用户名: 密码: 验证码:
碳纳米纤维负载Pd-Pt催化剂用于萘加氢反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
催化裂解含碳气体生长的碳纳米纤维,其石墨结构受到生长催化剂的组成、制备方法以及生长条件的影响。本文以共沉淀法制备Ni-Cu/Al_2O_3、Co/Al_2O_3和以溶胶-凝胶-超临界干燥法制备Co/Al_2O_3(SG)催化剂,通过甲烷裂解制备了不同石墨结构的碳纳米纤维。在Ni-Cu/Al_2O_3和Co/Al_2O_3(SG)催化剂上生长的碳纳米纤维的碳层排布为鱼骨状,而在Co/Al_2O_3上生长的碳纳米纤维碳层排布呈平行状。
    对于以上生长的碳纳米纤维,利用高分辨电镜和红外光谱进行了研究。结果表明:碳纳米纤维的表面呈不十分规则的石墨结构,在Ni-Cu/Al_2O_3催化剂上生长的碳纳米纤维表面,局部区域呈暴露的石墨边缘,而其它两种催化剂上生长的碳纳米纤维表面则未观测到这种结构。三种碳纳米纤维表面均有大量的缺陷,在缺陷处不仅存在CH基团,而且由于甲烷和生长催化剂中存在氧,使得在碳纳米纤维的生长过程中形成微量含氧基团。
    用浓硫酸和浓硝酸的混合液,在有聚四氟衬里的高压釜中实现了对碳纳米纤维的可控氧化处理。采用TEM、XRD、N_2物理吸附、红外光谱和离子交换等手段研究了氧化处理对碳纳米纤维的织构性质和表面性质的影响。结果表明,在较高处理温度下造成碳纳米纤维均匀截断,使碳纳米纤维的织构性质发生了改变。对于在Ni-Cu/Al_2O_3催化剂上生长的碳纳米纤维,比表面、孔容和平均孔径均明显减小;而在另两种催化剂上生长的碳纳米纤维,比表面和孔容明显增加,但平均孔径没有发生变化。经过氧化处理的碳纳米纤维,表面引入了大量的含氧基团,如羧基、羧基酐、酚羟基、醌或酮类等。随着处理温度的提高,碳纳米纤维表面引入的含氧基团浓度也增大。不同石墨结构的碳纳米纤维表面对氧化剂的敏感性存在明显的差异,其中鱼骨类碳纳米纤维表面对氧化剂的敏感性明显高于平行类。新鲜的碳纳米纤维是疏水性的,经过氧化处理后变为亲水性,并且通过改变处理条件可以实现碳纳米纤维不同程度的亲水性。
    采用等体积浸渍法制备了碳纳米纤维负载的Pd、Pt和Pd-Pt双金属催化剂用于萘加氢活性和抗硫性研究。通过高分辨电镜、H_2脉冲化学吸附、TPR等表征手段对负载催化剂进行了表征。结果表明:碳纳米纤维表面引入的含氧基团的数量和性质强烈影响金属颗粒的分散度。随着处理温度的升高,引入的含氧基团浓度越高,金属颗粒在载体表面的分散就越好。碳纳米纤维负载的单金属Pd、Pt催化剂的萘加氢反应活性非常低,而负载的Pd-Pt双金属催化剂活性明显提高。碳纳米纤维负载Pd-Pt催化剂的活性随着载体处理温度的升高而提高。碳纳米纤维负载的Pd-Pt催化剂在萘加氢反应中显示较高的耐硫性,并且以平行类碳纳米
The graphite structure of carbon nanofibers (CNFs) grown from catalyticdecomposition of carbonaceous gas depends on the catalyst, preparation method, anddepends also on the reaction conditions. In this thesis, the CNFs of different graphitestructures were prepared by methane decomposition on Ni-Cu/Al_2O_3 and Co/Al_2O_3catalysts prepared with coprecipitation, and a Co/Al_2O_3 (SG) catalyst prepared withsol-gel and a supercritical drying method. The CNFs grown on Ni-Cu/Al_2O_3 andCo/Al_2O_3 (SG) catalysts have a fishbone structure, while the CNFs grown onCo/Al_2O_3 catalyst have a parallel structure.
    The CNFs were investigated by a high resolution TEM and infrared spectroscopy(IR). The result indicates that the surfaces of CNFs appears a degree of disorder ofgraphite structure. At the surface of CNFs grown on the Ni-Cu/Al_2O_3 catalyst, itappears graphite layered edges, but the same layered like edges cannot be seen on thesurfaces of the CNFs grown on the other two catalysts. It was recomfirmed by FTIRthat a large amount of defects on the surfaces of these three kinds of CNFs. Not onlyCH groups, but also some oxygen-containing groups are detected.
