Syst. 2002, 5 (4): 255~262.
    18 C. D. Huang, K. S. Tan, H. Y. Lin, et al. XRD and XPS Analysis of the Degradation of the Polymer Electrolyte in H2O2 Fuel Cell. Chem. Phys. Lett. 2003, 371 (1-2): 80~85.
    19 J. R. Yu, B. L. Yi, D. M. Xing, et al. Degradation Mechanism of Polystyrene Sulfonic Acid Membrane and Application of Its Composite Membranes in Fuel Cells. Phys. Chem. Chem. Phys. 2003, 5 (3): 611~615.
    20 A. Pozio, R. F. Silva, M. De Francesco, et al. Nafion Degradation in PEFCs from End Plate Iron Contamination. Electrochim. Acta. 2003, 48 (11): 1543~1549.
    21 J. Xie, D. L. Wood, K. L. More, et al. Microstructural Changes of Membrane Electrode Assemblies during PEFC Durability Testing at High Humidity Conditions. J. Electrochem. Soc. 2005, 152 (5): A1011~A1020.
    22 W. M. Chen, G. Q. Sun, J. S. Guo, et al. Test on the Degradation of Direct Methanol Fuel Cell. Electrochim. Acta. 2006, 51 (12): 2391~2399.
    23 M. S. Wilson, F. H. Garzon, K. E. Sickafus, et al. Surface-Area Loss of Supported Platinum in Polymer Electrolyte Fuel-Cells. J. Electrochem. Soc. 1993, 140 (10): 2872~2877.
    24 F. A. Uribe, T. A. Zawodzinski. A study of Polymer Electrolyte Fuel Cell Performance at High Voltages, Dependence on Cathode Catalyst Layer Composition and on Voltage Conditioning. Electrochim. Acta. 2002, 47 (22-23): 3799~3806.
    25 S. Y. Ahn, S. J. Shin, H. Y. Ha, et al. Performance and Lifetime Analysis of the kW-Class PEMFC Stack. J. Power Sources. 2002, 106 (1-2): 295~303.
    26 V. Alderucci, L. Pino, P. L. Antonucci, et al. XPS Study of Surface Oxidation ofCarbon-Supported Pt Catalysts. Mater. Chem. Phys. 1995, 41 (1): 9~14.
    27 C. H. Paik, T. D. Jarvi, W. E. O'Grady. Extent of PEMFC cCathode Surface Oxidation by Oxygen and Water Measured by CV. Electrochem. Solid-State Lett. 2004, 7 (4): A82~A84.
    28 X. Cheng, L. Chen, C. Peng, et al. Catalyst Microstructure Examination of PEMFC Membrane Electrode Assemblies vs. Time. J. Electrochem. Soc. 2004, 151 (1): A48~A52.
    29 李文震, 梁长海, 辛勤. 新型碳纳米材料在低温燃料电池催化剂中的应用. 催化学报. 2004, 25 (10): 839~843.
    30 D. A. Stevens, M. T. Hicks, G. M. Haugen, et al. Ex situ and In situ Stability Studies of PEMFC Catalysts. J. Electrochem. Soc. 2005, 152 (12): A2309~A2315.
    31 G. X. Wang, G. Q. Sun, Z. H. Zhou, et al. Performance Improvement in Direct Methanol Fuel Cell Cathode Using High Mesoporous Area Catalyst Support. Electrochem. Solid-State Lett. 2005, 8 (1): A12~A16.
    32 A. Pozio, R. F. Silva, M. De Francesco, et al. A Novel Route to Prepare Stable Pt-Ru/C Electrocatalysts for Polymer Electrolyte Fuel Cell. Electrochim. Acta. 2002, 48 (3): 255~262.
    33 E. Antolini. Formation, Microstructural Characteristics and Stability of Carbon Supported Platinum Catalysts for Low Temperature Fuel Cells. J. Mater. Sci. 2003, 38 (14): 2995~3005.
    34 Y. H. Zhang, M. L. Toebes, A. van der Eerden, et al. Metal Particle Size and Structure of the Metal-Support Interface of Carbon-Supported Platinum Catalysts as Determined with EXAFS Spectroscopy. J. Phys. Chem. B. 2004, 108 (48): 18509~18519.
    35 K. S. Han, O. H. Han, P. K. Babu. Metal Particle Size Effects and Metal-Support Interaction in Electrochemically Treated Pt/C Catalysts Investigated by C-13 NMR. J. Electrochem. Soc. 2005, 152 (12): J131~J135.
    36 S. C. Hall, V. Subramanian, G. Teeter, et al. Influence of Metal-Support Interaction in Pt/C on CO and Methanol Oxidation Reactions. Solid State Ion. 2004, 175 (1-4): 809~813.
    37 B. J. Eastwood, P. A. Christensen, R. D. Armstrong, et al. Electrochemical Oxidation of a Carbon Black Loaded Polymer Electrode in Aqueous Electrolytes. J. Solid State Electrochem. 1999, 3 (4): 179~186.
    38 K. H. Kangasniemi, D. A. Condit, T. D. Jarvi. Characterization of Vulcan Electrochemically Oxidized under Simulated PEM Fuel Cell Conditions. J. Electrochem. Soc. 2004, 151 (4): E125~E132.
    39 J. Willsau, J. Heitbaum. The Influence of Pt-activation on the Corrosion of Carbon in Gas Diffusion Electrodes— a DEMS Study. J. Electroanal. Chem. 1984, 161 (1): 93-101
    40 C. A. Reiser, L. Bregoli, T. W. Patterson, et al. A Reverse-Current Decay Mechanism for Fuel Cells. Electrochem. Solid-State Lett. 2005, 8 (6): A273~A276.
    41 X. P. Wang, R. Kumar, D. J. Myers. Effect of Voltage on Platinum Dissolution Relevance to Polymer Electrolyte Fuel Cells. Electrochem. Solid-State Lett. 2006, 9 (5): A225~A227.
    42 T. W. Patterson, R. M. Darling. Damage to the Cathode Catalyst of a PEM Fuel Cell Caused by Localized Fuel Starvation. Electrochem. Solid-State Lett. 2006, 9 (4): A183~A185.
    43 A. Taniguchi, T. Akita, K. Yasuda, et al. Analysis of Electrocatalyst Degradation in PEMFC Caused by Cell Reversal during Fuel Starvation. J. Power Sources. 2004, 130 (1-2): 42~49.
    44 F. Coloma, A. Sepulvedaescribano, J. L. G. Fierro, et al. Preparation of Platinum Supported on Pregraphitized Carbon-Blacks. Langmuir. 1994, 10 (3): 750~755.
    45 F. Coloma, A. Sepulvedaescribano, F. Rodriguezreinoso. Heat-Treated Carbon-Blacks as Supports for Platinum Catalysts. J. Catal. 1995, 154 (2): 299~305.