    A controllable oxidation treatment was realized using a mixture of concentratedsulfuric and nitric acid in an autoclave with teflon liner. TEM, XRD, N_2 physisorption,IR spectroscopy and ion exchange methods were adopted to investigate the influenceof oxidation treatment on the texture and surface properties of CNFs. The resultsindicate that a treating at high temperature induces a uniform cutting, which lead tothe change of texture properties of CNFs. As to the CNFs grown on Ni-Cu/Al_2O_3, thesurface area, pore volume and average pore diameter changed severely if treated at150 Co. For the CNFs grown on the other two cobalt catalysts, with the surface areaand pore volume increased obviously for sample treated at 180 Co, the average porediameter was almost not changed. Many kinds of oxygen-containing groups e. g.carboxyl, carboxylic anhydride, phenol, quinine or ketone etc. were induced on thesurface through oxidation treatment. The amount of oxygen containing groupsinduced increased with the treating temperature increased. The fresh CNFs arehydrophobic, whereas good wettability can be realized after oxidation treatment. Thecontrollable hydrophilicity is beneficial to the preparation of supported catalyst. It wasfound that the surface sensitivity of fishbone CNFs is higher than that of parallel type.
    The supported Pd, Pt and Pd-Pt catalysts were prepared by incipient wetnessimpregnation method and used for the naphthalene hydrogenation with the presenceof thiophene. The catalysts were characterized with high-resolution TEM, H_2chemisorption and temperature programed reduction etc. The results indicate that theamount and properties of oxygen-containing groups influence strongly the dispersionof metal particles. With the treating temperature increased, the concentration ofoxygen-containing groups increased, and the dispersion of metals on the surface ofCNFs was improved. The activity of supported Pd/CNFs and Pt /CNFs catalysts wasvery low, whereas the activity of Pd-Pt/CNFs catalysts were high. The activity of the
    Pd-Pt/CNFs catalyst increased with the treating temperature increased. Furthermore,the supported Pd-Pt/CNFs catalyst showed an excellent sulfur resistance. The paralleltype of CNFs is better than that of fishbone type of CNFs for sulfur resistancecatalyst.
引文
1. 闵恩泽,环境友好石油炼制技术的进展,化学进展,1998,10:207-214
    2. 汪燮卿,从第 15 届世界石油大会看炼油工业的发展趋势,石油炼制与化工,1998,29:1-6
    3. Halbert T. R, Anderson G, Gupta R, et al, Meeting the challenge of deep diesel desulfurization, The 15th WPC, Beijing, 1997, Forum 9, Paper 2
    4. Copper B. H, Stanislaus A, Hannerup P. N, Diesel aromatics saturation: A comparative study of four catalyst systems, Fuel Chemistry, 1992, 37: 41-49
    5. Cooper B. H, Donnis B. B. L, Aromatic saturation of diesel: a review, Appl. Catal. A, General, 1996, 137: 203-223
    6. 陆德新,国内外柴油质量规格及优化技术,金山油化纤,1997,4:52-57
    7. Peer R, Ackelson D, Genis O, et al, Middle distillate solutions in Europe, Petrol Technology, 1995, 395: 58-74
    8. Roger Peer 等,欧洲增产优质馏分油的优化方案,钱伯章编译,世界石油科学,1997,2:83-89
    9. Roger Peer 等,欧洲增产优质馏分油的优化方案,钱伯章编译,世界石油科学,1997,3:68-77
    10. Stanislaus A, Copper B. H, Aromatic hydrogenation catalysis: a review, Catalysis Review: Science & Engineering, 1994, 36: 75-123
    11. Westerholm R, Egeback K. E, Impact of fuels on diesel exhaust emissions. A chemical and biological characterization, Swedish Environmental Protection Agency Report Series, Stockholm, 1990
    12. Johnson J. H, Bagley S. T, Gratz L. D, et al, A review of diesel particulate control technology and emission effects, SAE Paper, No.940233, 1994
    13. 高晓冬,石玉林,张哲民等,高硫柴油加氢处理生产低硫、低芳烃柴油的研究,石油炼制与化工,1996,27:12-15
    14. Grange P, Vanhaeren X, Hydrotreating catalysts, an old story with new challenges, Catal. Today, 1997, 36: 375-391
    15. Frarragher A. L, Cossee P, Catalytic chemistry of molybdenum and tungsten sulfides and related ternary compounds, Proceedings of the fifth international congress on catalysis, 1973, 2: 1301-1308
    16. Voorhoeve R. J. H, Stuiver J. C. M, The mechanism of the hydrogenation of cyclohexene and benzene on nickel-tungsten sulfide catalysts, Journal of catalysis, 1971, 23: 243-252
    17. Topsфe H, Clausen B. S, Importance of Co-Mo-S type structures in hydrodesulfurization, Catalysis Review: Science & Engineering, 1984, 26: 395-342
    18. Gustavo M. S, Jorge A. J, Catalytic hydrotreating of middle distillates blends in a fixed-bed pilot reactor , Appl. Catal. A, General, 2001, 207: 407-420
    19. Song C. S, Andrew D. S, Zeolite-supported Pd and Pt catalysts for low –temperature hydrogenation of naphthalene in the absence and presence of benzothiophene. Energy & Fuel, 1997, 11: 656-661
    20. Sogaard-Adersen P, Cooper B. H, Hannerup P. N, “AM-92-50, NPRA Annual meeting”, March 1992
    21. Aramendia M A, Borau V, Jimenez C, et al, Hydrogenation of xylene over supported Pt catalysts, influence of different variables on their catalytic activity, Reaction Kinetics And Catalysis Letters, 1992, 46: 305-312
    22. Navarro R. M, Pawelec B, Trejo J. M, et al, Hydrogenation of aromatics on sulfur-resistant Pt Pd bimetallic catalysts, J. Catal., 2000, 198: 184-194
    23. Yasuda H, Kameoka T, Sato T, et al, Sulfur-tolerant Pd–Pt/Al2O3–B2O3 catalyst for aromatic hydrogenation, Applied Catalysis, 1999, 185: L199-201
    24. Huang T. C, Kong B.C, The thioresistance of platinum/aluminum borate catalysts in aromatic, J. Mol.Catal A:.Chem, 1995, 103: 163-174
    25. Lin S. D, Song C. S, Noble metal catalysts for low-temperature naphthalene hydrogenation in the presence of benzothiophene, Catal. Today, 1996, 31: 93-104
    26. Chen Y, Li W, Sheng S, Sulfur-resistant character of titania-supported platinum catalysts, Appl. Catal. A, General, 1990, 63: 107-115
    27. Simon L. J, van Ommen J.G, Jentys A, et al, Sulfur tolerance of Pt/mordenite for benzene hydrogenation: Do Brosted acid site participate in hydrogenation?, Catal. Today, 2002, 73: 105-112
    28. Yasuda H, Sato T, Yoshimura Y, Influence of the acidity of USY zeolite on the sulfur tolerance of Pd–Pt catalysts for aromatic hydrogenation , Catal. Today,1999, 50: 63-71
    29. Corma A, Martinez A, Soriay V. M, et al., Hydrogenation of aromatics in diesel fuels on Pt/MCM-41 catalysts, J. Catal., 1997, 169 : 480-489
    30. Corma A, Martínez A, Soriay V. M, Sulfur-tolerant Pd-Pt/Yb-USY zeolite catalysts used to reformulate diesel oils, Appl. Catal. A, General 2001, 207: 303-307
    31. Huang T C, Kang B C, The hydrogenation of naphthalene with platinum alumina aluminum phosphate catalysts. Ind. Eng. Chem. Res, 1995, 9: 2955-2963
    32. Lin S. D, Vannice M. A, Hydrogenation of aromatic hydrocarbons over supported Pt catalysts. I Benzene hydrogenation, J. Catal, 1993, 143: 539-554
    33. Lin S. D, Vannice M. A, Hydrogenation of aromatic hydrocarbons over supported Pt catalysts. II Toluene hydrogenation, J. Catal, 1993, 143: 554-563
    34. Lin S. D, Vannice M. A, Hydrogenation of aromatic hydrocarbons over supported Pt catalysts. III Reaction models for metal surfaces and acidic sites on oxide supports, J. Catal, 1993, 143: 563-572
    35. Armor J. N, Pd-MCM-41/Al2O3 catalyst for hydrogenation of aromatics, Appl. Catal, A: General, 1994, 112: N21
    36. Matsubayashi N, Yosuda H, Imamura M, et al., EXAFS study on Pd–Pt catalyst supported on USY zeolite, Catal. Today, 1998, 45: 375-380
    37. Guillon E, Lynch J, Characterization of bimetallic platinum systems: application to the reduction of aromatics in presence of sulfur, Catal. Today, 2001, 65: 201-208
    38. Reddy K. M, Song C. S, Synthesis of mesoporous zeolites and their application for catalytic conversion of polycyclic aromatic hydrocarbons, Catal. Today, 1996, 31: 137-144
    39. Gallezot P, Catalytic activity of very small particles of Platinum and Palladium supported in Y-type zeolites, Catalysis by zeolite, Elsevier Science Publishing Co., Amsterdam, 1980, 5: 277-234