    46 R. A. Andrievski. Stability of Nanostructured Materials. J. Mater. Sci. 2003, 38 (7): 1367~1375.
    47 Y. Verde, G. Alonso, V. Ramos, et al. Pt/C Obtained from Carbon with Different Treatments and (NH4)2PtCl6 as a Pt Precursor. Appl. Catal. A-Gen. 2004, 277 (1-2): 201~207.
    48 M. Peuckert, T. Yoneda, R. A. D. Betta, et al. Oxygen Reduction on Small Supported Platinum Particles. J. Electrochem. Soc. 1986, 133 (5): 944~947.
    49 J. W. Guo, T. S. Zhao, J. Prabhuram, et al. Preparation and the Physical/Electrochemical Properties of a Pt/C Nanocatalyst Stabilized by Citric Acid for Polymer Electrolyte Fuel Cells. Electrochim. Acta. 2005, 50 (10): 1973~1983.
    50 K. Kinoshita. Particle-size Effects for Oxygen Reduction on Highly Dispersed Platinum in Acid Electrolytes. J. Electrochem. Soc. 1990, 137 (3): 845~848.
    51 G. A. Gruver, R. F. Pascoe, H. R. Kunz. Surface-Area Loss of Platinum Supported on Carbon in Phosphoric-Acid Electrolyte. J. Electrochem. Soc. 1980, 127 (6): 1219~1224.
    52 P. J. Ferreira, G. J. la O, Y. Shao-Horn, et al. Instability of Pt/C Electrocatalysts in Proton Exchange Membrane Fuel Cells - A Mechanistic Investigation. J. Electrochem. Soc. 2005, 152 (11): A2256~A2271.
    53 A. Honji, T. Mori, K. Tamura, et al. Agglomeration of Platinum Particles Supported on Carbon in Phosphoric-Acid. J. Electrochem. Soc. 1988, 135 (2): 355~359.
    54 M. S. Wilson, J. A. Valerio, S. Gottesfeld. Low Platinum Loading Electrodes for Polymer Electrolyte Fuel-Cells Fabricated Using Thermoplastic Ionomers. Electrochim. Acta. 1995, 40 (3): 355~363.
    55 J. G. Liu, Z. H. Zhou, X. X. Zhao, et al. Studies on Performance Degradation of a Direct Methanol Fuel Cell (DMFC) in Life Test. Phys. Chem. Chem. Phys. 2004, 6 (1): 134~137.
    56 L. H. Jiang, G. Q. Sun, S. L. Wang, et al. Electrode Catalysts Behavior during Direct Ethanol Fuel Cell Life-Time Test. Electrochem. Commun. 2005, 7 (7): 663~668.
    57 H. R. Colon-Mercado, H. Kim, B. N. Popov. Durability Study of Pt3Ni1 Catalysts as Cathode in PEM Fuel Cells. Electrochem. Commun. 2004, 6 (8): 795~799.
    58 Z. D. Wei, H. T. Guo, Z. Y. Tang. Heat Treatment of Carbon-Based Powders Carrying Platinum Alloy Catalysts for Oxygen Reduction: Influence on Corrosion Resistance and Particle Size. J. Power Sources. 1996, 62 (2): 233~236.
    59 侯中军, 衣宝廉. 质子交换膜燃料电池性能衰减研究进展. 电源技术. 2005, 29 (7): 482~487.
    60 D. A. Stevens, J. R. Dahn. Thermal Degradation of the Support in Carbon-Supported Platinum Electrocatalysts for PEM Fuel Cells. Carbon. 2005, 43 (1): 179~188.
    61 赵新生, 孙公权, 陈维民等. 直接甲醇燃料电池 Pt-Ru/C 催化剂的稳定性. 催化学报. 2005, 26 (5): 383-388.
    62 J. Xie, D. L. Wood, D. M. Wayne, et al. Durability of PEFCs at High Humidity Conditions. J. Electrochem. Soc. 2005, 152 (1): A104~A113.
    63 S. Iijima. Helical Microtubules of Graphitic Carbon. Nature. 1991, 354 (6348): 56~58.
    64 C. N. R. Rao, B. C. Satishkumar, A. Govindaraj, et al. Nanotubes. ChemPhysChem. 2001, 2 (2): 78~105.
    65 H. J. Dai. Carbon Nanotubes: Synthesis, Integration, and Properties. Acc. Chem. Res. 2002, 35 (12): 1035~1044.
    66 P. M. Ajayan, J. C. Charlier, A. G. Rinzler. Carbon Nanotubes: from Macromolecules to Nanotechnology. Proc. Natl. Acad. Sci. U. S. A. 1999, 96 (25): 14199~14200.
    67 R. Andrews, D. Jacques, D. L. Qian, et al. Multiwall Carbon Nanotubes: Synthesis and Application. Acc. Chem. Res. 2002, 35 (12): 1008~1017.
    68 T. M. Day, N. R. Wilson, J. V. Macpherson. Electrochemical and Conductivity Measurements of Single-Wall Carbon Nanotube Network Electrodes. J. Am. Chem. Soc. 2004, 126 (51): 16724~16725.
    69 C. Wang, M. Waje, X. Wang, et al. Proton Exchange Membrane Fuel Cells with Carbon Nanotube Based Electrodes. Nano Lett. 2004, 4 (2): 345~348.
    70 J. Li, A. Cassell, L. Delzeit, et al. Novel Three-Dimensional Electrodes: Electrochemical Properties of Carbon Nanotube Ensembles. J. Phys. Chem. B. 2002, 106 (36): 9299~9305.
    71 Y. P. Sun, K. F. Fu, Y. Lin, et al. Functionalized Carbon Nanotubes: Properties and Applications. Acc. Chem. Res. 2002, 35 (12): 1096~1104.
    72 A. S. Arico, P. Bruce, B. Scrosati, et al. Nanostructured Materials for Advanced Energy Conversion and Storage Devices. Nat. Mater. 2005, 4 (5): 366~377.
    73 R. S. Morris, B. G. Dixon, T. Gennett, et al. High-energy, Rechargeable Li-ion Battery Based on Carbon Nanotube Technology. J. Power Sources. 2004, 138 (1-2): 277~280.
    74 J. H. Chen, W. Z. Li, D. Z. Wang, et al. Electrochemical Characterization of Carbon Nanotubes as Electrode in Electrochemical Double-layer Capacitors. Carbon. 2002, 40 (8): 1193~1197.
    75 G. G. Wildgoose, G. E. Banks, R. G. Compton. Metal Nanoparticles and Related Materials Supported on Carbon Nanotubes: Methods and Applications. Small. 2006, 2 (2): 182~193.
    76 杜秉忱, 刘长鹏, 韩飞等. 碳纳米管纯化对 Pt/CNTs 催化甲醇电化学氧化活性的影响. 高等学校化学学报. 2004, 25 (10): 1924~1927.