    40. Yasuda H, Yoshimura Y, Hydrogenation of tetralin over zeolite-supported Pd-Pt catalysts in the presence of dibenzothiophene, Catal. Lett, 1997, 46: 43-48
    41. Tri T. M, Massardier J, Gallezot P, et al, Additives and support effects on Pt catalysts studied by the competitive hydrogenation of benzene and toluene, Metal-support and Metal Additives Effects in Catalysis, Elsevier Scientific Pub. Co., Amsterdam, 1982, 11: 141-148
    42. Sachtler W. M. H, Stakheev A. Yu, Electron-deficient palladium clusters and bifunctional sites in zeolites, Catal. Today, 1992, 12: 283-295
    43. Dalla Betta R. A, Boudart M, Gallezot P, Reply to the comment of P. H. Lewis “Net charge on platinum cluster incorporated in Y-zeolite”, J. Catal, 1981, 69: 514-515
    44. Matsubayashi N, Yosuda H, Imamura M, et al, EXAFS study on Pd–Pt catalyst supported on USY zeolite, Catal. Today, 1998, 45: 375-380
    45. Dhandapani B, Clair T. S, Oyama S.T, Simultaneous hydrodesulfurization, hydrodeoxygenation, and hydrogenation with molybdenum carbide, Appl. Catal,1998, 168: 219-228
    46. Kabe T, Qian W, Hirai Y, et al., Hydrodesulfurization and Hydrogenation Reactions on Noble Metal Catalysts: I. Elucidation of the behavior of sulfur on alumina-supported platinum and palladium using the 35S Radioisotope Tracer Method, J. Catal, 2000, 190: 191-198
    47. Charlier J. C, Defects in carbon nanotubes, Acc. Chem. Res., 2002, 35: 1063-1069
    48. Iijima S, Helical microtubes of graphitic carbon, Nature, 1991, 354: 56-58
    49. De Jong K. P, Geus J. W, Carbon nanofibers: catalytic synthesis and applications, Catal. Rev.-Sci. Eng., 2000, 42: 481-510
    50. Issi, J P, Langer, L, Heremans, J, Olk, C H. Electronic properties of carbon nanotubes: experimental results, Carbon, 1995, 33:941-948
    51. Issi J. P, Charlier J. C, Tanaka K, et al, The Science and Technology of Carbon Nanotubes, Elsevier, Amsterdam, 1999, p. 107.
    52. Bethune D. S, Klang C. H, Vries M. S. D, J. Gorman, Cobalt-catalysed frowth of carbon nanotubes with single-atomic-layer walls, Nature, 1993, 363: 605-607
    53. Dai H. J, Carbon nanotubes: synthesis, integration, and properties, Acc. Chem. Res, 2002, 35:1035-1044
    54. Ouyang M, Huang J. L, Lieber C. M, Fundamental electronic properties and applications of single-walled carbon nanotubes, Acc. Chem. Res., 2002, 35:1018-1025
    55. Nunzi F, Mercuri F, Sgamellotti A, et al, The coordination chemistry of carbon nanotubes: a density functional study through a cluster model approach, J. Phys. Chem. B, 2002, 106: 10622-10633
    56. Menon M, Andriotis A. N, Froudakis G.E, Curvature dependence of the metal catalyst atom interaction with carbon nanotubes walls, Chem. Phys. Lett, 2000, 320: 425-434
    57. Yang Q. H, Hou P. X, Bai S, et al, Adsorption and capillarity of nitrogen in aggregated multi-walled carbon nanotubes, Chem. Phys. Lett., 2001, 345: 18-24
    58. Inoue S, Ichikuni N, Suzuki T, et al, Capillary condensation of N2 on multi-wall carbon nanotubes, J. Phys. Chem. B, 1998, 102: 4689-4692
    59. Eswaramoorthy M, Sen R, Rao C.N.R, A study of micropores in single-walled carbon nanotubes by the adsorption of gases and vapors, Chem. Phys. Lett., 1999, 304: 207-210
    60. Serp P, Corrias M, Kalck P, Carbon nanotubes and nanofibers in catalysis, Appl. Catal. A, 2003, 253: 337-358
    61. Hilding J, Grulke E. A, Sinnott S. B, et al, Sorption of Butane on carbon multiwall nanotubes at room temperature, Langmuir, 2001, 17: 7540 -7544
    62. Masenelli-Varlot K, McRae E, Dupont-Pavlosky N, Comparative adsorption of simple molecules on carbon nanotubes dependence of the adsorption properties on the nanotube morphology, Appl. Surf. Sci., 2002, 196: 209-215
    63. Ruoff, R S, Lorents, D C,Mechanical and thermal properties of carbon nanotubes,Carbon, 1995, 33: 925-930
    64. Treacy M. M. J, Ebbesen T. W, Gibson J. M, Exceptionally high Young's modulus observed for individual carbon nanotubes , Nature 1996, 381: 678-680
    65. Jacobsen R L, Tritt T M, Guth J R, Ehrlich A C, Gillespie D J. Mechanical properties of vapor grown carbon fiber, Carbon, 1995, 33: 1217-1221
    66. Corrias M, Serp Ph, Kalck Ph, et al, High purity multiwalled carbon nanotubes under high pressure and high temperature, Carbon, 2003, 41: 2361-2367
    67. Park C, Baker R. T. K, Catalytic behavior of graphite nanofiber supported nickel particles. 3. The effect of chemical blocking on the performance of the system, J. Phys. Chem. B, 1999, 103: 2453-2459
    68. Moon J. M., An K. H, Lee Y. H, et al, High-yield purification process of singlewalled carbon nanotubes, J. Phys. Chem. B, 2001, 105: 5677-5681
    69. Born D, Andrews R, Jacques D, et al, Thermogravimetric analysis of the oxidation of multiwalled carbon nanotubes: Evidence for the role of defect sites in carbon nanotube chemistry, Nano Lett., 2002, 2, 615-619
    70. Boehm H. P, Some aspects of the surface chemistry of carbon blacks and other carbons, Carbon, 1994, 32: 759-769
    71. Barton S. S, Evans M.J.B, Halliop E, et al, Acidic and basic sites on the surface of porous carbon, Carbon, 1997 35: 1361-1366
    72. Ebbesen T. W, Ajayan P. M, Hiura H, et al, Purification of nanotubes, Nature, 1994, 367: 519
    73. Lago R. M, Tsang S. C, Lu K. L, et al, Filling carbon nanotubes with small palladium metal crystallites: the effect of surface acid groups, J. Chem. Soc., Chem. Commun., 1995, 1355-1356
    74. Liu J, Rinzler A. G, Dai H, et al, Fullerene pipes, Science, 1998, 280: 1253 -1256
    75. Tsang S. C, Chen Y. K, Harris P. J. F, et al, A simple chemical method of opening and filling carbon nanotubes, Nature, 1994, 372:159-162
    76. Hwang K. C, Efficient cleavage of carbon graphite layers by oxidants, J. Chem. Soc., Chem. Commun., 1995, 173 -174
    77. Hamon M. A, Chen J, Hu H, et al, Dissolution of Single-Walled Carbon Nanotubes, Adv. Mater, 1999, 11-10: 834-840
    78. Kuznetsova A, Mawhinney D.B, Naumenko V, et al, Enhancement of adsorption inside of single-walled nanotubes opening the entry ports, Chem. Phys. Lett., 2000, 321: 292-296
    79. Esumi K, Ishigami M, Nakajima A, et al, Chemical treatment of carbon nanotubes, Carbon, 1996, 34: 279 -281
    80. Shaffer M. S. P, Fan X, Windle A. H, Dispersion and packing of carbon nanotubes, Carbon, 1998, 36: 1603-1612
    81. Ago H, Kugler T, Cacialli F, et al, Work Functions and Surface Functional Groups of Multiwall Carbon Nanotubes, J. Phys. Chem. B, 1999, 103 : 8116-8121
    82. Jia Z, Wang Z, Liang J, et al, Production of short multi-walled carbon nanotubes, Carbon, 1999, 37: 903 -906
    83. Mawhinney D. B, Naumenko V, Kuznetsova A, et al, Surface defect site density on single walled carbon nanotubes by titration, Chem. Phys. Lett., 2000, 324: 213 -216
    84. Ros T. G, Rhodium complexes and particles on carbon nanofibres, PhD Thesis, The Netherlands: Utrecht University, 2002
    85. Mojet B. L, Hoogenraad M. S, Van Dillen A. J, et al, Coordination of palladium on carbon fibrils as determined by XAFS spectroscopy, J. Chem. Soc., Faraday Trans., 1997, 93: 4371-4375
    86. Liu Z. J, Yuan Z.Y, Zhou W. Z, et al, Co/carbon-nanotube monometallic system: the effects of oxidation by nitric acid, Phys. Chem. Chem. Phys., 2001, 3: 2518-2521
    87. Li C. H, Yao K. F, Liang J, Influence of acid treatments on the activity of carbon nanotube-supported catalysts, Carbon, 2003, 41: CO1–860
    88. Chen J, Hamon M. A, Hu H, et al, Solution properties of single-walled carbon nanotubes, Science, 1998, 282: 95-98
    89. Zhang Y, Zhang H. B, Lin G. D, et al, Preparation, characterization and catalytic hydroformylation properties of carbon nanotubes-supported Rh–phosphine catalyst, Appl. Catal A: General, 1999, 187: 213–224
    90. Banerjee S, Wong S. S, Functionalization of carbon nanotubes with a metal-containing molecular complex,Nano. Lett., 2002, 2: 49-53