    77 李文震, 孙公权, 严玉山等. 低温燃料电池担载型贵金属催化剂. 化学进展. 2005, 17 (5): 761~772.
    78 N. M. Rodriguez, A. Chambers, R. T. K. Baker. Catalytic Engineering of Carbon Nanostructures. Langmuir. 1995, 11 (10): 3862~3866.
    79 T. Yoshitake, Y. Shimakawa, S. Kuroshima, et al. Preparation of Fine Platinum Catalyst Supported on Single-Wall Carbon Nanohorns for Fuel Cell Application. Physica B. 2002, 323 (1-4): 124~126.
    80 S. H. Joo, S. J. Choi, I. Oh, et al. Ordered Nanoporous Arrays of Carbon Supporting High Dispersions of Platinum Nanoparticles. Nature. 2001, 412 (6843): 169~172.
    81 J. S. Yu, S. Kang, S. B. Yoon, et al. Fabrication of Ordered Uniform Porous Carbon Networks and Their Application to a Catalyst Supporter. J. Am. Chem. Soc. 2002, 124 (32): 9382~9383.
    82 C. A. Bessel, K. Laubernds, N. M. Rodriguez, et al. Graphite Nanofibers as an Electrode for Fuel Cell Applications. J. Phys. Chem. B. 2001, 105 (6): 1115~1118.
    83 E. S. Steigerwalt, G. A. Deluga, D. E. Cliffel, et al. A Pt-Ru/Graphitic Carbon Nanofiber Nanocomposite Exhibiting High Relative Performance as a Direct-Methanol Fuel Cell Anode Catalyst. J. Phys. Chem. B. 2001, 105 (34): 8097~8101.
    84 T. Hyeon, S. Han, Y. E. Sung, et al. High-Performance Direct Methanol Fuel Cell Electrodes Using Solid-Phase-Synthesized Carbon Nanocoils. Angew. Chem.-Int. Edit. 2003, 42 (36): 4352~4356.
    85 S. J. Han, Y. K. Yun, K. W. Park, et al. Simple Solid-Phase Synthesis of Hollow Graphitic Nanoparticles and Their Application to Direct Methanol Fuel Cell Electrodes. Adv. Mater. 2003, 15 (22): 1922~1925.
    86 Y. L. Yao, Y. Ding, L. S. Ye, et al. Two-step Pyrolysis Process to Synthesize Highly Dispersed Pt-Ru/Carbon Nanotube Catalysts for Methanol Electrooxidation. Carbon. 2006, 44 (1): 61~66.
    87 Y. H. Lin, X. L. Cui, C. Yen, et al. Platinum/Carbon Nanotube Nanocomposite Synthesized in Supercritical Fluid as Electrocatalysts for Low-temperature Fuel Cells. J. Phys. Chem. B. 2005, 109 (30): 14410~14415.
    88 W. Z. Li, C. H. Liang, J. S. Qiu, et al. Carbon Nanotubes as Support for Cathode Catalyst of a Direct Methanol Fuel Cell. Carbon. 2002, 40 (5): 791~794.
    89 C. Kim, Y. J. Kim, Y. A. Kim, et al. High Performance of Cup-Stacked-Type Carbon Nanotubes as a Pt-Ru Catalyst Support for Fuel Cell Applications. J. Appl. Phys. 2004, 96 (10): 5903~5905.
    90 X. S. Zhao, W. Z. Li, L. H. Jiang, et al. Multi-wall Carbon Nanotube Supported Pt-Sn Nanoparticles as an Anode Catalyst for the Direct Ethanol Fuel Cell. Carbon. 2004, 42 (15): 3263~3265.
    91 T. Matsumoto, T. Komatsu, K. Arai, et al. Reduction of Pt Usage in Fuel Cell Electrocatalysts with Carbon Nanotube Electrodes. Chem. Commun. 2004, (7): 840~841.
    92 P. J. Britto, K. S. V. Santhanam, A. Rubio, et al. Improved Charge Transfer at Carbon Nanotube Electrodes. Adv. Mater. 1999, 11 (2): 154~157.
    93 S. D. Thompson, L. R. Jordan, M. Forsyth. Platinum Electrodeposition for Polymer Electrolyte Membrane Fuel Cells. Electrochim. Acta. 2001, 46 (10-11): 1657~1663.
    94 T. Matsumoto, T. Komatsu, H. Nakano, et al. Efficient Usage of Highly Dispersed Pt on Carbon Nanotubes for Electrode Catalysts of Polymer Electrolyte Fuel Cells. Cata. Today. 2004, 90 (3-4): 277~281.
    95 X. Sun, B. Stansfield, J. P. Dodelet, et al. Growth of Carbon Nanotubes on Carbon Paper by Ohmically Heating Silane-Dispersed Catalytic Sites. Chem. Phys. Lett. 2002, 363 (5-6): 415~421.
    96 Y. Luo, R. Vander Wal, L. J. Hall, et al. Preparation and Characterization of Multiwalled Carbon Nanotubes Grown directly onto a Conducting Support. Electrochem. Solid-State Lett. 2003, 6 (3): A56~A58.
    97 X. Sun, R. Li, D. Villers, et al. Composite Electrodes Made of Pt Nanoparticles Deposited on Carbon Nanotubes Grown on Fuel Cell Backings. Chem. Phys. Lett. 2003, 379 (1-2): 99~104.
    98 J. F. Colomer, P. Piedigrosso, A. Fonseca, et al. Different Purification Methods of Carbon Nanotubes Produced by Catalytic Synthesis. Synth. Met. 1999, 103 (1-3): 2482~2483.
    99 L. Vaccarini, C. Goze, R. Aznar, et al. Purification Procedure of Carbon Nanotubes. Synth. Met. 1999, 103 (1-3): 2492~2493.
    100 H. T. Fang, C. G. Liu, L. Chang, et al. Purification of Single-wall CarbonNanotubes by Electrochemical Oxidation. Chem. Mat. 2004, 16 (26): 5744~5750.
    101 J. L. Zimmerman, R. K. Bradley, C. B. Huffman, et al. Gas-phase Purification of Single-wall Carbon Nanotubes. Chem. Mat. 2000, 12 (5): 1361~1366.
    102 Y. C. Xing. Synthesis and Electrochemical Characterization of Uniformly-Dispersed High Loading Pt Nanoparticles on Sonochemically-Treated Carbon Nanotubes. J. Phys. Chem. B. 2004, 108: 19255~19259.
    103 Y. M. Liang, H. M. Zhang, B. L. Yi, et al. Preparation and Characterization of Multi-Walled Carbon Nanotubes Supported PtRu Catalysts for Proton Exchange Membrane Fuel Cells. Carbon. 2005, 43 (15): 3144~3152.