    91. Banerjee S, Wong S. S, Structural characterization, optical properties, and improved solubility of carbon nanotubes functionalized with Wilkinson's Catalyst, J. Am. Chem. Soc., 2002, 124: 8940-8948
    92. Frehill F, Vos J.G, Benrezzak S, et al, Interconnecting carbon nanotubes with an inorganic metal complex, J. Am. Chem. Soc. 2002, 124: 13694-13695
    93. Giordano R, Serp P, Kalck P, et al, Preparation of rhodium catalysts supported on carbon nanotubes by a surface mediated organometallic reaction, Eur. J. Inorg. Chem., 2003, 610-617
    94. Li C. B, Pan W. X, Wong W. K, et al, Effect of CNTs on direct oxidation of cyclohexene catalyzed by ruthenium diaminodiphosphine complex, J. Mol. Catal, 2003, 193: 71-75
    95. Rodriguez N.M, Kim M. S, Baker R.T.K, Carbon nanofibers: a unique catalyst support medium, J. Phys. Chem. B, 1994, 98:13108-13111
    96. Chambers A, Nemes T, Rodriguez N.M, et al, Catalytic behavior of graphite nanofiber supported nickel particles. 1. Comparison with other support media, J. Phys. Chem. B, 1998, 102: 2251-2258
    97. Park C, Baker R.T.K, Catalytic behavior of graphite nanofiber supported nickel particles. 2. The influence of the nanofiber structure, J. Phys. Chem. B, 1998, 102: 5168-5177
    98. Park C, Baker R.T.K, Catalytic behavior of graphite nanofiber supported nickel particles. 3. The effect of chemical blocking on the performance of the system, J. Phys. Chem. B 1999, 103: 2453-2459
    99. Salman F, Park C, Baker R.T.K, Hydrogenation of crotonaldehyde over graphite nanofiber supported nickel, Catal. Today, 1999, 53: 385–394
    100. Planeix J .M, Coustel N, Coq B, et al, Application of carbon nanotubes as supports in heterogeneous catalysis. J. Am. Chem. Soc., 1994, 116: 7935-7936
    101. Pham-Huu C, Keller N, Charbonniere L. J, et al, Carbon nanofiber supported palladium catalyst for liquid-phase reactions. An active and selective catalyst for hydrogenation of C=C bonds. Chem. Commun., 2000, 1871-1872
    102. Pham-Huu C, Keller N, Ehret G, et al, Carbon nanofiber supported palladium catalyst for liquid-phase reactions: an active and selective catalyst for hydrogenation of cinnamaldehyde into hydrocinnamaldehyde. J. Mol. Catal. A: Chem, 2001, 170: 155-163
    103. Ledoux M. J, Vieira R, Pham-Huu C, et al, New catalytic phenomena on nanostructured (fibers and tubes) catalysts, J. Catal, 2003, 216: 33-342
    104. Nhut J. M, Vieira R, Pesant L, et al, Synthesis and catalytic uses of carbon and silicon carbide nanostructures, Catal. Today, 2002, 76: 11-32
    105. Toebes M. L, Prinsloo F. F, Bitter J. H, et al, Influence of oxygen-containing surface groups on the activity and selectivity of carbon nanofiber-supported ruthenium catalysts in the hydrogenation of cinnamaldehyde, J. Catal., 2003, 214: 78–87
    106. Brotons V, Coq B, Planeix J.M, Catalytic influence of bimetallic phases for the synthesis of single-walled carbon nanotubes, J. Mol. Catal, 1997, 116: 397-403
    107. Lordi V, Yao N, Wei J, Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst, Chem. Mater, 2001, 13: 733-737
    108. Hoogenraad M. S, Growth and utilization of carbon fibrils, Ph.D. Thesis, The Netherlands, Utrecht University, 1995
    109. Ros T. G, Keller D. E, Van Dillen A. J, et al, Preparation and activity of small rhodium metal particles on fishbone carbon nanofibres, J. Catal, 2002, 211: 85-102
    110. Gao R, Tan C. D, Baker R. T. K, Ethylene hydroformylation on graphite nanofiber supported rhodium catalysts. Catal. Today, 2001, 65: 19-29
    111. Chen H. B, Lin J. D, Cai Y, et al, Novel multi-walled nanotubes-supported and alkali-promoted Ru catalysts for ammonia synthesis under atmospheric pressure, Appl. Surf. Sci, 2001, 180: 328-335
    112. Liang C, Li Z, Qiu J, et al, Graphitic nanofilaments as novel support of Ru–Ba catalysts for ammonia synthesis. J. Catal, 2002, 211: 278-282
    113. Liu Z. J, Xu Z, Yuan Z. Y, et al, Cyclohexanol dehydrogenation over Co/carbon nanotube catalysts and the effect of promoter K on performance, Catal. Lett, 2001, 72: 203-206
    114. Steen E. V, Prinsloo F. F, Comparison of preparation methods for carbon nanotubes supported iron Fischer–Tropsch catalysts, Catal. Today, 2002, 71: 327–334
    115. Luo J. Z, Gao L. Z, Leung Y. L, et al, The decomposition of NO on CNTs and 1 wt% Rh CNTs, Catal. Lett, 2000, 66: 91–97
    116. Baker R. T. K, Laubernds K, Wootsch A, et al, Graphite Nanofiber Catalyst in n-Hexane Test Reaction, J. Catal, 2000, 193: 165–167
    117. Bessel C. A, Laubernds K., Rodriguez N. M, et al, Graphite nanofibers as an electrode for fuel cell applications, J. Phys. Chem. B, 2001, 105: 1115-1118
    118. Li W. Z, Liang C. H, Qiu J. S, et al, Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell, Carbon, 2002, 40: 787– 803
    119. Steigerwalt E. S, Deluga G. A, Lukehart C. M, Pt-Ru /carbon fiber nanocomposites synthesis, characterization, and performance as anode catalysts of direct methanol fuel cells. A search for exceptional performance, J. Phys. Chem. B, 2002, 106: 760-766
    120. Che G. L, Lakshmi B. B, Chares R, et al, Metal-nanocluster-filled carbon nanotubes catalytic properties and possible applications in electrochemical energy storage and production, Langmuir, 1999, 15: 750-758
    121. Rajesh B, Thampi K. R, Bonard J. M, Carbon nanotubes generated from template carbonization of polyphenyl acetylene as the support for electrooxidation of methanol, J. Phys. Chem. B, 2003, 107: 2701-2708
    122. Rajesh B, Karthik V, Karthikeyan S, Pt–WO3 supported on carbon nanotubes as possible anodes for direct methanol fuel cells, Fuel, 2002, 81: 2177–2190
    123. Liu Z. L, Lin X. H, Lee J. Y, et al, Preparation and characterization of platinum-based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells, Langmuir, 2002, 18: 4054-4060
    124. Popov V. N, Carbon nanotubes: properties and application, Materials Science and Enginering R, 2004, 43: 61-102
    125. Srivastava D, Wei C. Y, Cho K, Nanomechanics of carbon nanotubes and composites, Appl. Mech. Rev, 2003, 56: 215-230
    126. Qian D, Wagner G. J, Liu W. K, et al, Mechanics of carbon nanotubes, Appl. Mech. Rev., 2002, 55: 495-533
    127. Rodriguez N.M, A review of catalytically grown carbon nanofibers, J. Mater. Res, 1993, 8: 3233-325
    128. Thostenson E. T, Ren Z, Chou T-W, Advances in the science and technology of carbon nanotubes and their composites: a review, Composites Science and Technology, 2001, 61: 1899-1912
    129. 王宗花,刘 军,颜流水等,碳纳米管修饰电极的孔性界面对电分离多巴胺和抗坏血酸的影响,高等学校化学学报,2003,24:236-240
    130. 陈荣生,肖 华,黄卫华等,单壁碳纳米管修饰的高灵敏纳米碳纤维电极,高等学校化学学报,2003,24:808-810
    131. 陈卫祥,韩 贵,LEEJim Yang等,Pt/CNT纳米催化剂的微波快速合成及其对甲醇氧化的电催化剂性能,高等学校化学学报,2003,24:2285-2287
    132. Mawhinney D. B, Naumenko V, Kuznetsova A, et al, Infrared spectral evidence for the etching of carbon nanotubes: ozone oxidation at 298 K, J. Am. Chem. Soc, 2000, 122: 2383-2384
    133. Martínez M. T, Callejas M. A, Benito A. M, et al, Sensitivity of single wall carbon nanotubes to oxidative processing: structural modification, intercalation and functionalisation, Carbon. 2003, 41: 2247-2256
    134. Jung Y. S, Jeon D. Y, Surface structure and field emission property of carbon nanotubes grown by radio-frequency plasma-enhanced chemical vapor deposition, Applied Surface Science, 2002, 193: 129-137
    135. 李永丹,铜锌铝准晶态混合氧化物催化剂母体的制备、结构及性能的研究:[硕士学位论文],天津:天津大学化工学院,1984
    136. Gómez-Serrano V, Piriz-Almeida F, Durán-Valle C. J, et al, Formation of oxygen structures by air activation. A study by FT-IR spectroscopy, Carbon,1999, 37: 1517-1528
    137. Moreno-Castilla C, López-Ramón M.V, Carrasco-Marín F, Changes in surface chemistry of activated carbons by wet oxidation, Carbon, 2000, 38: 1995–2001
    138. Moreno-Castilla C, Carrasco-Marín F, Maldonado-Hódar F. J, et al, Effects of non-oxidant and oxidant acid treatments on the surface properties of an activated carbon with very low ash content, Carbon, 1998, 36: 145-151