    104 M. Carmo, V. A. Paganin, J. M. Rosolen, et al. Alternative Supports for the Preparation of Catalysts for Low-temperature Fuel Cells: the Use of Carbon Nanotubes. J. Power Sources. 2005, 142 (1-2): 169~176.
    105 H. Tang, J. H. Chen, Z. P. Huang, et al. High Dispersion and Electrocatalytic Properties of Platinum on Well-aligned Carbon Nanotube Arrays. Carbon. 2004, 42 (1): 191~197.
    106 M. M. Waje, X. Wang, W. Z. Li, et al. Deposition of Platinum Nanoparticles on Organic Functionalized Carbon Nanotubes Grown in situ on Carbon Paper for Fuel Cells. Nanotechnology. 2005, 16 (7): S395~S400.
    107 P. L. J. Walker. Carbon: An Old but New Material Revisited. Carbon. 1990, 28 (2-3): 261~279.
    108 D. Bom, R. Andrews, D. Jacques, et al. Thermogravimetric Analysis of the Oxidation of Multiwalled Carbon Nanotubes: Evidence for the Role of Defect Sites in Carbon Nanotube Chemistry. Nano Lett. 2002, 2 (6): 615~619.
    109 M. Kosaka, T. W. Ebbesen, H. Hiura, et al. Annealing Effect on Carbon Nanotubes - An ESR Study. Chem. Phys. Lett. 1995, 233 (1-2): 47~51.
    110 R. Andrews, D. Jacques, D. Qian, et al. Purification and Structural Annealing of Multiwalled Carbon Nanotubes at Graphitization Temperatures. Carbon. 2001, 39 (11): 1681~1687.
    111 R. Andrews, D. Jacques, A. M. Rao, et al. Continuous Production of Aligned Carbon Nanotubes: a Step Closer to Commercial Realization. Chem. Phys. Lett. 1999, 303 (5-6): 467~474.
    112 W. Huang, Y. Wang, G. H. Luo, et al. 99.9% Purity Multi-walled CarbonNanotubes by Vacuum High-temperature Annealing. Carbon. 2003, 41 (13): 2585~2590.
    113 L. J. Ci, B. Q. Wei, C. L. Xu, et al. Crystallization Behavior of the Amorphous Carbon Nanotubes Prepared by the CVD Method. J. Cryst. Growth. 2001, 233 (4): 823~828.
    114 M. Pinault, M. Mayne-L'Hermite, C. Reynaud, et al. Carbon Nanotubes Produced by Aerosol Pyrolysis: Growth Mechanisms and Post-annealing Effects. Diam. Relat. Mat. 2004, 13 (4-8): 1266~1269.
    115 C. H. Liang, Z. L. Li, J. S. Qiu, et al. Graphitic Nanofilaments as Novel Support of Ru-Ba Catalysts for Ammonia Synthesis. J. Catal. 2002, 211 (1): 278~282.
    116 L. J. Ci, H. W. Zhu, B. Q. Wei, et al. Annealing Amorphous Carbon Nanotubes for Their Application in Hydrogen Storage. Appl. Surf. Sci. 2003, 205 (1-4): 39~43.
    117 W. Rarog, Z. Kowalczyk, J. Sentek, et al. Effect of K, Cs and Ba on the Kinetics of NH3 Synthesis over Carbon-based Ruthenium Catalysts. Catal. Lett. 2000, 68 (3-4): 163~168.
    118 Z. Kowalczyk, S. Jodzis, W. Rarog, et al. Carbon-supported Ruthenium Catalyst for the Synthesis of Ammonia. The Effect of the Carbon Support and Barium Promoter on the Performance. Appl. Catal. A-Gen. 1999, 184 (1): 95~102.
    119 I. Rossetti, N. Pernicone, L. Forni. Promoters Effect in Ru/C Ammonia Synthesis Catalyst. Appl. Catal. A-Gen. 2001, 208 (1-2): 271~278.
    120 S. F. Yin, B. Q. Xu, C. F. Ng, et al. Nano Ru/CNTs: a Highly Active and Stable Catalyst for the Generation of COx-free Hydrogen in Ammonia Decomposition. Appl. Catal. B-Environ. 2004, 48 (4): 237~241.
    121 H. Kajiura, A. Nandyala, A. Bezryadin. Quasi-ballistic Electron Transport in as-produced and Annealed Multiwall Carbon Nanotubes. Carbon. 2005, 43 (6): 1317~1319.
    122 C. C. Han, J. T. Lee, H. Chang. Thermal Annealing Effects on Structure and Morphology of Micrometer-sized Carbon Tubes. Chem. Mat. 2001, 13 (11): 4180~4186.
    123 M. Endo, Y. A. Kim, T. Hayashi, et al. Microstructural Changes Induced in "Stacked Cup" Carbon Nanofibers by Heat Treatment. Carbon. 2003, 41 (10): 1941~1947.
    124 Y. A. Kim, T. Hayashi, K. Osawa, et al. Annealing Effect on DisorderedMulti-wall Carbon Nanotubes. Chem. Phys. Lett. 2003, 380 (3-4): 319~324.
    125 G. B. Zheng, H. Sano, Y. Uchiyama. New Structure of Carbon Nanofibers after High-temperature Heat-treatment. Carbon. 2003, 41 (4): 853~856.
    126 X. L. Zheng, S. J. Zhang, J. X. Xu, et al. Effect of Thermal and Oxidative Treatments of Activated Carbon on Its Surface Structure and Suitability as a Support for Barium-promoted Ruthenium in Ammonia Synthesis Catalysts. Carbon. 2002, 40 (14): 2597~2603.
    127 Y. Wang, J. Wu, F. Wei. A Treatment Method to Give Separated Multi-walled Carbon Nanotubes with High Purity, High Crystallization and a Large Aspect Ratio. Carbon. 2003, 41 (15): 2939~2948.
    128 S. C. Tsang, Y. K. Chen, P. J. F. Harris, et al. A Simple Chemical Method of Opening and Filling Carbon Nanotubes. Nature. 1994, 372 (6502): 159~162.
    129 P. M. Ajayan, T. W. Ebbesen, T. Ichihashi, et al. Opening Carbon Nanotubes with Oxygen and Implications for Filling. Nature. 1993, 362 (6420): 522~525.
    130 S. Litster, G. McLean. PEM Fuel Cell Electrodes. J. Power Sources. 2004, 130 (1-2): 61~76.
    131 E. Antolini. Formation of Carbon-supported PtM Alloys for Low Temperature Fuel Cells: a Review. Mater. Chem. Phys. 2003, 78 (3): 563~573.
    132 K. Yasuda, Y. Nishimura. The Deposition of Ultrafine Platinum Particles on Carbon Black by Surface Ion Exchange - Increase in Loading Amount. Mater. Chem. Phys. 2003, 82 (3): 921~928.