    139. Puziy A. M, Poddubnaya O. I, Martínez-Alonso A, et al, Synthetic carbons activated with phosphoric acid III. Carbons prepared in air, Carbon, 2003, 41: 1181-1191
    140. Przepiórski J, Skrodzewicz M, Morawski A.W, High temperature ammonia treatment of activated carbon for enhancement of CO2 adsorption, Applied Surface Science, 2004, 225: 235–242
    141. Puziy A. M, Poddubnaya O. I, Martínez-Alonso A, et al, Synthetic carbons activated with phosphoric acid I. Surface chemistry and ion binding properties, Carbon, 2002, 40: 1493-1505
    142. Yang T, Lua A. C, Characteristics of activated carbons prepared from pistachio-nut shells by physical activation, Journal of Colloid and Interface Science, 2003, 267: 408–417
    143. Prado-Burguete C, Linares-Solano A, Rodríguez-Reinoso F, et al, The effect of oxygen surface groups of the support on platinum dispersion in Pt/carbon catalysts, J. Catal, 1989, 115: 98-106
    144. Ishizaki. C, Martí. I, Suface oxide structures on a commercial activated carbon, Carbon, 1981, 19: 409-412
    145. Fanning P. E, Vannice M. A, A DRIFTS study of the formation of surface groups on carbon by oxidation, Carbon, 1993, 31: 721-730
    146. Marchon B, Carrazza J, Heinemann H, et al, TPD and XPS studies of O2, CO2, and H2O adsorption on clean polycrystalline graphite, Carbon, 1988, 26: 507-514
    147. Boehm H. P, Surface oxides on carbon and their analysis: a critical assessment, Carbon, 2002, 40: 145-149
    148. Zielke U, Hüttinger K.J, Hoffman W. P, Surface-oxidized carbon fibers: I. Surface structure and chemistry, Carbon, 1996, 34: 983-998
    149. Aguilar C, García R, Soto-Garrido G, et al, Catalytic wet air oxidation of aqueous ammonia with activated carbon, Appl. Catal. B, 2003, 46: 229-237
    150. Puente G. dela, Centeno A, Gil A, et al, Interactions between Molybdenum and Activated Carbons on the Preparation of Activated Carbon-Supported Molybdenum Catalysts, Journal of Colloid and Interface Science, 1998, 202: 155-166
    151. Shin S, Jang J, Yoon S. H, et al, A study on the effect of heat treatment on functional groups of pitch based activated carbon fiber using FTIR. Carbon, 1997, 35: 1739-1743
    152. Starsinic M, Taylor R. L, Walker Jr. PL, et al, FTIR Studies of Saran chars. Carbon, 1983, 21: 69–74
    153. Auer E, Freund A, Pietsch J, et al. Carbons as supports for industrial precious metal catalysts, Appl. Catal A, 1998, 173: 259-271
    154. Shelimov K. B, Esenaliev R. O, Rinzler A. G., et al, Purification of single-wall carbon nanotubes by ultrasonically assisted filtration, Chem. Phys. Lett, 1998, 282: 429-434
    155. Tsang S. C, Harris P. J. F, Green M. L, Thinning and opening of carbon nanotubes by oxidation using carbon dioxide, Nature, 1993, 362: 520-522
    156. Ajayan P. M, Ebbesen T. W, chihashi T. I, et al, Opening carbon nanotubes with oxygen and implications for filling, Nature, 1993, 362: 522-525
    157. Pierard N, Fonseca A, Konya Z, et al, Production of short carbon nanotubes with open tips by ball milling, Chem. Phys. Lett, 2001, 335: 1-8
    158. Chun B. W, Davis C. R, He Q, et al, Development of surface acidity during electrochemical treatment of PAN-carbon fibers, Carbon, 1992, 30:177-187
    159. 牛佳莉,邹红玲,张锦等,单壁碳纳米管氧化过程的银纳米粒子跟踪,物理化学学报,2004,20:1-4
    160. Rodriguez-Reinoso F, The role of carbon materials in heterogeneous catalysis, Carbon, 1998, 36: 159-175
    161. 见本论文第一章
    162. Gonzo E. E, and Boudart M, Catalytic hydrogenation of cyclohexene, 3. Gas-phase and liquid-phase reaction on supported palladium, Journal of catalysis, 1978, 52: 426-471
    163. Foger K, and Anderson J. R, Reactions of neopentane and neohexane on platinum/Y-zeolite and platinum/silica catalysts, Journal of catalysis, 1978, 54: 318-335
    164. Guenin M, Da Silva P. N, and Frety R, Influence of chlorine towards metal-support and metal-sulfur support interactions, Appl. Catal A, General, 1986, 27: 313-32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700