    133 C. H. Hsu, C. C. Wan. An Innovative Process for PEMFC Electrodes Using the Expansion of Nafion Film. J. Power Sources. 2003, 115 (2): 268~273.
    134 M. S. Wilson, S. Gottesfeld. High-Performance Catalyzed Membranes of Ultra-Low Pt Loadings for Polymer Electrolyte Fuel-Cells. J. Electrochem. Soc. 1992, 139 (2): L28~L30.
    135 E. B. Easton, Z. G. Qi, A. Kaufman, et al. Chemical Modification of Proton Exchange Membrane Fuel Cell Catalysts with a Sulfonated Silane. Electrochem. Solid-State Lett. 2001, 4 (5): A59~A61.
    136 E. Auer, A. Freund, J. Pietsch, et al. Carbons as Supports for Industrial Precious Metal Catalysts. Appl. Catal. A-Gen. 1998, 173 (2): 259~271.
    137 C. Leon, L. R. Radovic, Interfacial Chemistry and Electrochemistry of Carbon Surfaces. In Chemistry and Physics of Carbon, Marcel Dekker: New York, 1994, Vol. 24, p213~310.
    138 E. Passalacqua, F. Lufrano, G. Squadrito, et al. Nafion Content in the Catalyst Layer of Polymer Electrolyte Fuel Cells: Effects on Structure and Performance. Electrochim. Acta. 2001, 46 (6): 799~805.
    139 X. Wang, M. Waje, Y. S. Yan. CNT-based Electrodes with High Efficiency for PEMFCs. Electrochem. Solid-State Lett. 2005, 8 (1): A42~A44.
    140 O. Antoine, R. Durand. In situ Electrochemical Deposition of Pt Nanoparticles on Carbon and inside Nafion. Electrochem. Solid-State Lett. 2001, 4 (5): A55~A58.
    141 Z. D. Wei, S. H. Chan, L. L. Li, et al. Electrodepositing Pt on a Nafion-bonded Carbon Electrode as a Catalyzed Electrode for Oxygen Reduction Reaction. Electrochim. Acta. 2005, 50 (11): 2279~2287.
    142 K. Amine, M. Mizuhata, K. Oguro, et al. Catalytic Activity of Platinum after Exchange with Surface Active Functional Groups of Carbon Blacks. J. Chem. Soc.-Faraday Trans. 1995, 91 (24): 4451~4458.
    143 T. W. Ebbesen, H. Hiura, M. E. Bisher, et al. Decoration of Carbon Nanotubes. Adv. Mater. 1996, 8 (2): 155-157.
    144 H. Huang, W. K. Zhang, M. C. Li, et al. Carbon Nanotubes as a Secondary Support of a Catalyst Layer in a Gas Diffusion Electrode for Metal Air Batteries. J. Colloid Interface Sci. 2005, 284 (2): 593~599.
    145 Y. C. Xing, L. Li, C. C. Chusuei, et al. Sonochemical Oxidation of Multiwalled Carbon Nanotubes. Langmuir. 2005, 21 (9): 4185~4190.
    146 Z. B. Wang, G. P. Yin, P. F. Shi, et al. Novel Pt-Ru-Ni/C Catalysts for Methanol Electro-oxidation in Acid Medium. Electrochem. Solid-State Lett. 2006, 9 (1): A13~A15.
    147 Y. C. Xing. Synthesis and Electrochemical Characterization of Uniformly-Dispersed High Loading Pt Nanoparticles on Sonochemically-treated Carbon Nanotubes. J. Phys. Chem. B. 2004, 108 (50): 19255~19259.
    148 M. Ciureanu, R. Roberge. Electrochemical Impedance Study of PEM Fuel Cells. Experimental Diagnostics and Modeling of Air Cathodes. J. Phys. Chem. B. 2001, 105 (17): 3531~3539.
    149 N. Y. Jia, R. B. Martin, Z. G. Qi, et al. Modification of Carbon Supported Catalysts to Improve Performance in Gas Diffusion Electrodes. Electrochim. Acta. 2001, 46 (18): 2863~2869.
    150 M. Terrones. Science and Technology of the Twenty-first Century: Synthesis, Properties and Applications of Carbon Nanotubes. Ann. Rev. Mater. Res. 2003, 33: 419~501.
    151 J. L. Figueiredo, M. F. R. Pereira, M. M. A. Freitas, et al. Modification of the Surface Chemistry of Activated Carbons. Carbon. 1999, 37 (9): 1379~1389.
    152 S. H. Goh, S. Y. Lee, J. Dai, et al. X-ray Photoelectron Spectroscopic Studies of Ionic Interactions between Sulfonated Polystyrene and Poly(styrene-co-4-vinylpyridine). Polymer. 1996, 37 (23): 5305~5308.
    153 M. M. Nasef, H. Saidi, M. A. Yarmo. Cation Exchange Membranes by Radiation-induced Graft Copolymerization of Styrene onto PFA Copolymer Films. IV. Morphological Investigations Using X-ray Photoelectron Spectroscopy. J. Appl. Polym. Sci. 2000, 77 (11): 2455~2463.
    154 M. S. Dresselhaus, G. Dresselhaus. Intercalation Compounds of Graphite. Adv. Phys. 1981, 30 (2): 139~326.
    155 Y. Soneda, M. Toyoda, Y. Tani, et al. Electrochemical Behavior of Exfoliated Carbon Fibers in H2SO4 Electrolyte with Different Concentrations. J. Phys. Chem. Solids. 2004, 65 (2-3): 219~222.
    156 Y. Soneda, J. Yamashita, M. Kodama, et al. Pseudo-capacitance on Exfoliated Carbon Fiber in Sulfuric Acid Electrolyte. Appl. Phys. A-Mater. Sci. Process. 2006, 82 (4): 575~578.
    157 J. O. Besenhard, H. P. Fritz. The Electrochemistry of Black Carbons. Angew. Chem.-Int. Edit. Engl. 1983, 22 (12): 950~975.
    158 D. C. Alsmeyer, R. L. McCreery. In situ Raman Monitoring of Electrochemical Graphite-Intercalation and Lattice Damage in Mild Aqueous Acids. Anal. Chem. 1992, 64 (14): 1528~1533.
    159 T.-C. Kuo, R. L. McCreery. Surface Chemistry and Electron-Transfer Kinetics of Hydrogen-modified Glassy Carbon Electrodes. Anal. Chem. 1999, 71: 1553~1560.
    160 Y. Q. Wang, F. Q. Zhang, P. M. A. Sherwood. X-ray Photoelectron Spectroscopic Studies of Carbon Fiber Surfaces. 25. Interfacial Interactions between PEKK Polymer and Carbon Fibers Electrochemically Oxidized in Nitric Acid and Degradation in a Saline Solution. Chem. Mat. 2001, 13 (3): 832~841.
    161 R. I. R. Blyth, H. Buqa, F. P. Netzer, et al. XPS Studies of Graphite ElectrodeMaterials for Lithium Ion Batteries. Appl. Surf. Sci. 2000, 167 (1-2): 99~106.
    162 U. Zielke, K. J. Huttinger, W. P. Hoffman. Surface-oxidized Carbon Fibers .1. Surface Structure and Chemistry. Carbon. 1996, 34 (8): 983~998.
    163 N. Yao, V. Lordi, S. X. C. Ma, et al. Structure and Oxidation Patterns of Carbon Nanotubes. J. Mater. Res. 1998, 13 (9): 2432~2437.
    164 成会明. 碳纳米管: 制备, 结构, 物性及应用. 化学工业出版社, 2002, 181.
    165 H. Nishino, C. Yamaguchi, H. Nakaoka, et al. Carbon Nanotube with Amorphous Carbon Wall: alpha-CNT. Carbon. 2003, 41 (11): 2165~2167.
    166 X. K. Lu, K. D. Ausman, R. D. Piner, et al. Scanning Electron Microscopy Study of Carbon Nanotubes Heated at High Temperatures in Air. J. Appl. Phys. 1999, 86 (1): 186~189.
    167 H. X. Luo, Z. J. Shi, N. Q. Li, et al. Investigation of the Electrochemical and Electrocatalytic Behavior of Single-wall Carbon Nanotube Film on a Glassy Carbon Electrode. Anal. Chem. 2001, 73 (5): 915~920.
    168 S. Lefrant, M. Baibarac, I. Baltog, et al. SERS Spectroscopy Studies on the Electrochemical Oxidation of Single-Walled Carbon Nanotubes in Sulfuric Acid Solutions. Synth. Met. 2004, 144 (2): 133~142.
    169 J. N. Barisci, G. G. Wallace, R. H. Baughman. Electrochemical Studies of Single-wall Carbon Nanotubes in Aqueous Solutions. J. Electroanal. Chem. 2000, 488 (2): 92~98.
    170 L. Kavan, P. Rapta, L. Dunsch, et al. Electrochemical Tuning of Electronic Structure of Single-walled Carbon Nanotubes: In-situ Raman and vis-NIR Study. J. Phys. Chem. B. 2001, 105 (44): 10764~10771.
    171 Y. Yang, Z. G. Lin. In-situ FTIR Characterization of the Electrooxidation of Glassy-carbon Electrodes. J. Appl. Electrochem. 1995, 25 (3): 259~266.
    172 J. M. Skowronski, P. Scharff, N. Pfander, et al. Room Temperature Electrochemical Opening of Carbon Nanotubes Followed by Hydrogen Storage. Adv. Mater. 2003, 15 (1): 55~57.
    173 J. S. Ye, X. Liu, H. F. Cui, et al. Electrochemical Oxidation of Multi-walled Carbon Nanotubes and Its Application to Electrochemical Double-layer Capacitors. Electrochem. Commun. 2005, 7 (3): 249~255.
    174 D. A. Stevens, J. R. Dahn. Electrochemical Characterization of the Active Surface in Carbon-supported Platinum Electrocatalysts for PEM fuel cells. J. Electrochem. Soc. 2003, 150 (6): A770~A775.
    175 S. Niyogi, M. A. Hamon, H. Hu, et al. Chemistry of Single-Walled Carbon Nanotubes. Acc. Chem. Res. 2002, 35 (12): 1105~1113.
    176 A. Pozio, M. De Francesco, A. Cemmi, et al. Comparison of High Surface Pt/C Catalysts by Cyclic Voltammetry. J. Power Sources. 2002, 105 (1): 13~19.
    177 C. L. Green, A. Kucernak. Determination of the Platinum and Ruthenium Surface Areas in Platinum-ruthenium Alloy Electrocatalysts by Underpotential Deposition of Copper. I. Unsupported Catalysts. J. Phys. Chem. B. 2002, 106 (5): 1036~1047.
    178 C. L. Green, A. Kucernak. Determination of the Platinum and Ruthenium Surface Areas in Platinum-ruthenium Electrocatalysts by Underpotential Deposition of Copper. 2. Effect of Surface Composition on Activity. J. Phys. Chem. B. 2002, 106 (44): 11446~11456.
    179 E. Antolini, L. Giorgi, A. Pozio, et al. Influence of Nafion Loading in the Catalyst Layer of Gas-Diffusion Electrodes for PEFC. J. Power Sources. 1999, 77 (2): 136~142.
    180 J. Fournier, G. Faubert, J. Y. Tilquin, et al. High-performance, Low Pt Content Catalysts for the Electroreduction of Oxygen in Polymer-electrolyte Fuel Cells. J. Electrochem. Soc. 1997, 144 (1): 145~154.
    181 K. W. Park, J. H. Choi, K. S. Ahn, et al. PtRu Alloy and PtRu-WO3 Nanocomposite Electrodes for Methanol Electrooxidation Fabricated by a Sputtering Deposition Method. J. Phys. Chem. B. 2004, 108 (19): 5989~5994.
    182 J. H. Jiang, A. Kucernak. Investigations of Fuel Cell Reactions at the Composite Microelectrode/solid Polymer Electrolyte Interface. I. Hydrogen Oxidation at the Nanostructured Pt/Nafion(R) Membrane Interface. J. Electroanal. Chem. 2004, 567 (1): 123~137.
    183 Y. M. Zhu, H. Uchida, M. Watanabe. Oxidation of Carbon Monoxide at a Platinum Film Electrode Studied by Fourier Transform Infrared Spectroscopy with Attenuated Total Reflection Technique. Langmuir. 1999, 15 (25): 8757~8764.
    184 G. Sasikumar, J. W. Ihm, H. Ryu. Dependence of Optimum Nafion Content in Catalyst Layer on Platinum Loading. J. Power Sources. 2004, 132 (1-2): 11~17.
    185 M. Sogaard, M. Odgaard, E. M. Skou. An Improved Method for the Determination of the Electrochemical Active Area of Porous Composite Platinum Electrodes. Solid State Ion. 2001, 145 (1-4): 31~35.
    186 J. H. Jiang, A. Kucernak. Electrooxidation of Small Organic Molecules on Mesoporous Precious Metal Catalysts II: CO and Methanol on Platinum-ruthenium Alloy. J. Electroanal. Chem. 2003, 543 (2): 187~199.
    187 J. H. Jiang, A. Kucernak. Mesoporous Microspheres Composed of PtRu Alloy. Chem. Mat. 2004, 16 (7): 1362~1367.
    188 M. J. Weaver, S. C. Chang, L. W. H. Leung, et al. Evaluation of Absolute Saturation Coverages of Carbon-Monoxide on Ordered Low-Index Platinum and Rhodium Electrodes. J. Electroanal. Chem. 1992, 327 (1-2): 247~260.
    189 J. M. Feliu, J. M. Orts, A. Fernandezvega, et al. Electrochemical Studies in Sulfuric-Acid-Solutions of Absorbed Co on Pt (111) Electrodes. J. Electroanal. Chem. 1990, 296 (1): 191~201.
    190 T. Navessin, S. Holdcroft, Q. P. Wang, et al. The Role of Membrane Ion Exchange Capacity on Membrane/Diffusion Electrode Interfaces: a Half-Fuel Cell Electrochemical Study. J. Electroanal. Chem. 2004, 567 (1): 111~122.
    191 J. H. Jiang, A. Kucernak. Electrooxidation of Small Organic Molecules on Mesoporous on Precious Metal Catalysts I : CO and Methanol on Platinum. J. Electroanal. Chem. 2002, 533 (1-2): 153~165.
    192 E. Endoh, S. Terazono, H. Widjaja, et al. Degradation Study of MEA for PEMFCs under Low Humidity Conditions. Electrochem. Solid-State Lett. 2004, 7 (7): A209~A211.
    193 G. C. Li, P. G. Pickup. Measurement of Single Electrode Potentials and Impedances in Hydrogen and Direct Methanol PEM Fuel Cells. Electrochim. Acta. 2004, 49 (24): 4119~4126.
    194 H. Kuhn, B. Andreaus, A. Wokaun, et al. Electrochemical Impedance Spectroscopy Applied to Polymer Electrolyte Fuel Cells with a Pseudo Reference Electrode Arrangement. Electrochim. Acta. 2006, 51 (8-9): 1622~1628.
    195 J. H. Vleeming, B. F. M. Kuster, G. B. Marin, et al. Graphite-Supported Platinum Catalysts: Effects of Gas and Aqueous Phase Treatments. J. Catal. 1997, 166 (2): 148~159.
    196 W. G. Yang, J. F. Wang, B. Zhao, et al. Gas-liquid Mass Transfer in Slurry Bubble Systems II. Verification and Simulation of the Model Based on the Single Bubble Mechanism. Chem. Eng. J. 2003, 96 (1-3): 29~35.
    197 T. F. Wang, J. F. Wang, W. G. Yang, et al. Bubble Behavior in Gas-Liquid-SolidThree-phase Circulating Fluidized Beds. Chem. Eng. J. 2001, 84 (3): 397~404.
    198 B. Yang, K. Takahashi, M. Takeishi. Unsteady Stirring Method Staged Used in Suspension Polymerization of Styrene. J. Appl. Polym. Sci. 2001, 82 (8): 1873~1881.
    199 W. Z. Li, C. H. Liang, W. J. Zhou, et al. Preparation and Characterization of Multiwalled Carbon Nanotube-supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells. J. Phys. Chem. B. 2003, 107 (26): 6292~6299.
    200 R. Rajagopalan, A. Ponnaiyan, P. J. Mankidy, et al. Molecular Sieving Platinum Nanoparticle Catalysts Kinetically Frozen in Nanoporous Carbon. Chem. Commun. 2004, (21): 2498~2499.
    201 F. Rodriguez-Reinoso. The Role of Carbon Materials in Heterogeneous Catalysis. Carbon. 1998, 36 (3): 159~175.
    202 R. M. Darling, J. P. Meyers. Kinetic Model of Platinum Dissolution in PEMFCs. J. Electrochem. Soc. 2003, 150 (11): A1523~A1527.
    203 Z. Siroma, N. Fujiwara, T. Ioroi, et al. Dissolution of Nafion (R) Membrane and Recast Nafion (R) Film in Mixtures of Methanol and Water. J. Power Sources. 2004, 126 (1-2): 41~45.
    204 A. Guerrero-Ruiz, P. Badenes, I. Rodriguez-Ramos. Study of Some Factors Affecting the Ru and Pt Dispersions over High Surface Area Graphite-supported Catalysts. Appl. Catal. A-Gen. 1998, 173 (2): 313~321.
    205 M. Kang, Y. S. Bae, C. H. Lee. Effect of Heat Treatment of Activated Carbon Supports on the Loading and Activity of Pt Catalyst. Carbon. 2005, 43 (7): 1512~1516.
    206 J. Prabhuram, X. Wang, C. L. Hui, et al. Synthesis and Characterization of Surfactant-stabilized Pt/C Nanocatalysts for Fuel Cell Applications. J. Phys. Chem. B. 2003, 107 (40): 11057~11064.
    207 Z. L. Liu, J. Y. Lee, W. X. Chen, et al. Physical and Electrochemical Characterizations of Microwave-assisted Polyol Preparation of Carbon-supported PtRu Nanoparticles. Langmuir. 2004, 20 (1): 181~187.
    208 K. Yasuda, A. Taniguchi, T. Akita, et al. Platinum Dissolution and Deposition in the Polymer Electrolyte Membrane of a PEM Fuel Cell as Studied by Potential Cycling. Phys. Chem. Chem. Phys. 2006, 8 (6): 746~752.
    209 K. I. Ota, S. Nishigori, N. Kamiya. Dissolution of Platinum Anodes in Sulfuric-Acid Solution. J. Electroanal. Chem. 1988, 257 (1-2): 205-215.
    210 D. C. Johnson, D. T. Napp, S. Bruckenstein. A Ring-Disk Electrode Study of the Current/Potential Behaviour of Platinum in 1.0 M Sulphuric and 0.1 M Perchloric Acids. Electrochim. Acta. 1970, 15 (9): 1493~1509
    211 M. Schulze, A. Schneider, E. Gulzow. Alteration of the Distribution of the Platinum Catalyst in Membrane-Electrode Assemblies during PEFC Operation. J. Power Sources. 2004, 127 (1-2): 213~221.
    212 A. C. C. Tseung, S. C. Dhara. Loss of Surface-Area by Platinum and Supported Platinum Black Electrocatalyst. Electrochim. Acta. 1975, 20 (9): 681~683.
    213 M. Watanabe, K. Tsurumi, T. Mizukami, et al. Activity and Stability of Ordered and Disordered Co-Pt Alloys for Phosphoric-Acid Fuel-Cells. J. Electrochem. Soc. 1994, 141 (10): 2659~2668.
    214 K. F. Blurton, H. R. Kunz, D. R. Rutt. Surface-Area Loss of Platinum Supported on Graphite. Electrochim. Acta. 1978, 23 (3): 183~190.
    215 J. A. S. Bett, K. Kinoshita, P. Stonehart. Crystallite Growth of Platinum Dispersed on Graphitized Carbon-Black .2. Effect of Liquid Environment. J. Catal. 1976, 41 (1): 124~133.
    216 J. X. Zhang, R. Datta. Higher Power Output in a PEMFC Operating under Autonomous Oscillatory Conditions in the Presence of CO. Electrochem. Solid-State Lett. 2004, 7 (3): A37~A40.
    217 P. Serp, M. Corrias, P. Kalck. Carbon Nanotubes and Nanofibers in Catalysis. Appl. Catal. A-Gen. 2003, 253 (2): 337~358.
    218 Y. F. Jia, K. M. Thomas. Adsorption of Cadmium Ions on Oxygen Surface Sites in Activated Carbon. Langmuir. 2000, 16 (3): 1114~1122.
    219 V. Strelko, D. J. Malik, M. Streat. Characterisation of the Surface of Oxidised Carbon Adsorbents. Carbon. 2002, 40 (1): 95~104.
    220 G. S. Szymanski, Z. Karpinski, S. Biniak, et al. The Effect of the Gradual Thermal Decomposition of Surface Oxygen Species on the Chemical and Catalytic Properties of Oxidized Activated Carbon. Carbon. 2002, 40 (14): 2627~2639.
    221 X. J. Zhou, Q. Li, K. T. Leung. Formation of C=C and Si-Cl Adstructures by Insertion Reactions of cis-Dichloroethylene and Perchloroethylene on Si(100)2x1. J. Phys. Chem. B. 2006, 110 (11): 5602~5610.
    222 A. Douidah, P. Marecot, J. Barbier. Toward a Better Understanding of the Stability of Supported Platinum Catalysts in Aqueous Phase under HydrogenAtmosphere at Room Temperature. Appl. Catal. A-Gen. 2002, 225 (1-2): 11~19.
    223 J. M. Heras, L. Viscido. The Behavior of Water on Metal-Surfaces. Catal. Rev.-Sci. Eng. 1988, 30 (2): 281~338.
    224 C. J. Lee, J. Park, Y. Huh, et al. Temperature Effect on the Growth of Carbon Nanotubes Using Thermal Chemical Vapor Deposition. Chem. Phys. Lett. 2001, 343 (1-2): 33~38.
    225 I. Rossetti, N. Pernicone, L. Forni. Graphitised Carbon as Support for Ru/C Ammonia Synthesis Catalyst. Cata. Today. 2005, 102: 219~224.
    226 J. Diaz, G. Paolicelli, S. Ferrer, et al. Separation of the sp(3) and sp(2) Components in the C1s Photoemission Spectra of Amorphous Carbon Films. Phys. Rev. B. 1996, 54 (11): 8064~8069.
    227 M. L. Toebes, J. A. van Dillen, Y. P. de Jong. Synthesis of Supported Palladium Catalysts. J. Mol. Catal. A-Chem. 2001, 173 (1-2): 75~98.
    228 P. Gallezot, N. Laurain, P. Isnard. Catalytic Wet-Air Oxidation of Carboxylic Acids on Carbon-Supported Platinum Catalysts. Appl. Catal. B-Environ. 1996, 9 (1-4): L11~L17.
    229 P. Gallezot, S. Chaumet, A. Perrard, et al. Catalytic Wet Air Oxidation of Acetic Acid on Carbon-Supported Ruthenium Catalysts. J. Catal. 1997, 168 (1): 104~109.
    230 S. S. Barton, M. J. B. Evans, E. Halliop, et al. Anodic Oxidation of Porous Carbon. Langmuir. 1997, 13 (5): 1332~1336.
    231 C. U. Pittman, W. Jiang, Z. R. Yue, et al. Surface Properties of Electrochemically Oxidized Carbon Fibers. Carbon. 1999, 37 (11): 1797~1807.
    232 C. U. Pittman, W. Jiang, Z. R. Yue, et al. Surface Area and Pore Size Distribution of Microporous Carbon Fibers Prepared by Electrochemical Oxidation. Carbon. 1999, 37 (1): 85~96.
    233 Z. R. Yue, W. Jiang, L. Wang, et al. Adsorption of Precious Metal Ions onto Electrochemically Oxidized Carbon Fibers. Carbon. 1999, 37 (10): 1607~1618.
    234 R. Liu, W. H. Her, P. S. Fedkiw. In situ Electrode Formation on a Nafion Membrane by Chemical Platinization. J. Electrochem. Soc. 1992, 139 (1): 15~23.
    235 S. Lefrant, M. Baibarac, I. Baltog, et al. Electrochemical and Vibrational Properties of Single-Walled Carbon Nnanotubes in Hydrochloric Acid Solutions. Diam. Relat. Mat. 2005, 14 (3-7): 873~880.
    236 M. A. Hasan, M. I. Zaki, L. Pasupulety. Oxide-Catalyzed Conversion of Acetic Acid into Acetone: an FTIR Spectroscopic Investigation. Appl. Catal. A-Gen. 2003, 243 (1): 81~92.
    237 Z. X. Jiang, Y. Liu, X. P. Sun, et al. Activated Carbons Chemically Modified by Concentrated H2SO4 for the Adsorption of the Pollutants from Wastewater and the Dibenzothiophene from Fuel Oils. Langmuir. 2003, 19 (3): 731~736.
    238 G. delaPuente, J. J. Pis, J. A. Menendez, et al. Thermal Stability of Oxygenated Functions in Activated Carbons. J. Anal. Appl. Pyrolysis. 1997, 43 (2): 125~138.
    239 J. P. Contour, G. Mouvier, M. Hoogewys, et al. X-Ray Photoelectron-Spectroscopy and Electron-Microscopy of Pt-Rh Gauzes Used for Catalytic-Oxidation of Ammonia. J. Catal. 1977, 48 (1-3): 217~228.
    240 J. Prabhuram, T. S. Zhao, C. W. Wong, et al. Synthesis and Physical/Electrochemical Characterization of Pt/C Nanocatalyst for Polymer Electrolyte Fuel Cells. J. Power Sources. 2004, 134 (1): 1~6.
    241 T. Frelink, W. Visscher, J. A. R. Vanveen. Particle-Size Effect of Carbon-Supported Platinum Catalysts for the Electrooxidation of Methanol. J. Electroanal. Chem. 1995, 382 (1-2): 65~72.
    242 K. J. J. Mayrhofer, B. B. Blizanac, M. Arenz, et al. The Impact of Geometric and Surface Electronic Properties of Pt-catalysts on the Particle Size Effect in Electocatalysis. J. Phys. Chem. B. 2005, 109 (30): 14433~14440.
    243 M. Arenz, K. J. J. Mayrhofer, V. Stamenkovic, et al. The Effect of the Particle Size on the Kinetics of CO Electrooxidation on High Surface Area Pt Catalysts. J. Am. Chem. Soc. 2005, 127 (18): 6819~6829.
    244 Y. Takasu, N. Ohashi, X. G. Zhang, et al. Effects of Platinum Particles on the Electroreduction of Oxygen. Electrochim. Acta. 1996, 41 (16): 2595~2600.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700